JPS58217501A - New copolymer - Google Patents

New copolymer

Info

Publication number
JPS58217501A
JPS58217501A JP9583282A JP9583282A JPS58217501A JP S58217501 A JPS58217501 A JP S58217501A JP 9583282 A JP9583282 A JP 9583282A JP 9583282 A JP9583282 A JP 9583282A JP S58217501 A JPS58217501 A JP S58217501A
Authority
JP
Japan
Prior art keywords
copolymer
weight
unit
methyl methacrylate
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9583282A
Other languages
Japanese (ja)
Other versions
JPS6149325B2 (en
Inventor
Ikuji Otani
郁二 大谷
Keiji Mizutani
水谷 啓志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9583282A priority Critical patent/JPS58217501A/en
Publication of JPS58217501A publication Critical patent/JPS58217501A/en
Publication of JPS6149325B2 publication Critical patent/JPS6149325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:A coloress, transparent copolymer excellent in mechanical strength, heat resistance and heat stability, comprising a major proportion of methyl methacrylate, (meth)acrylic acid and a six-membered cyclic acid anhydride. CONSTITUTION:A copolymer comprising 70-96wt% methyl methacrylate unit, 1-10wt% (meth)acrylic acid unit and 3-20wt% six-membered cyclic acid anhydride unit of the formula, wherein R1 and R2 are each H or CH3, and having a viscosity of 3-20cP when measured at 25 deg.C in a methyl ethyl ketone solution of a copolymer concentration of 10wt%. This copolymer is a thermoplastic resin having a crystal-clear transparency comparable to that of polystyrene or a methyl methacrylate copolymer, mechanical strength and heat resistance comparable to those of a styrene/acrylonitrile copolymer and heat resistance superior to that of a commercially available styrene/maleic anhydride copolymer as well as having remarkably excellent heat stability.

Description

【発明の詳細な説明】 本発明は新規な共重合体に関し、さらに詳しくは、無色
透明であり、かつ機械的強度、耐熱性及び熱安定性に優
れたメタクリル酸メチル単位を主体とする共重合体に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new copolymer, and more specifically, a copolymer mainly composed of methyl methacrylate units, which is colorless and transparent and has excellent mechanical strength, heat resistance, and thermal stability. It is about merging.

近年、電子レンジ内食器、弱電部品あるいは工業部品な
どの各種用途において、優れた耐熱性、機械的強度及び
耐油性を有し、その上無色透明で、かつ安価である樹脂
の要求が特に強くなりつつある。
In recent years, there has been a particularly strong demand for resins that have excellent heat resistance, mechanical strength, and oil resistance, are colorless and transparent, and are inexpensive for various applications such as microwave tableware, light electrical parts, and industrial parts. It's coming.

ところで、現在市販されている樹脂の中で、無・色透明
であって機械的強度と耐熱性の優れた樹脂としては、ポ
リカーボネート樹脂(以下PCと略す)が知られている
。しかしながらこの樹脂はエンジニアリングプラスチッ
クであり、高価格であるために汎用には至っていない。
By the way, among resins currently on the market, polycarbonate resin (hereinafter abbreviated as PC) is known as a colorless, transparent resin with excellent mechanical strength and heat resistance. However, this resin is an engineering plastic and is expensive, so it has not been widely used.

また、メタクリル酸メチル樹脂(以下PMMAと略す)
は、比較的低価格で市販されており、機械的強度も良好
であるが耐熱性に劣る欠点を有している。
In addition, methyl methacrylate resin (hereinafter abbreviated as PMMA)
is commercially available at a relatively low price and has good mechanical strength, but has the disadvantage of poor heat resistance.

一方1ポリスチレンは最も安価でかつ無色透明性が良好
であって、特に成形性に優れているだめ、成形加工材料
として弱電部品、日用雑貨などの用途に幅広く用いられ
ている。しかしながら、この樹脂は機械的強度、耐熱性
、耐油性の面で十分ではなく、シたがってこれらの欠点
を補うだめに、スチレンを主体とした種々の共重合体が
提案されている。
On the other hand, 1-polystyrene is the cheapest, has good colorless transparency, and has particularly excellent moldability, so it is widely used as a molding material for light electrical parts, daily miscellaneous goods, etc. However, this resin does not have sufficient mechanical strength, heat resistance, and oil resistance, and therefore, various copolymers mainly containing styrene have been proposed to compensate for these drawbacks.

このスチレンを主体としだ共重合体としては、例えばス
チレン−アクリロニトリル共重合体(以下As樹脂と略
す)、スチレン−メタクリル酸メチル共重合体(以下M
S樹脂と略す)、スチレン−無水マレイン酸共重合体(
以下SMA樹脂と略す)、スチレン−アクリル酸共重合
体(以下SAA樹脂と略す)、スチレン−メタクリル酸
共重合体(以下SMAA樹脂と略す)などが最も基本的
な共重合体として知られているが、これらの共重合体は
、いずれも総合的にみて必ずしも満足しうるものではな
い。
Examples of copolymers mainly composed of styrene include styrene-acrylonitrile copolymer (hereinafter referred to as As resin), styrene-methyl methacrylate copolymer (hereinafter referred to as M
S resin), styrene-maleic anhydride copolymer (abbreviated as S resin), styrene-maleic anhydride copolymer (
The most basic copolymers are known as SMA resin), styrene-acrylic acid copolymer (hereinafter referred to as SAA resin), and styrene-methacrylic acid copolymer (hereinafter referred to as SMAA resin). However, all of these copolymers are not necessarily satisfactory overall.

例えばAs樹脂、MS樹脂は良好な成形加工性を示し、
機械的強度、耐油性に優れ、かつ製造方法も比較的容易
な共重合体として市販されているが、耐熱性がモ分でな
い。
For example, As resin and MS resin show good moldability,
Although it is commercially available as a copolymer that has excellent mechanical strength and oil resistance and is relatively easy to manufacture, it has poor heat resistance.

一方、SMA樹脂、SAA樹脂、SMAA樹脂は不飽和
酸若しくは不飽和酸無水物を用いているだめ、耐熱性は
改善されているが、他の性質がまだ満足できるものでは
ない。すなわち、SMA樹脂は無色透明性と耐熱性に優
れているが、機械的強度はポリスチレンと同等で不十分
であり、その上耐油性にも劣っている。また、SAA樹
脂やSMAA樹脂に関しては、SMA樹脂の場合よりも
単純な共重合方法によって、分子量が十分に高く、かつ
組成分布も、均一な共重合体が容易に得られるが、これ
らの樹脂は熱履歴を受けると、ポリマー中のカルボキシ
ル基が分子間で脱水反応を起こしやすくなり、ゲル状物
質を生成して成形品の外観をそこねる場合がある。さら
にこれらの共重合体はカルボン酸を含むため、分子間の
水素結合が強力であり、しだがって射出成形品の残留応
力が大きく、まだそれ自体機械的強度も低いことが原因
して容易にクラックが生成する欠点を有しており、通常
の射出成形用途には不適当である〔高分子化学、!、 
883(1969))。
On the other hand, SMA resins, SAA resins, and SMAA resins use unsaturated acids or unsaturated acid anhydrides, so although their heat resistance is improved, other properties are still unsatisfactory. That is, although SMA resin is excellent in colorless transparency and heat resistance, its mechanical strength is insufficient, being equivalent to that of polystyrene, and it is also inferior in oil resistance. Regarding SAA resins and SMAA resins, copolymers with sufficiently high molecular weights and uniform composition distributions can be easily obtained by a simpler copolymerization method than in the case of SMA resins, but these resins When subjected to thermal history, the carboxyl groups in the polymer tend to cause dehydration reactions between molecules, producing a gel-like substance that may impair the appearance of the molded product. Furthermore, since these copolymers contain carboxylic acids, the intermolecular hydrogen bonds are strong, and therefore the residual stress of the injection molded product is large, and the mechanical strength itself is low. It has the disadvantage of generating cracks, making it unsuitable for normal injection molding applications [Polymer Chemistry,! ,
883 (1969)).

このようにスチレンを主体としだ共重合体においては、
アクリロニトリル及びメタクリル酸メチルを導入するこ
とによって、機械的強度は上昇するものの、耐熱性につ
いては不十1分であり、まだ無水マレイン酸、アクリル
酸、メタクリル酸を導入することによって、耐熱性の著
るしい向上は望めるが、機械的強度は低いなどの欠点を
有している。
In this way, in copolymers mainly composed of styrene,
Although the mechanical strength increases by introducing acrylonitrile and methyl methacrylate, the heat resistance is still insufficient. Although a significant improvement can be expected, it has drawbacks such as low mechanical strength.

しだがって、これらの欠点を解消して総合的な要求を満
たす樹脂を得るだめに、スチレンと機械的強度向上用コ
モノマーと耐熱性向上用コモノマーとの3者から成る三
元共重合体を開発す名努カがこれまで多くなされてきた
Therefore, in order to eliminate these drawbacks and obtain a resin that satisfies the overall requirements, we developed a terpolymer consisting of styrene, a comonomer for improving mechanical strength, and a comonomer for improving heat resistance. Many great efforts have been made to develop this technology.

しかしながら、機械的強度向上に最も効果のあるアクリ
ロニトリルは、酸及び無水物と容易に化学反応を起こし
てゲル状物質を生成し、寸だ製品の黄色化も著しく、無
色透明な樹脂が得られないだめ、耐熱性向上用゛コモノ
マーである不飽和酸及び不飽和酸無水物と同時に使用で
きない。しだがって、機械的強度向上用コモノマーとし
ては、メタクリル酸メチルが最も一般的なものとなって
いる。
However, acrylonitrile, which is most effective in improving mechanical strength, easily chemically reacts with acids and anhydrides to produce a gel-like substance, causing significant yellowing of small products and making it impossible to obtain colorless and transparent resins. No, it cannot be used simultaneously with unsaturated acids and unsaturated acid anhydrides, which are comonomers for improving heat resistance. Therefore, methyl methacrylate is the most common comonomer for improving mechanical strength.

例えば、これまでスチレン−メタクリル酸メチル−無水
マレイン酸の三元共重合体が提案されている(特開昭5
5−102614号公報)。しかし、この三元共重合体
については、がなりの量の無水マレイン酸単量体が未反
応のまま残留するため、この三元共重合体を射出成形な
どの加工に用いた場合、ガスが発生して成形品の外観を
損うという問題がある。
For example, a terpolymer of styrene, methyl methacrylate, and maleic anhydride has been proposed (Japanese Patent Application Laid-Open No.
5-102614). However, in this terpolymer, a large amount of maleic anhydride monomer remains unreacted, so when this terpolymer is used for processing such as injection molding, gas is released. There is a problem in that the appearance of the molded product is impaired.

このように、前記の三元共重合体において、未反応の無
水マレイン酸単量体が残留するのは、スチレンと無水マ
レイン酸との共重合の際には無水マレイン酸の消費は極
めて円滑に進み、最終的に重合が完結した時点では実質
的に無水マレイン酸は全量消費されているが、メタクリ
ル酸メチルが導入された三元の系については、無水マレ
イン酸の重合消費速度が著しく低下して最終共重合体中
にかなりの量の無水マレイン酸単量体が残存し、未反応
物及び溶媒回収工程において、この無水マレイン酸の分
離回収が困難になるためである。
In this way, the unreacted maleic anhydride monomer remains in the above-mentioned terpolymer because maleic anhydride is consumed extremely smoothly during copolymerization of styrene and maleic anhydride. When polymerization progresses and polymerization is finally completed, virtually all of the maleic anhydride has been consumed, but in the case of a ternary system in which methyl methacrylate has been introduced, the polymerization consumption rate of maleic anhydride is significantly reduced. This is because a considerable amount of maleic anhydride monomer remains in the final copolymer, making it difficult to separate and recover this maleic anhydride in the unreacted material and solvent recovery step.

多方、スチレン−メタクリル酸メチル−アクリル酸、及
びスチレン−メタクリル酸メチル−メタクリル酸の三元
共重合体においては、前記の無水マレイン酸を用いた三
元共重合体における問題はなく、重合反応完了後の共重
合体から、各未反応単量体を容易に除去することができ
、得られた樹脂及びそれを用いた射出成形品は完全に無
色透明である。しかしながら、これらの三元共重合体に
おいても、SAA樹脂やSMAA樹脂に関する問題点は
完全には解決されておらず、ポリマー中のカルボキシル
基の分子間脱水反応によるゲル状物質の生成という問題
がある。
On the other hand, in the terpolymers of styrene-methyl methacrylate-acrylic acid and styrene-methyl methacrylate-methacrylic acid, there were no problems with the terpolymers using maleic anhydride, and the polymerization reaction was completed. Unreacted monomers can be easily removed from the resulting copolymer, and the resulting resin and injection molded products using the same are completely colorless and transparent. However, even with these terpolymers, the problems associated with SAA resins and SMAA resins have not been completely resolved, and there is a problem of formation of gel-like substances due to intermolecular dehydration reactions of carboxyl groups in the polymer. .

このように、総合的な要求を満たす樹脂が強く要望され
ているにもかかわらず、十分に満足しうる樹脂はまだ見
出されていない。
As described above, although there is a strong demand for a resin that satisfies the overall requirements, no resin that fully satisfies these requirements has yet been found.

本発明者らは、このような事情に鑑み、前記の総合的な
要求を満たしうる樹脂の開発に鋭意研究を重ねた結果、
単量体単位としてメタクリル酸メチルを主体とし、これ
にアクリル酸又はメタクリル酸、及びそれらより誘導さ
れる六員環構造を有する酸無水物を所定量含む共重合体
、あるいはこれらにさらにアクリル酸エステル又は芳香
族ビニル化合物単位を所定量含む共重合体がその目的を
達成しうろことを見出し、この知見に基づいて本発明を
完成するに至った。
In view of these circumstances, the inventors of the present invention have conducted extensive research into developing a resin that can meet the above comprehensive requirements.
A copolymer mainly composed of methyl methacrylate as a monomer unit and containing a predetermined amount of acrylic acid or methacrylic acid, and an acid anhydride having a six-membered ring structure derived therefrom, or an acrylic acid ester in addition to these. Alternatively, the inventors discovered that a copolymer containing a predetermined amount of aromatic vinyl compound units could achieve the objective, and based on this knowledge, the present invention was completed.

すなわち、本発明は、(A)メタクリル酸メチル単位7
0〜96重量%、(B)アクリル酸又はメタクリル酸単
位1〜10重量%及び(C)一般式(式中のR1及びR
2は水素原子又はメチル基である) で表わされる六員環無水物単位3〜20重量%から成り
、かつこの共重合体濃度10重量%のメチルエチルケト
ン溶液の温度25℃における粘度が3〜20センチポイ
ズであることを特徴とする共′重合体、及び(A)メタ
クリル酸メチル単位と、アクリル酸エステル又は芳香族
ビニル化合物の中から選ばれた少なくとも1種の単量体
単位70〜96重量%、(B)アクリル酸又はメタクリ
ノン酸単位1〜10重量%、及び(C)一般式 (式中のR1及びR2は水素原子又はメチル基である) で表わされる六員環酸無水物単位3〜20重量%から成
り、かつ(A)単量体単位としてアクリル酸エステルを
含む場合、その含有量は10重量%以下、芳香族ビニル
化合物を含む場合、その含有量が67重量%以下であり
、さらにこの共重合体濃度10重量%のメチルエチ・ル
ケトン溶液の温度25℃における粘度が3〜20センチ
ポイズであることを特徴とする共重合体を提供するもの
である。
That is, the present invention provides (A) methyl methacrylate unit 7
0 to 96% by weight, (B) 1 to 10% by weight of acrylic acid or methacrylic acid units, and (C) general formula (R1 and R in the formula
2 is a hydrogen atom or a methyl group) and the viscosity of a methyl ethyl ketone solution at a temperature of 25° C. is 3 to 20 centipoise at a concentration of 10% by weight. and (A) 70 to 96% by weight of methyl methacrylate units and at least one monomer unit selected from acrylic esters or aromatic vinyl compounds; (B) 1 to 10% by weight of acrylic acid or methacrynoic acid units, and (C) 3 to 20 six-membered cyclic acid anhydride units represented by the general formula (in which R1 and R2 are hydrogen atoms or methyl groups) % by weight, and (A) if it contains an acrylic ester as a monomer unit, its content is 10% by weight or less, and if it contains an aromatic vinyl compound, its content is 67% by weight or less, and The present invention provides a copolymer characterized in that a methyl ethyl ketone solution having a copolymer concentration of 10% by weight has a viscosity of 3 to 20 centipoise at a temperature of 25°C.

本発明の共重合体における単量体単位の主体であるメタ
クリル酸メチルは、機械的強度の改良と耐油性向上の役
割を果すものであって、その含有量は、第1の発明にお
いては70〜96重量%の範囲であり、まだ、第2の発
明においては、このメタクリル酸メチル単位り、アクリ
ル酸エステル又は芳香族ビニル化合物の中から選ばれた
少なくとも1種の単量体単位との和が70〜96重量%
の範囲である。メタクリル酸メチル単位の含有量が前記
の範囲より低いと該共重合体の機械的強度の向上は不十
分となる。
Methyl methacrylate, which is the main monomer unit in the copolymer of the present invention, plays a role in improving mechanical strength and oil resistance, and its content is 70% in the first invention. In the second invention, the sum of the methyl methacrylate unit and at least one monomer unit selected from acrylic esters and aromatic vinyl compounds is in the range of 96% by weight. is 70-96% by weight
is within the range of If the content of methyl methacrylate units is lower than the above range, the mechanical strength of the copolymer will not be sufficiently improved.

まだ、第2の発明において(A)単量体単位として含ま
れるアクリル酸エステル又は芳香族ビニル化合物は、該
共重合体の流動性及び熱安定性を向上させる役割を果す
ものであって、それらの中の少なくとも1種を含有すれ
ばよく、その含有量はアクリル酸エステルの場合で10
重量%以下、芳香族ビニル化合物の場合で67重量%以
下である。
However, in the second invention, the acrylic ester or aromatic vinyl compound contained as the monomer unit (A) plays a role in improving the fluidity and thermal stability of the copolymer, and It is sufficient to contain at least one of the following, and the content is 10% in the case of acrylic ester.
% by weight or less, and in the case of an aromatic vinyl compound, it is 67% by weight or less.

アクリル酸エステル単位の含有量が10重量%を超える
と酬熱性が低下し、捷だ、芳香族ビニル化合物単位の含
有量が67重量%を超えると機械的物性及び耐油性が低
下する。
If the content of acrylic acid ester units exceeds 10% by weight, the heat exchange properties will decrease, and if the content of aromatic vinyl compound units exceeds 67% by weight, mechanical properties and oil resistance will decrease.

このアクリル酸エステル単位としては、例えばアクリル
酸メチル、アクリル酸エチルなどが挙げられるが、特に
アクリル酸メチルが好適である。
Examples of the acrylic ester unit include methyl acrylate and ethyl acrylate, with methyl acrylate being particularly preferred.

捷だ、芳香族ビニル化合物単位としては、例えばスチレ
ン、α−メチルスチレン、ビニルトルエン、ジメチルス
チレン、  tert−ブチルスチレン、クロルスチレ
ンなどが挙げられるが、特にスチレンが好捷しい。
Examples of the flexible aromatic vinyl compound unit include styrene, α-methylstyrene, vinyltoluene, dimethylstyrene, tert-butylstyrene, and chlorostyrene, with styrene being particularly preferred.

本発明の共重合体における(B)単量体単位のアクリル
酸又はメタクリル酸は、該共重合体の耐熱性を向上させ
る役割を果すものであり、その含有量は1〜10重量%
の範囲であって、10重量%を超えると熱安定性が低下
してゲル状物質が生成する原因となる。
The (B) monomer unit acrylic acid or methacrylic acid in the copolymer of the present invention plays a role in improving the heat resistance of the copolymer, and its content is 1 to 10% by weight.
If it exceeds 10% by weight, the thermal stability will decrease and a gel-like substance will be formed.

本発明の共重合体における(0)単量体単位の六員環酸
無水物は、アクリル酸又はメタクリル酸から誘導され、
前記の一般式(1)で表わされる構造を有しており、該
共重合体の熱安定性を向上させると同時にアクリル酸や
メタクリル酸のもつ熱的に不安定な要因を完全に解消す
ることによって、さらに該共重合体の熱安定性を向上さ
せる役割を果す。
The six-membered cyclic acid anhydride of the monomer unit (0) in the copolymer of the present invention is derived from acrylic acid or methacrylic acid,
It has a structure represented by the above general formula (1), and at the same time improves the thermal stability of the copolymer and completely eliminates the thermal instability factor of acrylic acid and methacrylic acid. This further serves to improve the thermal stability of the copolymer.

この共重合体中の六員環酸無水物の定量は赤外分光光度
計による測定に基づくものであって、 1800釧−1
及び1760crn’の吸収は他のカルボン酸やカルボ
ン酸エステルのものから区別され、本発明共重合体に特
有なものである。その含有量は3〜20重量%の範囲で
あって、3重量%未満では耐熱性及び熱安定性を向上さ
せる効果がみられず、一方20重量%を超えると、樹脂
の流動性が低下して成形加工性が悪化する。
Quantification of the six-membered cyclic acid anhydride in this copolymer was based on measurement using an infrared spectrophotometer,
The absorptions at and 1760 crn' are distinct from those of other carboxylic acids and carboxylic acid esters and are unique to the copolymer of the present invention. Its content is in the range of 3 to 20% by weight, and if it is less than 3% by weight, it will not have the effect of improving heat resistance and thermal stability, while if it exceeds 20% by weight, the fluidity of the resin will decrease. As a result, moldability deteriorates.

また、本発明の共重合体においては、該共重合体濃度1
0重量%のメチルエチルケトン溶液の温度25℃におけ
る粘度が3〜20センチポイズの範囲にあることが必要
である。この粘度が3センチボイズ未満では機械的強度
が低下し、また20センチボイズを超えると、流動性が
低下して成形加工性が劣化する。
Furthermore, in the copolymer of the present invention, the copolymer concentration is 1
It is necessary that the viscosity of a 0% by weight methyl ethyl ketone solution at a temperature of 25° C. be in the range of 3 to 20 centipoise. If the viscosity is less than 3 centimeters, the mechanical strength will decrease, and if it exceeds 20 centimeters, the fluidity will decrease and the moldability will deteriorate.

以上の要件を満たして得られる共重合体は窒素気流中2
70℃の条件で4時1掛滞留させても、前記溶液粘度の
変化は10%以内であり、熱安定性が非常に優れている
という特徴を有している。
The copolymer obtained by satisfying the above requirements is
Even if the solution is allowed to stay at 70° C. for 4:1, the viscosity of the solution changes within 10%, and is characterized by excellent thermal stability.

本発明の共重合体の製造については、通常のラジカル共
重合法がすべて使用されうるが、サスペンション重合法
やエマルジョン重合法は、水相に共重合体モノマーが溶
解して、重合速度や系の安定性に対して不都合な結果を
与える場合があるだめ不利である。特に連続塊状重合法
が望ましく、さらに、共重合体の組成をできるだけ均一
にして外観と機械的性質を優れたものにするだめに、重
合反応器は完全混合型が好ましい。
All conventional radical copolymerization methods can be used to produce the copolymer of the present invention, but in suspension polymerization and emulsion polymerization, the copolymer monomer is dissolved in the aqueous phase, which improves the polymerization rate and system. This is disadvantageous because it may give unfavorable results to stability. Particularly preferred is a continuous bulk polymerization method, and in order to make the composition of the copolymer as uniform as possible and to have excellent appearance and mechanical properties, the polymerization reactor is preferably of a complete mixing type.

本発明の共重合体は、ポリスチレンやPMMAと同等の
無色透明性と、As樹脂と同等の機械的強度と耐油性、
及び市販されているSMA樹脂を上回る耐熱性を兼ね備
えた高品質の熱可塑性樹脂である。さらに、驚くべきこ
とに、本発明の共重合体は熱安定性が極めて良好であり
、従来から知られている各種のスチレン系共重合体と比
較しても一段と優れたものである。
The copolymer of the present invention has colorless transparency equivalent to polystyrene or PMMA, mechanical strength and oil resistance equivalent to As resin,
It is a high-quality thermoplastic resin that also has heat resistance that exceeds that of commercially available SMA resins. Further, surprisingly, the copolymer of the present invention has extremely good thermal stability, which is even better than various conventionally known styrenic copolymers.

次に実施例によって本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら制限されるものでは
ない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these examples.

なお、本発明の共重合体と比較する公知の樹脂として以
下の各種樹脂を準備した。
The following various resins were prepared as known resins for comparison with the copolymer of the present invention.

ポリスチレン 分子量: 285000 、 MFR(230℃、 3
.8にり荷重)=9.4y/1o分のものを用いた。
Polystyrene molecular weight: 285,000, MFR (230°C, 3
.. A load of 9.4y/1o was used.

MMA メタクリル酸メチル単位98.5重量%、アクリル酸メ
チル単位1.5重量%を含むMFR(230℃、3.8
Kg荷重): ]、9r/l 0分のものを用いた。
MMA MFR containing 98.5% by weight of methyl methacrylate units and 1.5% by weight of methyl acrylate units (230°C, 3.8% by weight)
Kg load): ], 9 r/l 0 minutes was used.

AS樹脂 スチレン単位70重量%、アクリロニトリル単位が3.
0重量%を含むMFR(230℃、3.8Kg荷重) 
: 3.8グ/10分のものを用いた。
AS resin styrene unit 70%, acrylonitrile unit 3.
MFR containing 0% by weight (230℃, 3.8Kg load)
: 3.8g/10 minutes was used.

SMA樹脂 アーコ社製ダイラーク332(スチレン単位85重量%
、無水マレイン酸単位15重量%、MFR:2.9y/
1o分)を用いた。
SMA resin Dilarc 332 manufactured by Arco (styrene unit 85% by weight)
, maleic anhydride unit 15% by weight, MFR: 2.9y/
1o min) was used.

MS樹脂 リチャードソン社製MS−660(スチレン単位40重
量%、メタクリル歌メチル単位60重量%、MFR: 
9.6r/1o分)を用いた。
MS resin MS-660 manufactured by Richardson (40% by weight of styrene units, 60% by weight of methacrylic methyl units, MFR:
9.6 r/1o min) was used.

SMAA樹脂 次の方法に従って製造した。SMAA resin It was manufactured according to the following method.

スチレン75.2重量%、メタクリル酸4.8重量%、
エチルベンゼン20重量%を調合液とし、重ジー 合間始剤として1.ν<’ert−ブチルパーオキシー
 3.3.5− トリメチル/クロヘキサンを用いた。
Styrene 75.2% by weight, methacrylic acid 4.8% by weight,
20% by weight of ethylbenzene was used as a preparation liquid, and 1. ν<'ert-butylperoxy-3.3.5-trimethyl/chlorohexane was used.

この調合液をIA/hrの速度で連続して、内容積2t
のジャケット付完全混合反応器に供給し重合を行った。
This mixture was continuously applied at a rate of IA/hr, with an internal volume of 2 tons.
Polymerization was carried out by supplying the mixture to a jacketed complete mixing reactor.

重合温度は136℃であった。重合反応液を連続して取
り出し、未反応物脱気装置に供給した。得られたポリマ
ーは無色透明で、このポリマーの中和滴定による組成分
析の結果、スチレン単位92重量%、メタクリル酸単位
8重量%であった。MFRを測定したところ5.2y/
1o分(230℃、3.8に9荷重)であった。
The polymerization temperature was 136°C. The polymerization reaction solution was continuously taken out and supplied to an unreacted substance degassing device. The resulting polymer was colorless and transparent, and composition analysis by neutralization titration revealed that it contained 92% by weight of styrene units and 8% by weight of methacrylic acid units. When I measured the MFR, it was 5.2y/
It was 10 minutes (230°C, 3.8 to 9 loads).

まだ、各物性の測定法は次のとおりである。The methods for measuring each physical property are as follows.

(1)  ビカット軟化温度: ASTMD−1525
(2)引張り強さ   :J工5K67’81(3) 
 曲げ強さ     : ASTMI)−790(4)
  MFR7230℃、3.8Kg荷重(5)溶液粘度
 :メチルエチルケトン中の共重合体10重量%濃度の
25℃にお ける溶液粘度。キャノンフェン スケ型粘度管(≠200)を用いた。
(1) Vicat softening temperature: ASTM D-1525
(2) Tensile strength: J engineering 5K67'81 (3)
Bending strength: ASTMI)-790(4)
MFR7230°C, 3.8Kg load (5) Solution viscosity: Solution viscosity at 25°C of 10% by weight concentration of copolymer in methyl ethyl ketone. A Cannon-Fenske type viscosity tube (≠200) was used.

(6)無色透明性:射出成形で厚さ3配の試験片を作製
し、肉眼で観察した。
(6) Colorless transparency: Three thickness test pieces were prepared by injection molding and observed with the naked eye.

、  実施例I スチレン41重量%、メタクリル酸8重量%、メタクリ
ル酸メチル41重量%、メチルエチルケトン】0重量%
及びtert−ドデシルメルカプタン0.1重量%から
成る混合液を調製し、この混合液をIA/hrの速度で
連続して内容積2tのジャケット付完全混合反応器に供
給して重合を行った。
, Example I 41% by weight of styrene, 8% by weight of methacrylic acid, 41% by weight of methyl methacrylate, 0% by weight of methyl ethyl ketone
A mixed solution containing 0.1 wt.

重合開始剤として1,1−ジーtert−ブチルパーオ
キ7−3.3.5− トリメチルシクロヘキサンを用い
、重合温度は126℃であった。固形分41重量%の重
合反応液を連続して高温真空室へ供給して未反応物の除
去及び六員環酸無水物の生成を行った。この生成共重合
体の中和滴定及び赤外分光光度計による組成分析の結果
は、スチレン単位45重量%、メタクリル酸メチル単位
45重量%、メタクリル酸単位3重量%及び六員環酸無
水物単位°7重量%であった。まだこの共重合体の濃度
が10重量%のメチルエチルケトン溶液の25℃におけ
る粘度は9.4センチポイズであった(キャノンフェン
スケ粘度計200番)。次にこの共重合体を細かく粉砕
したものを窒素気流中、内温か270℃にコントロール
された加熱p内に4時間放置したのち、窒素気流中で冷
却し、前記と同様に10重量%濃度のメチルエチルケト
ン溶液の25℃における粘度を測定したところ、9.4
センチボイズであった。
1,1-di-tert-butylperoxy7-3.3.5-trimethylcyclohexane was used as a polymerization initiator, and the polymerization temperature was 126°C. A polymerization reaction solution having a solid content of 41% by weight was continuously supplied to a high-temperature vacuum chamber to remove unreacted substances and produce a six-membered cyclic acid anhydride. The results of neutralization titration and composition analysis using an infrared spectrophotometer of this copolymer were as follows: 45% by weight of styrene units, 45% by weight of methyl methacrylate units, 3% by weight of methacrylic acid units, and 6-membered cyclic acid anhydride units. °7% by weight. The viscosity of a methyl ethyl ketone solution containing this copolymer at a concentration of 10% by weight at 25° C. was 9.4 centipoise (Cannon Fenske viscometer No. 200). Next, this copolymer was finely pulverized and left in a nitrogen stream for 4 hours in a heating chamber whose internal temperature was controlled to 270°C, then cooled in a nitrogen stream, and a 10% concentration by weight was prepared in the same manner as above. The viscosity of the methyl ethyl ketone solution at 25°C was measured and found to be 9.4.
It was centiboise.

この共重合体の単量体単位の組成及び物性を、他の樹脂
の物性とともに第1表に示す。
The composition and physical properties of the monomer units of this copolymer are shown in Table 1 along with the physical properties of other resins.

比較例1 実施例1において、反応液よシ出た固形分41重量%の
重合反応液を、高温真空室へ導かずに外部へ取り出し、
メチルエチルケトンに溶解して固形分5重量%の溶液と
しだ。この溶液を大量のメタノール中に激しくかきまぜ
ながら注入し、析出した固形物をろ別して十分メタノー
ルで洗浄した。
Comparative Example 1 In Example 1, the polymerization reaction solution having a solid content of 41% by weight that came out of the reaction solution was taken out to the outside without being led to the high temperature vacuum chamber.
It was dissolved in methyl ethyl ketone to give a solution with a solid content of 5% by weight. This solution was poured into a large amount of methanol with vigorous stirring, and the precipitated solids were filtered out and thoroughly washed with methanol.

この粉体の固形物をもう一度メチルエチルケトンに溶解
して5重量%の溶液をつくり、再度前記の操作を繰り返
しだ。この粉体を注意深く常温で減圧下で乾燥させた。
This solid powder was once again dissolved in methyl ethyl ketone to make a 5% by weight solution, and the above operation was repeated again. This powder was carefully dried under reduced pressure at room temperature.

得られた共重合体の中和滴定及び赤外分光光度計による
組成分析の結果、スチレン単位45重量%、メタクリル
酸メチル単位45重量%、メタクリル酸単位10重量%
であった。この共重合体の濃度が10重量%であるメチ
ルエチルケトン溶液の25℃における粘度は10.3セ
ンチボイズであった。さらにこの共重合体に対して、実
施例1と同じ方法で270℃の加熱テストを実施した。
As a result of neutralization titration and compositional analysis using an infrared spectrophotometer of the obtained copolymer, styrene units were 45% by weight, methyl methacrylate units were 45% by weight, and methacrylic acid units were 10% by weight.
Met. The viscosity of a methyl ethyl ketone solution containing this copolymer at a concentration of 10% by weight at 25° C. was 10.3 centivoise. Further, this copolymer was subjected to a heating test at 270° C. in the same manner as in Example 1.

加熱テスト後の共重合体はメチルエ゛チルケトンに対し
てゲル状の不溶体であった。供電合体の単量体単位の組
成及び物性を第1表に示す0 実施例2 メタクリル酸メチル77重量%、アクリル酸メチル5重
量%、−メタクリル酸18重量%の混合液100重量部
に対し、メチルエチルケトン40重量部、tert−ド
デシルメルカプタン0.25 重i部、■、1−ビス(
tert−ブチルパーオキシ)/クロヘキサン0.04
重量部を加え、実施例1と同じ方法で重合を実施した。
After the heating test, the copolymer was a gel-like insoluble substance with respect to methyl ethyl ketone. The composition and physical properties of the monomer units of the power-supplying composite are shown in Table 1. 40 parts by weight of methyl ethyl ketone, 0.25 parts by weight of tert-dodecyl mercaptan, ■, 1-bis(
tert-butylperoxy)/chlorohexane 0.04
Parts by weight were added and polymerization was carried out in the same manner as in Example 1.

得られだ共重合体は無色透明であシ、中和滴定、赤外分
光光度計、元素分析による組成分析の結果、メタクリル
酸メチル単位82重量%、アクリル酸メチル単位3重量
%、メタクリル酸単位3重量%及び六員環酸無水物単位
12重量%であった。この共重合体10重量%濃度のメ
チルエチルケトン溶液の25℃における粘度は、加熱テ
スト前で4.3センチポイズ、加熱テスト後で4.1セ
ンチボイズであった。
The obtained copolymer was clear and colorless, and composition analysis by neutralization titration, infrared spectrophotometer, and elemental analysis revealed that 82% by weight of methyl methacrylate units, 3% by weight of methyl acrylate units, and methacrylic acid units. 3% by weight and 12% by weight of six-membered cyclic acid anhydride units. The viscosity at 25° C. of a 10% by weight solution of this copolymer in methyl ethyl ketone was 4.3 centipoise before the heating test and 4.1 centipoise after the heating test.

共重合体の単量体単位の組成及び物性を第1表に示す。Table 1 shows the composition and physical properties of the monomer units of the copolymer.

実施例3〜5.比較例2 第2表に示す供給液組成を調製し、実施例1と同様の方
法で重合及び後処理を行った。
Examples 3-5. Comparative Example 2 A feed solution composition shown in Table 2 was prepared, and polymerization and post-treatment were performed in the same manner as in Example 1.

第  2  表 得られた共重合体の単量体単位の組成及び物性を第3表
に示す。
Table 2 Table 3 shows the composition and physical properties of the monomer units of the obtained copolymer.

実施例6〜8.比較例3〜5 第4表に示す供給液組成を調製し、実施例1と同様の方
法で重合及び後処理を行った。
Examples 6-8. Comparative Examples 3 to 5 The feed liquid compositions shown in Table 4 were prepared, and polymerization and post-treatment were performed in the same manner as in Example 1.

得られた共重合体の単量体単位の組成及び物性を、実施
例1で得られだ共重合体のそれらとともに第5表に示す
The composition and physical properties of the monomer units of the obtained copolymer are shown in Table 5 together with those of the copolymer obtained in Example 1.

実施例9〜12.比較例6〜8 第6表に示す供給液組成を調製し、実施例1と同様の方
法で重合及び後処理を行った。
Examples 9-12. Comparative Examples 6 to 8 The feed liquid compositions shown in Table 6 were prepared, and polymerization and post-treatment were performed in the same manner as in Example 1.

得られだ併重合体の単量体単位の組成及び物性を、実施
例7で得られだ共重合体のそれらとともに第7表に示す
The composition and physical properties of the monomer units of the copolymer obtained are shown in Table 7 together with those of the copolymer obtained in Example 7.

以上第1表、第3表、第5表及び第7表に該当する樹脂
はすべて無色透明性に優れたものであるが、本発明によ
る共重合体のみが耐熱性、機械的強度、耐油性及び熱安
定性のすべてに優れたものであった。
The resins listed in Tables 1, 3, 5, and 7 are all colorless and transparent, but only the copolymer of the present invention has good heat resistance, mechanical strength, and oil resistance. and thermal stability.

特許出願人 旭ダウ株式会社 代理人 阿 形  明Patent applicant Asahi Dow Co., Ltd. Agent Akira Agata

Claims (1)

【特許請求の範囲】 1(A)メタクリル酸メチル単位70〜96重量%、(
B)アクリル酸又はメタクリル酸単位1〜10重量%及
び(C)一般式 (式中のR1及びR2は水素原子又はメチル基である) で表わされる六員環酸無水物単位3〜20重量%から成
9、かつこの共重合体濃度10重量%のメチルエチルケ
トン溶液の温度25℃における粘度が3〜20センチポ
イズであることを特徴とする共重合体。 2(A)メククリル酸メチル単位と、アクリル酸エステ
ル又は芳香族ビニル化合物の中から選ばれた少なくとも
1種の単量体単位7,0〜96重量%%(B)アクリル
酸又はメタクリル酸単位1〜10重量%、及び(0)一
般式 (式中のR1及びR2は水素原子又はメチル基である) で表わされる六員環酸無水物単位3〜20重量%から成
り、かつ(A)単量8体単位としてアクリル酸エステル
を含む場合、その含有量は10重量%以下、芳香族ビニ
ル化合物を含む場合、その含有量が67重量%以下であ
り、さらにこの共重合体濃度10重量%のメチルエチル
ケトン溶液の温度25℃における粘度が3〜20センチ
ポイズであることを特徴とする共重合体。
[Scope of Claims] 1(A) 70 to 96% by weight of methyl methacrylate units, (
B) 1 to 10% by weight of acrylic acid or methacrylic acid units and (C) 3 to 20% by weight of six-membered cyclic acid anhydride units represented by the general formula (in which R1 and R2 are hydrogen atoms or methyl groups) A copolymer comprising: 2 (A) methyl meccrylate unit and at least one monomer unit selected from acrylic esters or aromatic vinyl compounds 7.0 to 96% by weight (B) acrylic acid or methacrylic acid unit 1 -10% by weight, and (0) 3-20% by weight of six-membered cyclic acid anhydride units represented by the general formula (in which R1 and R2 are hydrogen atoms or methyl groups), and (A) When an acrylic ester is contained as an 8-unit unit, the content is 10% by weight or less, and when an aromatic vinyl compound is contained, the content is 67% by weight or less, and the copolymer concentration is 10% by weight. A copolymer characterized in that a methyl ethyl ketone solution has a viscosity of 3 to 20 centipoise at a temperature of 25°C.
JP9583282A 1982-06-04 1982-06-04 New copolymer Granted JPS58217501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9583282A JPS58217501A (en) 1982-06-04 1982-06-04 New copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9583282A JPS58217501A (en) 1982-06-04 1982-06-04 New copolymer

Publications (2)

Publication Number Publication Date
JPS58217501A true JPS58217501A (en) 1983-12-17
JPS6149325B2 JPS6149325B2 (en) 1986-10-29

Family

ID=14148354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9583282A Granted JPS58217501A (en) 1982-06-04 1982-06-04 New copolymer

Country Status (1)

Country Link
JP (1) JPS58217501A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060112A (en) * 1983-09-14 1985-04-06 Mitsubishi Rayon Co Ltd Thermoplastic polymer
JPS60149435A (en) * 1984-01-18 1985-08-06 Asahi Chem Ind Co Ltd Biaxially stretched heat-resistant transparent sheet
JPS62106946A (en) * 1985-11-05 1987-05-18 Asahi Chem Ind Co Ltd Methyl methacrylate resin composition
US4789709A (en) * 1985-05-02 1988-12-06 Sumitomo Chemical Company, Limited Process for the production of heat resistant thermoplastic copolymer
US5021311A (en) * 1988-09-02 1991-06-04 Fuji Photo Film Co., Ltd. Electrophotographic photoreceptor
US5084367A (en) * 1988-07-25 1992-01-28 Fuji Photo Film Co., Ltd. Electrophotographic photoreceptor
US5134051A (en) * 1988-08-31 1992-07-28 Fuji Photo Film Co., Ltd. Electrophotographic photoreceptor
US5198305A (en) * 1986-12-25 1993-03-30 Asahi Kasei Kogyo Kabushiki Kaisha Optical element substrate
US5278233A (en) * 1990-06-14 1994-01-11 Sumitomo Chemical Company, Limited Thermoplastic resin composition
US7348387B2 (en) 2002-03-26 2008-03-25 Toray Industries, Inc. Thermoplastic polymer, process for producing the same, and molded article
WO2008035601A1 (en) 2006-09-20 2008-03-27 Toray Industries, Inc. Process for production of thermoplastic copolymer
WO2017022393A1 (en) * 2015-07-31 2017-02-09 三菱レイヨン株式会社 Copolymer, process for producing copolymer, resin composition, molded object, and motor vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985184A (en) * 1972-08-14 1974-08-15
JPS55102614A (en) * 1979-01-29 1980-08-06 Asahi Chem Ind Co Ltd Styrene copolymer and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985184A (en) * 1972-08-14 1974-08-15
JPS55102614A (en) * 1979-01-29 1980-08-06 Asahi Chem Ind Co Ltd Styrene copolymer and its preparation

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460128B2 (en) * 1983-09-14 1992-09-25 Mitsubishi Rayon Co
JPS6060112A (en) * 1983-09-14 1985-04-06 Mitsubishi Rayon Co Ltd Thermoplastic polymer
JPS60149435A (en) * 1984-01-18 1985-08-06 Asahi Chem Ind Co Ltd Biaxially stretched heat-resistant transparent sheet
JPH043417B2 (en) * 1984-01-18 1992-01-23
US4789709A (en) * 1985-05-02 1988-12-06 Sumitomo Chemical Company, Limited Process for the production of heat resistant thermoplastic copolymer
JPS62106946A (en) * 1985-11-05 1987-05-18 Asahi Chem Ind Co Ltd Methyl methacrylate resin composition
JPH0215584B2 (en) * 1985-11-05 1990-04-12 Asahi Chemical Ind
US5198305A (en) * 1986-12-25 1993-03-30 Asahi Kasei Kogyo Kabushiki Kaisha Optical element substrate
US5084367A (en) * 1988-07-25 1992-01-28 Fuji Photo Film Co., Ltd. Electrophotographic photoreceptor
US5134051A (en) * 1988-08-31 1992-07-28 Fuji Photo Film Co., Ltd. Electrophotographic photoreceptor
US5021311A (en) * 1988-09-02 1991-06-04 Fuji Photo Film Co., Ltd. Electrophotographic photoreceptor
US5278233A (en) * 1990-06-14 1994-01-11 Sumitomo Chemical Company, Limited Thermoplastic resin composition
US5420201A (en) * 1990-06-14 1995-05-30 Sumitomo Chemical Company, Limited Thermoplastic resin composition comprising modified polypropylene, anhydride containing copolymer and epoxy containing copolymer
US7348387B2 (en) 2002-03-26 2008-03-25 Toray Industries, Inc. Thermoplastic polymer, process for producing the same, and molded article
WO2008035601A1 (en) 2006-09-20 2008-03-27 Toray Industries, Inc. Process for production of thermoplastic copolymer
WO2017022393A1 (en) * 2015-07-31 2017-02-09 三菱レイヨン株式会社 Copolymer, process for producing copolymer, resin composition, molded object, and motor vehicle
JPWO2017022393A1 (en) * 2015-07-31 2018-05-17 三菱ケミカル株式会社 Copolymer, copolymer production method, resin composition, molded article, and vehicle
US11008452B2 (en) 2015-07-31 2021-05-18 Mitsubishi Chemical Corporation Copolymer, process for producing copolymer, resin composition, shaped article and vehicle

Also Published As

Publication number Publication date
JPS6149325B2 (en) 1986-10-29

Similar Documents

Publication Publication Date Title
JP5022444B2 (en) Thermoplastic resin with uniform composition and narrow molecular weight distribution and method for producing the same
JPH059359A (en) Polymer composition
JPS58217501A (en) New copolymer
JPH0241544B2 (en)
EP3500606B1 (en) Transparent graft copolymers based on acrylate soft phases
JPS60141756A (en) Polymer composition
JP2010500466A (en) Transparent rubber-modified styrenic resin and its production method by continuous bulk polymerization
US3300545A (en) Blends of polystyrene and a graft copolymer of a styrene-methyl methacrylate type mixture on a rubbery polymer of a conjugated 1, 3-diene
JPH0582405B2 (en)
JPS6241973B2 (en)
JPS6341517A (en) Production of thermoplastic copolymer
KR101432597B1 (en) Method for producing a thermoplastic having highly heat resistance and scratch resistance
JPS6390515A (en) Production of heat-resistant resin composition
JPH11181197A (en) Flowability improver for polycarbonate and polycarbonate resin composition
JP3215719B2 (en) Polymer composition
KR100726485B1 (en) Continuous bulk polymerization process for transparent abs resin
JPS5998156A (en) Acrylic resin composition having excellent heat resistance and impact resistance
JPS62177009A (en) Heat-resistant resin, its production and optical device using same
JPS60258217A (en) Heat-resistant resin
JPS60120734A (en) Transparent, heat- and impact-resistant resin composition
JP2665302B2 (en) Maleimide copolymer, method for producing the same, and thermoplastic resin composition containing the same
JP2501561B2 (en) Optical disc material
JPH04185663A (en) High-impact high-rigidity aas resin composition
JPH07252329A (en) Heat-resistant methacrylic resin
JPS62129334A (en) Methacrylimide-maleimide resin composition