JPS6225700B2 - - Google Patents

Info

Publication number
JPS6225700B2
JPS6225700B2 JP22798983A JP22798983A JPS6225700B2 JP S6225700 B2 JPS6225700 B2 JP S6225700B2 JP 22798983 A JP22798983 A JP 22798983A JP 22798983 A JP22798983 A JP 22798983A JP S6225700 B2 JPS6225700 B2 JP S6225700B2
Authority
JP
Japan
Prior art keywords
weight
units
copolymer
matrix polymer
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22798983A
Other languages
Japanese (ja)
Other versions
JPS60120734A (en
Inventor
Ikuji Ootani
Keiji Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP22798983A priority Critical patent/JPS60120734A/en
Publication of JPS60120734A publication Critical patent/JPS60120734A/en
Publication of JPS6225700B2 publication Critical patent/JPS6225700B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透明な耐熱耐衝撃性樹脂組成物、さら
に詳しくいえば、透明性に優れかつ極めて良好な
耐熱変形性と耐熱分解性を有する、特定のグラフ
ト共重合体とマトリツクスポリマーとから成る耐
衝撃性熱可塑性樹脂組成物に関するものである。 近年、弱電部品あるいは工業部品などの各種用
途において、優れた耐熱性、耐衝撃性及び耐油性
を有し、その上透明であり、かつ安価な樹脂の要
求が特に強くなりつつある。 現在市販されている樹脂の中で、無色透明であ
つて機械的強度と耐熱性の優れた代表的な樹脂と
しては、ポリカーボネートが知られている。しか
しながらこの樹脂はエンジニアリング樹脂であり
高価格なため汎用には至つていない。 最近、メタクリル酸メチル樹脂の透明性、耐油
性及び耐候性を維持し、ゴム補強により耐衝撃性
を加えた耐衝撃性メタクリル酸メチル樹脂(HI
―PMMA)が市販されはじめたが、このものは
耐熱性に劣る欠点を有している。 また、グラフト共重合体の屈折率と、マトリツ
クスポリマーの屈折率とが一致することにより透
明性を有する透明MBS樹脂や透明ABS樹脂は、
古くから安価に市販されているが、耐熱性に劣る
ため、広く使用されるに至つていない。 他方、ガラス繊維を加えることにより、耐熱性
と耐衝撃性を向上させ、さらにガラス繊維の屈折
率と樹脂の屈折率とを一致させるように工夫する
ことにより、かなり透明な熱可塑性樹脂を得るこ
とができる(特開昭56−98251号公報)。しかしな
がら、この方法による透明性は完全なものでなく
て限界があり、広く利用されるに至つていない。 本発明者らは、このような事情のもとで、透明
性、耐熱性、耐衝撃性及び耐油性に優れ、かつ安
価に供給しうる熱可塑性樹脂組成物を開発すべく
鋭意研究を重ねた結果、グラフトゴム補強樹脂と
特定の六員環酸無水物単位を所定量含有する共重
合体とを組み合わせ、該グラフトゴム補強樹脂の
屈折率と該共重合体の屈折率とを実質上同一とす
ることにより、その目的を達成しうることを見出
し、この知見に基づいて本発明を完成するに至つ
た。 すなわち、本発明は、(A)ポリブタジエン又はブ
タジエン単位60重量%以上を含有するブタジエン
共重合体から成るゴムに、芳香族ビニル化合物と
メタクリル酸アルキルエステルとをグラフト重合
して得られたグラフト共重合体5〜50重量%と、
(B)マトリツクスポリマー95〜50重量%とから成
り、該マトリツクスポリマーが(イ)メタクリル酸メ
チル単位20〜89.5重量%、(ロ)一般式 (式中のR1及びR2はメチル基又は水素原子で
ある) で表わされる六員環酸無水物単位5〜74.5重量
%、(ハ)芳香族ビニル化合物単位5〜69.5重量%及
び(ニ)アクリル酸又はメタクリル酸若しくはその両
方の単位0.5〜20重量%から成る共重合体であつ
て、該マトリツクス部の濃度10重量%のメチルエ
チルケトン溶液の温度25℃における粘度が3〜20
センチポイズであり、かつ前記のグラスト共重合
体とマトリツクスポリマーのそれぞれの屈折率が
実質上同一であることを特徴とする透明な耐熱耐
衝撃性樹脂組成物を提供するものである。 本発明の特徴は、特定の共重合体から成るマト
リツクスポリマーにより耐熱性と耐油性が向上
し、かつ特定のグラフト共重合体により耐衝撃性
が向上し、さらに前記のマトリツクスポリマーと
グラフト共重合体双方の屈折率を合わせるように
工夫することにより透明性が向上した樹脂組成物
を得ることにある。 このようにして得られた樹脂組成物は、温度
100℃の熱水中に放置しても透明性を失わないと
いう驚くべき性能を有している。 本発明の樹脂組成物における(A)成分のグラフト
共重合体に用いるゴム成分としては、ポリブタジ
エンが一般的であり、このゴム成分の屈折率を変
動させる方法としては、ブタジエンを主体としこ
れに他の単量体をランダムに又はブロツク的に共
重合させるのがよい。すなわち、ポリブタジエン
より屈折率を高める場合には、芳香族ビニル化合
物をブタジエンに共重合させ、他方ポリブタジエ
ンより屈折率を低くする場合には、アクリル酸ア
ルキルエステル又はメタクリル酸アルキルエステ
ルをブタジエンに共重合させればよい。また不飽
和ニトリル単量体をブタジエンに共重合させる場
合もある。 このようにして得られたブタジエン共重合体
は、本発明樹脂組成物の耐衝撃性を高める役目を
果たすためには、それに含まれるブタジエン単位
が60重量%以上であることが必要である。このブ
タジエン単位が60重量%未満の場合は該樹脂組成
物の耐衝撃性、特に低温における耐衝撃性が低下
する。 前記ゴム成分にグラフト重合する各単量体の役
目は、該ゴム成分とマトリツクスポリマーとの親
和性を向上させ、かつ該ゴム成分の屈折率をマト
リツクスポリマーの屈折率に合わせることであ
る。 該ゴム成分にグラフト重合する単量体として
は、芳香族ビニル化合物とメタクリル酸アルキル
エステルが主体であつて、芳香族ビニル化合物と
メタクリル酸アルキルエステルとの好ましい使用
割合は、重量基準で1:9ないし9:1の範囲で
ある。 前記芳香族ビニル化合物としては、例えばスチ
レン、α―メチルスチレン、p―メチルスチレン
などが用いられるが、これらの中でスチレンがも
つとも好ましい。またメタクリル酸アルキルエス
テルとしてはメタクリル酸メチルがもつとも好適
である。さらに、ゴム成分のマトリツクスポリマ
ーに対する親和性をより向上させることを目的と
して、前記の芳香族ビニル化合物とメタクリル酸
アルキルエステルに加え、それらと共重合可能な
他の1種又は2種以上の単量体を用いる場合があ
る。しかしこの場合、他の単量体の量は、前記の
芳香族ギニル化合物とメタクリル酸アルキルエス
テルの合計100重量部に対し30重量部以下であ
る。この共重合可能な単量体としては、例えばア
クリロニトリルやメタクリロニトリルのような不
飽和ニトリル、アクリル酸やメタクリル酸のよう
な不飽和カルボン酸などが挙げられる。 このようにして得られたグラフト共重合体のグ
ラフト率(枝部分/幹部分重量比×100%)は一
般的には20〜120%、好ましくは30〜100%の範囲
である。 本発明樹脂組成物における(B)成分のマトリツク
スポリマーは、(イ)メタクリル酸メチル単位、(ロ)前
記一般式()で表わされる六員環酸無水物単
位、(ハ)芳香族ビニル化合物単位及び(ニ)アクリル酸
又はメタクリル酸若しくはその両方の単位から成
る共重合体であつて、該樹脂組成物の耐熱性、耐
油性及び成形加工性に大きな影響を与える。 この共重合体における(イ)単位のメタクリル酸メ
チル単位は耐油性を向上させる役割を果たすもの
であつて、該共重合体中20〜89.5重量%の範囲で
含有することが必要である。この量が20重量%未
満では耐油性を十分に向上させることができない
し、また89.5重量%を超えると耐熱性の向上が不
十分となり、かつ成形加工性が低下する。 次に、(ロ)単位の前記一般式()で示される六
員環酸無水物は耐熱性を向上させる役割を果たす
ものであり、驚くべきことに耐熱変形性の向上と
同時に熱安定性をも向上させる作用を有する。こ
の(ロ)単位の含有量は該共重合体に対して5〜74.5
重量%の範囲内にあることが必要である。この量
が5重量%未満では耐熱変形性と耐熱安定性の向
上が十分でなく、また74.5重量%を超えると該樹
脂組成物の加熱溶融粘度が著しく上昇して成形加
工性が低下する。 (ハ)単位の芳香族ビニル化合物単位は、主として
成形加工性を向上させる役割を果たすものであ
り、その場合芳香族ビニル化合物単位としてはス
チレン単位がもつとも好ましい。また、成形加工
性と同時に耐熱性を向上させるために、芳香族ビ
ニル化合物単位として、例えばα―メチルスチレ
ン単位、p―メチルスチレン単位、2,4―ジメ
チルスチレン単位、p―tert―ブチルスチレン単
位を含有させることもできる。該共重合体中のこ
れらの芳香族ビニル化合物単位の含有量は5〜
69.5重量%の範囲である。この量が5重量%未満
では成形加工性が不十分となつて好ましくなく、
また69.5重量%を超えると耐油性の低下が著しく
なつて好ましくない。 さらに(ニ)単位のアクリル酸又はメタクリル酸若
しくはその両方の単位は耐熱性向上の役割を果た
すものであつて、特に(ロ)単位の六員環酸無水物単
位の補助的な効果を示すものである。該共重合体
中のこの(ニ)単位の含有量は0.5〜20重量%の範囲
である。この量が0.5重量%未満では(ロ)単位を補
助する耐熱性向上の役割が十分でなくなり、また
20重量%を超えると熱安定性が低下し、成形加工
時にガス発生が著しくなつて好ましくない。 このように(イ),(ロ),(ハ)及び(ニ)の各単位はそれ

れの役割を果たしているが、同時にマトリツクス
ポリマーの屈折率を調節するために、それぞれの
含有量の組合せが適宜選択される。例えば該マト
リツクスポリマーの屈折率を上げるときは、芳香
族ビニル化合物単位量を増加させ、一方該屈折率
を下げるときは、メタクリル酸メチル単位量を増
加させる。 本発明の樹脂組成物においては、(A)成分のグラ
フト共重合体の屈折率と(B)成分のマトリツクスポ
リマーの屈折率とを合わせることが必要であつ
て、それらの屈折率の差が0.01以下の場合、該樹
脂組成物の透明性は優れたものになり、その差が
0.005以下の場合、特にその透明性は一段と優れ
たものになる。 また、本発明の樹脂組成物においては(B)成分の
マトリツクスポリマーの分子量が特定の範囲内に
あることが必要である。すなわち該マトリツクス
ポリマーの濃度10重量%のメチルエチルケトン溶
液の温度25℃における粘度が3〜20センチポイズ
の範囲内にあることが必要である。この粘度が3
センチポイズ未満では該樹脂組成物の耐衝撃性が
低下し、また20センチポイズを超えると高温溶融
時の流動性が低下して成形加工性が不満足なもの
となる。 本発明の樹脂組成物の製造については、通常の
ラジカル重合法がすべて使用されうるが、特に(A)
成分のグラフト共重合体は乳化重合法で製造する
のが好ましく、一方(B)成分のマトリツクスポリマ
ーは特に連続塊状重合法で製造するとが望まし
い。さらに該マトリツクスポリマーにおける各単
量体単位の均一化を図るために重合器は完全混合
型が好ましい。該グラフト共重合体の製造には乳
化重合法が好ましく用いられるが、塊状重合法も
用いることができ、この場合ゴムのグラフト化と
ゴムの分散粒子形成及びマトリツクスポリマーの
共重合体生成は通常の連続塊状重合法が用いられ
る。(A)成分のグラフト共重合体を乳化重合法で得
る場合、いつたん固形物としてグラフト共重合体
を得、これと(B)成分のマトリツクスポリマー共重
合体固形物とを溶融混合し、最終的に目的とする
樹脂組成物を得る。この場合、通常単軸又は二軸
の押出機が用いられる。 このようにして得られた樹脂組成物はグラフト
共重合体とマトリツクスポリマーとのブレンド体
であり、ゴム相が架橋体を形成していることを利
用し、該グラフト共重合体をアセトン不溶部とし
て、アセトンに可溶なマトリツクスポリマーと分
離することができる。この場合、まず樹脂組成物
を粉体とし、アセトンを加えて十分に振とうした
のち、遠心分離機を用いて不溶部と可溶部とを分
離する。次いで不溶部にアセトンを加え前記操作
をくり返す。最終的に得られた不溶部はアセトン
を含有しているので、常温減圧乾燥機で十分に乾
燥させて秤量する。一方アセトン可溶部はアセト
ンを蒸発させ、残留物として得ることができる。
各部重量測定後、それぞれの屈折率の測定及び組
成分折を行うことができる。特にアセトン可溶部
については、次の方法で組成を定量分析すること
が望ましい。すなわち一定濃度のアセトン溶液に
ついて、カセイアルカリ滴定によりアクリル酸又
はメタクリル酸若しくはその両方の単位量を測定
し、紫外部吸光光度計により芳香族ビニル化合物
単位量を求める。またメタクリル酸メチル単位量
と六員環酸無水物単位量は赤外分光光度計により
測定する。六員環酸無水物単位の1800cm-1及び
1760cm-1の吸収は他のカルボン酸単位やカルボン
酸エステル単位のものから区別される。 本発明の透明な耐熱耐衝撃性樹脂組成物は、
ABS樹脂やMBS樹脂と同等の耐衝撃性と耐油性
を有し、その上透明性に優れ、かつ耐熱性が著し
く向上しており、さらに、高温溶融時の分解性が
著しく低下し、また熱水中においても白化失透し
ないなど、総合的に優れた特徴を有するものであ
る。 次に実施例により本発明をさらに詳細に説明す
るが、本発明はこれらの例によつてなんら制限さ
れるものではない。 なお実施例中の各物性の測定法は次のとおりで
ある。 (1) ビカツト軟化温度 荷重1KgASTM―D1525 (2) アイゾツト衝撃強さ ASTM―D256 (3) 溶液粘度 キヤノンフエンスケ型粘度管
(#200)使用。 (4) 全光線透過率 厚さ2.5mmの試料をASTM―
D―1003に従つて測定。 (5) 熱重量天秤 20℃/分の速度で昇温し加熱減
量を測定。 (6) 耐油性 箱型試料にサラダ油を満たし、40
℃、24時間放置後、クラツクの有無を観察。 (7) 屈折率 ASTM D 542に従つて測定。 参考例1 グラフト共重合体(A−1)の製造 スチレン単位35.5重量%、ブタジエン単位64.5
重量%から成るスチレン―ブタジエンゴム
(SBR)ラテツクスを固形分に換算して60重量部
及びイオン交換水100重量部を反応器に仕込み、
かきまぜ下にて、70℃でスチレン20重量部とメタ
クリル酸メチル20重量部との混合物及び過硫酸カ
リウム0.1重量部をイオン交換水50重量部に溶解
した水溶液を7時間にて連続的に添加しながら重
合を行い、、重合反応終了後、グラフト共重合体
ラテツクスを塩析脱水、乾燥して粉体のグラフト
共重合体(A−1)を得た。 このグラフト共重合体(A―1)の屈折率を測
定したところ、1.544であつた。 参考例2 グラフト共重合体(A−2)の製造 スチレン単位10重量%、ブタジエン単位90重量
%から成るスチレン―ブタジエンゴム(SBR)ラ
テツクスを固形分に換算して60重量部及びイオン
交換水100重量部を反応器に仕込み、かきまぜ下
にて70℃で、スチレン12重量部とメタクリル酸メ
チル28重量部との混合物及び過硫酸カリウム0.1
重量部をイオン交換水50重量部に溶解した水溶液
を(A−1)の場合と同様に添加、重合を行い、
次いで後処理を行つて、粉体のグラフト共重合体
(A−2)を得た。 このグラフト共重合体(A−2)の屈折率を測
定したところ、1.520であつた。 実施例 1 メタクリル酸メチル37.2重量部、スチレン34.3
重量部、メタクリル酸8.5重量部、トルエン20重
量部合計100重量部に対し、オクチルメルカプタ
ン0.05重量部、1,1ジ―ターシヤリーブチルパ
ーオキシシクロヘキサン0.01重量部を加えた混合
液を調製する。この混合液を112℃の完全混合型
重合器へ連続して供給して重合を行つた。固型分
42重量%の重合反応液を連続して高温真空室へ供
給して未反応物と溶剤の除去及び六員環酸無水物
の生成を行つた。得られた共重合体の組成を分析
したところ、メタクリル酸メチル単位40重量%、
スチレン単位43重量%、六員環酸無水物単位15重
量%、メタクリル酸単位2重量%であつた。また
この共重合体の屈折率は1.542この共重合体10重
量%メチルエチルケトン溶液の25℃の粘度は10.0
センチポイズであつた。この共重合体の圧縮成形
片のビカツト軟化温度は129℃であつた。この共
重合体70重量部とグラフト共重合体(A−1)30
重量部とをブレンドし2軸押出機で混練、押出し
ペレタイズを行つた。この樹脂組成物の性状を別
表に示す。 実施例 2 メタクリル酸メチル28重量部、スチレン13重量
部、メタクリル酸24重量部、エチレングリコール
モノエチルエーテル35重量部合計100重量部に対
し、オクチルメルカプタン0.1重量部、1,1―
ジ―ターシヤリーブチルパーオキシ―3,3,5
―トリメチルシクロヘキサン0.01重量部を加えた
混合液を調製した。その他は実施例1と全く同様
にして重合を行つて共重合体を得た。得られた共
重合体の組成を分析したところ、メタクリル酸メ
チル単位30重量%、スチレン単位26重量%、六員
環酸無水物単位36重量%、メタクリル酸単位8重
量%であつた。またこの共重合体の屈折率は
1.521、この共重合体の10重量%メチルエチルケ
トン溶液の25℃の粘度は6.8センチポイズであつ
た。この共重合体の圧縮成形片のビカツト軟化温
度は148℃であつた。この共重合体70重量部とグ
ラフト共重合体(A−2)30重量部とをブレンド
し、2軸押出機で混練、押出し、ペレタイズを行
つた。この樹脂組成物の性状を別表に示す。 比較例 メタクリル酸メチル40重量部、スチレン40重量
部、エチルベンゼン20重量部合計100重量部に対
し、連鎖移動剤、重合開始剤その他重合条件は実
施例1と全く同様に重合し、共重合体を得た。得
られた共重合体の組成を分析したところ、メタク
リル酸メチル単位50重量%、スチレン単位50重量
%であつた。このものの屈折率は1.540であつ
た。この共重合体の圧縮成形片のビカツト軟化温
度は110℃であつた。この共重合体70重量部とグ
ラフト共重合体(A−1)30重量部とをブレンド
し、実施例1と同様にして樹脂組成物を得た。こ
のものの性状を別表に示す。 別表に示されるとおり、本発明による樹脂組成
物は耐熱変形性、耐熱安定性に優れた透明耐衝撃
性樹脂組成物であり、さらに熱水に対し安定で、
耐油性にも優れるなど、総合的に優れた品質を有
するものである。
The present invention relates to a transparent heat-resistant and impact-resistant resin composition, more specifically, a transparent heat-resistant and impact-resistant resin composition comprising a specific graft copolymer and a matrix polymer, which has excellent transparency and extremely good heat deformation resistance and heat decomposition resistance. The present invention relates to an impact thermoplastic resin composition. In recent years, in various applications such as light electrical parts and industrial parts, there has been a particularly strong demand for resins that have excellent heat resistance, impact resistance, and oil resistance, are transparent, and are inexpensive. Among currently commercially available resins, polycarbonate is known as a typical resin that is colorless and transparent and has excellent mechanical strength and heat resistance. However, this resin is an engineering resin and is expensive, so it has not been widely used. Recently, impact-resistant methyl methacrylate resin (HI
-PMMA) has begun to be commercially available, but this product has the disadvantage of poor heat resistance. In addition, transparent MBS resin and transparent ABS resin have transparency due to the refractive index of the graft copolymer and the matrix polymer matching,
Although it has been commercially available at low cost for a long time, it has not been widely used because of its poor heat resistance. On the other hand, by adding glass fiber, it is possible to improve the heat resistance and impact resistance, and by making efforts to match the refractive index of the glass fiber with that of the resin, a fairly transparent thermoplastic resin can be obtained. (Japanese Unexamined Patent Publication No. 56-98251). However, the transparency provided by this method is not perfect and has limitations, so it has not been widely used. Under these circumstances, the present inventors have conducted extensive research in order to develop a thermoplastic resin composition that has excellent transparency, heat resistance, impact resistance, and oil resistance, and can be supplied at low cost. As a result, by combining a graft rubber-reinforced resin and a copolymer containing a predetermined amount of a specific six-membered cyclic acid anhydride unit, it is possible to make the refractive index of the graft rubber-reinforced resin and the refractive index of the copolymer substantially the same. The inventors have discovered that the object can be achieved by doing so, and have completed the present invention based on this knowledge. That is, the present invention provides a graft copolymer obtained by graft polymerizing an aromatic vinyl compound and an alkyl methacrylate ester to (A) a rubber made of polybutadiene or a butadiene copolymer containing 60% by weight or more of butadiene units. 5 to 50% by weight of coalescence,
(B) 95 to 50% by weight of a matrix polymer, the matrix polymer having (a) 20 to 89.5% by weight of methyl methacrylate units, (b) general formula (R 1 and R 2 in the formula are methyl groups or hydrogen atoms) 5-74.5% by weight of six-membered cyclic acid anhydride units, (c) 5-69.5% by weight of aromatic vinyl compound units, and (c) 5-69.5% by weight of aromatic vinyl compound units; ) A copolymer consisting of units of 0.5 to 20% by weight of acrylic acid or methacrylic acid, or both, wherein the viscosity of a solution of methyl ethyl ketone at a concentration of 10% by weight in the matrix portion at a temperature of 25°C is 3 to 20%.
The object of the present invention is to provide a transparent heat-resistant and impact-resistant resin composition, which is centipoise and is characterized in that the above-mentioned glass copolymer and matrix polymer each have substantially the same refractive index. The present invention is characterized in that heat resistance and oil resistance are improved by a matrix polymer made of a specific copolymer, impact resistance is improved by a specific graft copolymer, and furthermore, a matrix polymer made of a specific graft copolymer improves impact resistance. The object of the present invention is to obtain a resin composition with improved transparency by adjusting the refractive index of both polymers. The resin composition thus obtained has a temperature of
It has the amazing property of not losing its transparency even when left in hot water at 100℃. Polybutadiene is generally used as the rubber component for the graft copolymer of component (A) in the resin composition of the present invention, and methods for varying the refractive index of this rubber component mainly include butadiene. It is preferable to copolymerize these monomers randomly or blockwise. That is, if the refractive index is to be higher than that of polybutadiene, an aromatic vinyl compound is copolymerized with butadiene, and on the other hand, if the refractive index is to be lower than that of polybutadiene, an acrylic acid alkyl ester or a methacrylic acid alkyl ester is copolymerized with butadiene. That's fine. In some cases, an unsaturated nitrile monomer is copolymerized with butadiene. In order for the butadiene copolymer thus obtained to serve to enhance the impact resistance of the resin composition of the present invention, it is necessary that the butadiene unit contained therein be 60% by weight or more. If the butadiene unit content is less than 60% by weight, the impact resistance of the resin composition, especially the impact resistance at low temperatures, decreases. The role of each monomer graft-polymerized to the rubber component is to improve the affinity between the rubber component and the matrix polymer and to match the refractive index of the rubber component to the refractive index of the matrix polymer. The monomers to be graft-polymerized to the rubber component are mainly aromatic vinyl compounds and methacrylic acid alkyl esters, and the preferable ratio of the aromatic vinyl compounds and methacrylic acid alkyl esters is 1:9 on a weight basis. It is in the range of 9:1 to 9:1. Examples of the aromatic vinyl compound used include styrene, α-methylstyrene, p-methylstyrene, and among these, styrene is preferred. Methyl methacrylate is also suitable as the methacrylic acid alkyl ester. Furthermore, in order to further improve the affinity of the rubber component for the matrix polymer, in addition to the above-mentioned aromatic vinyl compound and methacrylic acid alkyl ester, one or more other monomers copolymerizable with them are added. Quantity may be used. However, in this case, the amount of other monomers is 30 parts by weight or less based on the total of 100 parts by weight of the above-mentioned aromatic ginyl compound and methacrylic acid alkyl ester. Examples of the copolymerizable monomer include unsaturated nitriles such as acrylonitrile and methacrylonitrile, and unsaturated carboxylic acids such as acrylic acid and methacrylic acid. The graft ratio (branch portion/trunk portion weight ratio x 100%) of the graft copolymer thus obtained is generally in the range of 20 to 120%, preferably 30 to 100%. The matrix polymer of component (B) in the resin composition of the present invention includes (a) a methyl methacrylate unit, (b) a six-membered cyclic acid anhydride unit represented by the above general formula (), and (c) an aromatic vinyl compound. It is a copolymer consisting of units of (d)acrylic acid, methacrylic acid, or both units, and has a great effect on the heat resistance, oil resistance, and moldability of the resin composition. The methyl methacrylate unit (a) in this copolymer plays a role in improving oil resistance, and must be contained in the copolymer in an amount of 20 to 89.5% by weight. If this amount is less than 20% by weight, the oil resistance cannot be sufficiently improved, and if it exceeds 89.5% by weight, the improvement in heat resistance will be insufficient and the moldability will decrease. Next, the six-membered cyclic acid anhydride represented by the general formula () of the (b) unit plays a role in improving heat resistance, and surprisingly, it improves heat deformation resistance and heat stability at the same time. It also has the effect of improving The content of this (b) unit is 5 to 74.5 in the copolymer.
It is necessary that the amount is within the range of % by weight. If this amount is less than 5% by weight, the improvement in heat deformation resistance and heat resistance stability will not be sufficient, and if it exceeds 74.5% by weight, the hot melt viscosity of the resin composition will increase significantly and moldability will decrease. The aromatic vinyl compound unit (c) mainly plays a role in improving moldability, and in this case, it is also preferable that the aromatic vinyl compound unit is a styrene unit. In addition, in order to improve heat resistance as well as moldability, aromatic vinyl compound units such as α-methylstyrene units, p-methylstyrene units, 2,4-dimethylstyrene units, and p-tert-butylstyrene units are used. can also be included. The content of these aromatic vinyl compound units in the copolymer is from 5 to
It is in the range of 69.5% by weight. If this amount is less than 5% by weight, moldability becomes insufficient, which is not preferable.
Moreover, if it exceeds 69.5% by weight, the oil resistance will drop significantly, which is not preferable. Furthermore, the (d) unit of acrylic acid or methacrylic acid, or both, plays a role in improving heat resistance, and particularly shows the auxiliary effect of the six-membered cyclic acid anhydride unit (b). It is. The content of this (d) unit in the copolymer ranges from 0.5 to 20% by weight. If this amount is less than 0.5% by weight, the role of improving heat resistance by supporting the unit (b) will not be sufficient, and
If it exceeds 20% by weight, thermal stability will decrease and gas generation will become significant during molding, which is undesirable. In this way, each unit (a), (b), (c), and (d) plays its own role, but at the same time, in order to adjust the refractive index of the matrix polymer, the combination of their contents is Selected appropriately. For example, when increasing the refractive index of the matrix polymer, the amount of aromatic vinyl compound units is increased, while when decreasing the refractive index, the amount of methyl methacrylate units is increased. In the resin composition of the present invention, it is necessary to match the refractive index of the graft copolymer as the component (A) and the refractive index of the matrix polymer as the component (B), so that the difference in their refractive indexes is When it is 0.01 or less, the transparency of the resin composition is excellent, and the difference is
When the value is 0.005 or less, the transparency becomes even more excellent. Furthermore, in the resin composition of the present invention, it is necessary that the molecular weight of the matrix polymer (B) component be within a specific range. That is, it is necessary that the viscosity of a solution of the matrix polymer in methyl ethyl ketone having a concentration of 10% by weight at a temperature of 25 DEG C. be within the range of 3 to 20 centipoise. This viscosity is 3
If it is less than centipoise, the impact resistance of the resin composition will decrease, and if it exceeds 20 centipoise, the fluidity at high temperature melting will decrease, resulting in unsatisfactory moldability. Regarding the production of the resin composition of the present invention, all conventional radical polymerization methods can be used, but in particular (A)
The graft copolymer component is preferably produced by emulsion polymerization, while the matrix polymer (B) is preferably produced by continuous bulk polymerization. Furthermore, in order to make each monomer unit in the matrix polymer uniform, the polymerization vessel is preferably of a complete mixing type. An emulsion polymerization method is preferably used to produce the graft copolymer, but a bulk polymerization method can also be used. In this case, the grafting of the rubber, the formation of dispersed particles of the rubber, and the production of the matrix polymer copolymer are usually carried out in the following manner. A continuous bulk polymerization method is used. When the graft copolymer of component (A) is obtained by an emulsion polymerization method, the graft copolymer is obtained as a solid, and this and the matrix polymer copolymer solid of component (B) are melt-mixed, Finally, the desired resin composition is obtained. In this case, a single-screw or twin-screw extruder is usually used. The resin composition thus obtained is a blend of a graft copolymer and a matrix polymer, and by utilizing the fact that the rubber phase forms a crosslinked product, the graft copolymer is mixed into an acetone-insoluble part. can be separated from the acetone-soluble matrix polymer. In this case, first, the resin composition is powdered, acetone is added thereto, and the mixture is thoroughly shaken, and then an insoluble portion and a soluble portion are separated using a centrifuge. Next, acetone is added to the insoluble portion and the above operation is repeated. Since the finally obtained insoluble portion contains acetone, it is thoroughly dried in a vacuum dryer at room temperature and weighed. On the other hand, the acetone-soluble portion can be obtained as a residue by evaporating acetone.
After measuring the weight of each part, the refractive index and composition analysis of each part can be measured. In particular, it is desirable to quantitatively analyze the composition of the acetone-soluble portion using the following method. That is, in an acetone solution of a constant concentration, the unit amount of acrylic acid or methacrylic acid, or both, is measured by caustic alkaline titration, and the unit amount of aromatic vinyl compound is determined by an ultraviolet absorption photometer. Further, the amount of methyl methacrylate units and the amount of six-membered cyclic acid anhydride units are measured using an infrared spectrophotometer. 1800 cm -1 of six-membered cyclic acid anhydride unit and
The absorption at 1760 cm -1 is distinct from that of other carboxylic acid units and carboxylic acid ester units. The transparent heat-resistant and impact-resistant resin composition of the present invention is
It has impact resistance and oil resistance equivalent to ABS resin and MBS resin, has excellent transparency, and has significantly improved heat resistance. It has excellent overall characteristics, such as not becoming white or devitrified even in water. EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way. In addition, the measurement method of each physical property in an Example is as follows. (1) Vikatsu softening temperature Load 1Kg ASTM-D1525 (2) Izot impact strength ASTM-D256 (3) Solution viscosity Canon Fuenske type viscosity tube (#200) was used. (4) Total light transmittance A 2.5mm thick sample was tested by ASTM.
Measured according to D-1003. (5) Thermogravimetric balance Increase the temperature at a rate of 20℃/min and measure the loss on heating. (6) Oil resistance Fill a box-shaped sample with salad oil and
After leaving at ℃ for 24 hours, observe the presence or absence of cracks. (7) Refractive Index Measured according to ASTM D 542. Reference Example 1 Production of graft copolymer (A-1) Styrene units 35.5% by weight, butadiene units 64.5
60 parts by weight of styrene-butadiene rubber (SBR) latex (converted to solid content) and 100 parts by weight of ion-exchanged water were charged into a reactor.
While stirring, an aqueous solution of a mixture of 20 parts by weight of styrene and 20 parts by weight of methyl methacrylate and 0.1 part by weight of potassium persulfate dissolved in 50 parts by weight of ion-exchanged water was added continuously over 7 hours at 70°C. After the polymerization reaction was completed, the graft copolymer latex was salted out, dehydrated, and dried to obtain a powdery graft copolymer (A-1). The refractive index of this graft copolymer (A-1) was measured and found to be 1.544. Reference Example 2 Production of graft copolymer (A-2) Styrene-butadiene rubber (SBR) latex consisting of 10% by weight of styrene units and 90% by weight of butadiene units, calculated as solid content, 60 parts by weight and 100 parts by weight of ion-exchanged water A mixture of 12 parts by weight of styrene and 28 parts by weight of methyl methacrylate and 0.1 parts by weight of potassium persulfate were charged into a reactor and heated at 70°C under stirring.
An aqueous solution in which parts by weight were dissolved in 50 parts by weight of ion-exchanged water was added and polymerized in the same manner as in (A-1),
Subsequently, a post-treatment was performed to obtain a powdery graft copolymer (A-2). The refractive index of this graft copolymer (A-2) was measured and found to be 1.520. Example 1 Methyl methacrylate 37.2 parts by weight, styrene 34.3 parts
A mixed solution is prepared by adding 0.05 parts by weight of octyl mercaptan and 0.01 parts by weight of 1,1 di-tert-butyl peroxycyclohexane to a total of 100 parts by weight of 8.5 parts by weight of methacrylic acid and 20 parts by weight of toluene. This mixed solution was continuously supplied to a complete mixing type polymerization vessel at 112°C to carry out polymerization. solid content
A 42% by weight polymerization reaction solution was continuously supplied to a high temperature vacuum chamber to remove unreacted substances and solvent and to produce a six-membered cyclic acid anhydride. Analysis of the composition of the obtained copolymer revealed that it contained 40% by weight of methyl methacrylate units;
The styrene units were 43% by weight, the six-membered cyclic acid anhydride units were 15% by weight, and the methacrylic acid units were 2% by weight. The refractive index of this copolymer is 1.542, and the viscosity of a 10% by weight solution of this copolymer in methyl ethyl ketone at 25°C is 10.0.
It was centipoise hot. The Vicat softening temperature of a compression molded piece of this copolymer was 129°C. 70 parts by weight of this copolymer and 30 parts by weight of graft copolymer (A-1)
Parts by weight were blended, kneaded using a twin-screw extruder, and extruded and pelletized. The properties of this resin composition are shown in the attached table. Example 2 28 parts by weight of methyl methacrylate, 13 parts by weight of styrene, 24 parts by weight of methacrylic acid, 35 parts by weight of ethylene glycol monoethyl ether For a total of 100 parts by weight, 0.1 part by weight of octyl mercaptan, 1,1-
Di-tertiary butyl peroxy-3,3,5
-A mixed solution was prepared by adding 0.01 part by weight of trimethylcyclohexane. Other than that, polymerization was carried out in exactly the same manner as in Example 1 to obtain a copolymer. Analysis of the composition of the obtained copolymer revealed that it contained 30% by weight of methyl methacrylate units, 26% by weight of styrene units, 36% by weight of six-membered cyclic acid anhydride units, and 8% by weight of methacrylic acid units. Also, the refractive index of this copolymer is
1.521, and the viscosity of a 10% by weight solution of this copolymer in methyl ethyl ketone at 25°C was 6.8 centipoise. The Vicat softening temperature of a compression molded piece of this copolymer was 148°C. 70 parts by weight of this copolymer and 30 parts by weight of graft copolymer (A-2) were blended, and the mixture was kneaded, extruded, and pelletized using a twin-screw extruder. The properties of this resin composition are shown in the attached table. Comparative Example: Using 40 parts by weight of methyl methacrylate, 40 parts by weight of styrene, and 20 parts by weight of ethylbenzene, a total of 100 parts by weight was polymerized in the same manner as in Example 1 using a chain transfer agent, a polymerization initiator, and other polymerization conditions to obtain a copolymer. Obtained. Analysis of the composition of the obtained copolymer revealed that it contained 50% by weight of methyl methacrylate units and 50% by weight of styrene units. The refractive index of this material was 1.540. The Vicat softening temperature of a compression molded piece of this copolymer was 110°C. 70 parts by weight of this copolymer and 30 parts by weight of graft copolymer (A-1) were blended to obtain a resin composition in the same manner as in Example 1. The properties of this material are shown in the attached table. As shown in the attached table, the resin composition according to the present invention is a transparent impact-resistant resin composition with excellent heat deformation resistance and heat resistance stability, and is also stable against hot water.
It has excellent overall quality, including excellent oil resistance.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A)ポリブタジエン又はブタジエン単位60重量
%以上を含むブタジエン共重合体から成るゴム
に、芳香族ビニル化合物とメタクリル酸アルキル
エステルとをグラフト重合して得られたグラフト
共重合体5〜50重量%と、(B)マトリツクスポリマ
ー95〜50重量%とから成り、該マトリツクスポリ
マーが(イ)メタクリル酸メチル単位20〜89.5重量
%、(ロ)一般式 (式中のR1及びR2はメチル基又は水素原子で
ある) で表わされる六員環酸無水物単位5〜74.5重量
%、(ハ)芳香族ビニル化合物単位5〜69.5重量%及
び(ニ)アクリル酸又はメタクリル酸若しくはその両
方の単位0.5〜20重量%から成る共重合体であつ
て、該マトリツクスポリマーの濃度10重量%のメ
チルエチルケトン溶液の温度25℃における粘度が
3〜20センチポイズであり、かつ前記のグラフト
共重合体とマトリツクスポリマーのそれぞれの屈
折率が実質上同一であることを特徴とする透明な
耐熱耐衝撃性樹脂組成物。
[Scope of Claims] 1 (A) A graft copolymer obtained by graft polymerizing an aromatic vinyl compound and an alkyl methacrylate to a rubber made of polybutadiene or a butadiene copolymer containing 60% by weight or more of butadiene units. (B) 95 to 50% by weight of a matrix polymer, the matrix polymer having (a) 20 to 89.5% by weight of methyl methacrylate units, (b) general formula (R 1 and R 2 in the formula are methyl groups or hydrogen atoms) 5-74.5% by weight of six-membered cyclic acid anhydride units, (c) 5-69.5% by weight of aromatic vinyl compound units, and (c) 5-69.5% by weight of aromatic vinyl compound units; ) A copolymer consisting of units of 0.5 to 20% by weight of acrylic acid or methacrylic acid or both, wherein the viscosity of a solution of the matrix polymer in methyl ethyl ketone at a concentration of 10% by weight at a temperature of 25°C is 3 to 20 centipoise. and a transparent heat-resistant and impact-resistant resin composition, wherein the graft copolymer and the matrix polymer each have substantially the same refractive index.
JP22798983A 1983-12-02 1983-12-02 Transparent, heat- and impact-resistant resin composition Granted JPS60120734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22798983A JPS60120734A (en) 1983-12-02 1983-12-02 Transparent, heat- and impact-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22798983A JPS60120734A (en) 1983-12-02 1983-12-02 Transparent, heat- and impact-resistant resin composition

Publications (2)

Publication Number Publication Date
JPS60120734A JPS60120734A (en) 1985-06-28
JPS6225700B2 true JPS6225700B2 (en) 1987-06-04

Family

ID=16869417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22798983A Granted JPS60120734A (en) 1983-12-02 1983-12-02 Transparent, heat- and impact-resistant resin composition

Country Status (1)

Country Link
JP (1) JPS60120734A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY124925A (en) 2000-07-26 2006-07-31 Toray Industries Rubber-reinforced styrene transparent resin composition and method of producing the same
KR101074996B1 (en) 2003-03-12 2011-10-18 도레이 카부시키가이샤 Thermoplastic resin composition, molded article, and film
JP4984419B2 (en) * 2004-04-16 2012-07-25 東レ株式会社 Plastic molded product
WO2008056769A1 (en) * 2006-11-10 2008-05-15 Kaneka Corporation (meth)acrylic resin composition, imidized (meth)acrylic resin composition, and film obtained by molding them
CN113943469A (en) * 2020-07-17 2022-01-18 中国石油天然气股份有限公司 Modified polymethyl methacrylate resin, preparation method thereof and composition for preparation

Also Published As

Publication number Publication date
JPS60120734A (en) 1985-06-28

Similar Documents

Publication Publication Date Title
US4605699A (en) Thermoplastic molding compositions containing polycarbonate and an acrylate graft copolymer
JP5599973B2 (en) Bulk polymerized rubber modified monovinylidene aromatic copolymer composition exhibiting improved low gloss
US4631307A (en) Heat-resistant high impact styrene resin, process for production thereof, and resin composition comprising said styrene resin
EP0218229B1 (en) Thermoplastic resin composition and process for its preparation
JPS6314740B2 (en)
JPS62106915A (en) Transparency and impact property modifier for polyvinyl chloride
JPS58217501A (en) New copolymer
KR20150123709A (en) Heat-resistant styrene copolymer and styrene resin composition comprising the same
JPS6225700B2 (en)
CN107709455B (en) Thermoplastic resin composition and molded article made of the same
JPH0320348A (en) Highly antioxidant polymer mixture
JPS6313453B2 (en)
EP0284428A2 (en) Graft copolymer and styrene based resin composition
JP2524367B2 (en) ABS molding composition with low residual butadiene content
US4937286A (en) Thermoplastic moulding compositions
JPH07718B2 (en) Polymer composition
FR2750995A1 (en) COMPOSITION OF RESIN CONTAINING RUBBER AND COMPOSITION OF STYRENE RESIN CONTAINING IT
JP4610966B2 (en) Heat-resistant rubber-modified styrenic resin composition
JPH0559124B2 (en)
JP2005068427A (en) Rubber modified styrene resin composition
JP3386532B2 (en) Thermoplastic resin composition
JPH06145455A (en) Thermoplastic resin composition
JPS6056742B2 (en) resin composition
JPH0613635B2 (en) Method for producing polycarbonate resin composition
KR100461524B1 (en) Thermoplastic composition with excellent steam resistance