JPS6314740B2 - - Google Patents

Info

Publication number
JPS6314740B2
JPS6314740B2 JP57011866A JP1186682A JPS6314740B2 JP S6314740 B2 JPS6314740 B2 JP S6314740B2 JP 57011866 A JP57011866 A JP 57011866A JP 1186682 A JP1186682 A JP 1186682A JP S6314740 B2 JPS6314740 B2 JP S6314740B2
Authority
JP
Japan
Prior art keywords
copolymer
weight
parts
temperature
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57011866A
Other languages
Japanese (ja)
Other versions
JPS58129043A (en
Inventor
Keiji Nakagawa
Masayuki Tanaka
Akihiko Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1186682A priority Critical patent/JPS58129043A/en
Publication of JPS58129043A publication Critical patent/JPS58129043A/en
Publication of JPS6314740B2 publication Critical patent/JPS6314740B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱変形温度および熱分解温度が高く、
かつ耐衝撃性のすぐれた熱可塑性樹脂組成物に関
するものである。 ビニル系重合体の耐熱性改善に関する検討は従
来から数多く行なわれており、例えばスチレンな
どのビニル系単量体に無水マレイン酸を共重合せ
しめた共重合体は高い熱変形温度を有することが
知られているが(特開昭55−102614号公報および
特開昭55−116712号公報など)、この共重合体は
熱分解温度が低い(高分子論文集、第32巻、第6
号、第342頁、1975年発行)ために成形時の熱安
定性が劣るという欠点がある。また無水マレイン
酸の代りにN―置換アルキルマレイミドを用いた
ビニル系単量体との共重合体は高い熱変形温度を
有すると共に熱分解温度も高く(高分子論文集、
第36巻、第7号、第447頁、1979年発行)、成形時
の熱安定性にすぐれているが、耐衝撃性に代表さ
れる機械的性質が劣る(L.E.Colemanet al,J.
Polymer Sci,第38巻、第241頁、1959年発行)
ため、他のポリマを配合することにより機械的性
質を改良する試みが種々提案されている。たとえ
ば米国特許第3642949号明細書にはN―置換アル
キルマレイミド系共重合体にゴム状重合体をベー
スとするグラフト共重合体を配合した組成物が提
案されているが、この組成物は熱変形温度がいま
だに不十分であり、熱変形温度を満足させるため
にグラフト共重合体の配合量を減らすと耐衝撃性
が著しく低下するという問題がある。 そこで本発明者らは熱変形温度と熱分解温度に
代表される耐熱性および耐衝撃性に代表される機
械的性質が均衡してすぐれた熱可塑性材料の取得
を目的として鋭意検討した結果、N―置換フエニ
ルマレイミドを用いた共重合体と特定のグラフト
共重合体とを配合することにより、上記目的が効
果的に達成できることを見出し、本発明に到達し
た。 すなわち本発明は(A)N―置換フエニルマレイミ
ド45〜70重量%およびこれと共重合可能な他のビ
ニル系単量体の少なくとも1種55〜30重量%から
なる単量体混合物を重合してなる共重合体20〜95
重量部および(B)ゴム状重合体20〜80重量%の存在
下にスチレンおよびこれと共重合可能な他のビニ
ル系単量体の少なくとも1種からなる単量体混合
物80〜20重量%を重合してなるグラフト共重合体
80〜5重量部を配合してなる熱可塑性樹脂組成物
を提供するものである。 上記N―置換フエニルマレイミド系共重合体(A)
は高い熱変形温度および熱分解温度を有するが、
それのみではもろく、耐衝撃性が劣る。またアク
リロニトリル―ブタジエン―スチレン共重合体の
ようなグラフト共重合体(B)は耐衝撃性にすぐれて
いるが、熱変形温度に代表される耐熱性が不十分
である。しかるにN―置換フエニルマレイミド系
共重合体(A)とグラフト共重合体(B)からなる本発明
の組成分は、従来のN―置換アルキルマレイミド
系共重合体とグラフト共重合体とからなる組成物
に比し、高い熱変形温度と熱分解温度を保持した
まま、著しく改善された耐衝撃性を発揮する。 本発明の共重合体(A)を構成するN―置換フエニ
ルマレイミドとは下記式()だ示される単量体
である。 ただし、式中のX1およびX2は各々独立に水素、
ハロゲン、アリール基、アラルキル基、アルキル
基、シクロアルキル基などを示す。上記5員環イ
ミド構造を有するならばX1およびX2はいかなる
化学構造を有する置換基であつても本発明に適用
することができるが、通常は上記式()中の
X1およびX2が水素、臭素、塩素、メチル基、エ
チル基、フエニル基、置換フエニル基であるもの
が一般的に用いられる。 また、N―置換フエニルマレイミドと共重合可
能な他のビニル系単量体混合物とは、スチレン、
α―メチルスチレン、インデン、アセナフチレン
等で代表される芳香族ビニル系単量体、メタクリ
ル酸メチル、アクリル酸メチル等で代表される
(メタ)アクリル酸エステル系単量体およびアク
リロニトリル、メタアクリロニトリル等で代表さ
れるシアン化ビニル系単量体などが挙げられ、こ
れらは2種以上混合して用いることができる。こ
れらのビニル系単量体の中で特に好ましい単量体
は、スチレン、α―メチルスチレン、メタクリル
酸メチルおよびアクリロニトリルである。 共重合体(A)におけるN―置換フエニルマレイミ
ドの共重合量は、45〜70重量%であり、45重量%
未満では得られる共重合体ひいてはその組成物の
熱変形温度が低下し、逆に70重量%を越えると組
成物の耐衝撃性が低下するため好ましくない。 共重合体(A)の製造方法は特に制限はなく、通常
の乳化重合、懸濁重合、溶液重合、塊状重合、塊
状―懸濁重合によつて製造することができる。 本発明で用いるグラフト共重合体(B)とは、ゴム
状重合体の存在下に、スチレンおよびこれと共重
合可能な他のビニル系単量体の少なくとも1種か
らなる単量体混合物を重合してなるものであり、
ここでいう他のビニル系単量体とは、芳香族ビニ
ル系単量体、(メタ)アクリル酸エステル系単量
体およびシアン化ビニル系単量体などである。 ゴム状重合体にグラフトさせて、組成物の衝撃
強度を向上させ、あるいは制御する目的において
とくに好ましい単量体は、スチレン、α―メチル
スチレン、メタクリル酸メチル、アクリロニトリ
ル、N―フエニルマレイミドである。 ここでゴム状重合体としてはポリブタジエンゴ
ム、アクリロニトリル―ブタジエン共重合体ゴム
(NBR)、スチレン―ブタジエン共重合体ゴム
(SBR)等のジエン系ゴム、ポリブチルアクリレ
ート、ポリプロピルアクリレート等のアクリル系
ゴム、およびエチレン―プロピレン―ジエン系ゴ
ム(EPDM)等を用いることができる。ただし、
グラフト共重合体(B)におけるゴム状重合体とビニ
ル系単量体混合物との割合は重要であり、ゴム状
重合体20〜80重量%とくに30〜70重量%の存在下
に、ビニル系単量体混合物80〜20重量%、とくに
70〜30重量%を重合することが必要である。ゴム
状重合体の割合が20重量%未満では、得られる組
成物の耐衝撃性が十分でなく、また逆に80重量%
を越えると得られる組成物の機械的強度が低下す
るばかりか、光沢等の外観に好ましくない結果を
与えるため好ましくない。なお、これらのグラフ
ト共重合体(B)は、乳化重合、塊状重合および塊状
―懸濁重合などの公知の重合法により製造され
る。 本発明の樹脂組成物は、上記共重合体(A)および
グラフト共重合体(B)の2者を配合することにより
得られるが、これらの配合割合は(A)が20〜95重量
部とくに30〜90重量部、(B)が80〜5重量部、とく
に70〜10重量部(合計100重量部)なる範囲から
選択される。ここで共重合体(A)の配合量が20重量
部未満では熱変形温度の極めて低い組成物しか得
られず、95重量部を越えると組成物の耐衝撃性が
低下するため好ましくない。 また、本発明の熱可塑性樹脂組成物に対し、さ
らに他の重合体(C)を配合することによつて、種々
の特性を発揮させることができる。このような重
合体(C)としては、スチレン、α―メチルスチレ
ン、メタアクリル酸メチル、アクリロニトリル等
で代表されるビニル系単量体の(共)重合体、ナ
イロンに代表されるようなアミド系重合体、ポリ
エチレンテレフタレート、ポリブチレンテレフタ
レートに代表されるようなポリエステル系重合体
等が挙げられるが、なかでもスチレン―アクリロ
ニトリル共重合体、スチレン―α―メチルスチレ
ン―アクリロニトリル共重合体、スチレン―メタ
クリル酸メチル―アクリロニトリル共重合体、メ
タクリル酸メチル―アクリロニトリル共重合体、
スチレン―メタクリル酸メチル共重合体およびメ
タクリル酸メチル単独重合体が好ましく使用でき
る。 上記共重合体(A)およびグラフト共重合体(B)の配
合方法にもとくに制限はなく、例えば粉粒状の重
合体を予め混合しまたは混合せず所望の量比で押
出機に供給し溶融混合する方法などが採用され
る。 なお本発明の熱可塑性樹脂組成物には通常のヒ
ンダードフエノール系酸化防止剤、リン系酸化防
止剤およびイオウ系酸化防止剤等の酸化防止剤を
添加して熱安定性を向上させたり、滑剤を添加し
て流動性をさらに良くすることもできる。また目
的に合わせて、ガラス繊維等の繊維補強剤、無機
充填剤、着色剤、顔料を配合することもできる。
また本発明の樹脂組成物にテトラブロモビスフエ
ノールA、デカブロモビフエニルエーテル、臭素
化ポリカーボネート等の一般のハロゲン化有機化
合物系難燃剤を酸化アンチモンとともに混合する
ことによつて難燃化が可能である。 以上説明したように本発明の熱可塑性樹脂組成
物は、熱変形温度ならびに熱分解温度に代表され
る耐熱性および耐衝撃性に代表される機械的性質
のバランスがすぐれており、これらの特性を生か
した種々の用途に適用が期待される。 以下、参考例および実施例よつて本発明をさら
に説明する。なお、参考例、実施例中の熱変形温
度はASTM D―648―56、アイゾツト衝撃値は
ASTM D―256―56Method Aにしたがつて測
定した。また、熱分解温度は熱重量分析計を用い
て窒素気流下10℃/分の速度で昇温し試料の重量
変化を測定して、試料重量が3重量%減少した温
度を熱分解温度とした。また、部数は重量部、%
は重量%を表わす。 参考例 1 (1) N―置換フエニルマレイミド系共重合体(A)、
N―アルキルマレイミド系共重合体(A′)の
調製 表1に示した原料単量体のうち、ビニル系単量
体混合物100部を開始剤ベンゾイルパーオキサイ
ド0.3部とともにメチルエチルケトン100部に溶解
して反応槽の中に仕込み、槽内温度を75℃に保持
しながら十分撹拌を行なつた。この中にメチルエ
チルケトン100部に溶解した所定量のN―置換フ
エニルマレイミドあるいはN―アルキルマレイミ
ドを所定の速度で滴下しながら重合を行ない、
種々の組成をもつN―置換フエニルマレイミド系
共重合(A)およびN―アルキルマレイミド系共重合
体(A′)を得た。形素分析からN―置換フエニ
ルマレイミドおよびN―アルキルマレイミドの含
有量を求めたところ、表1の共重合組成をもつ共
重合体が得られた。 (2) 無水マレイン酸系共重合体(A″)の調製 ビニル系単量体100部を開始剤ベンゾイルパー
オキサイド0.3部とともにメチルエチルケトン100
部に溶解して反応槽の中に仕込み、槽内温度を75
℃に保持しながら十分撹拌を行なつた。 この中にメチルエチルケトン100部に溶解した
所定量の無水マレイン酸を所定の速度で滴下しな
がら重合を行ない、2種の組成をもつ無水マレイ
ン酸系共重合体(A″)を調製した。元素分析か
ら、無水マレイン酸含有量を求め表1のような共
重合体が得られた。
The present invention has a high heat distortion temperature and a high thermal decomposition temperature,
The present invention also relates to a thermoplastic resin composition having excellent impact resistance. Many studies have been conducted to improve the heat resistance of vinyl polymers. For example, it is known that copolymers made by copolymerizing maleic anhydride with vinyl monomers such as styrene have a high heat distortion temperature. However, this copolymer has a low thermal decomposition temperature (Kobunshi Ronshu, Vol. 32, Vol. 6).
(No. 342, published in 1975), it has the disadvantage of poor thermal stability during molding. In addition, a copolymer with a vinyl monomer using N-substituted alkylmaleimide instead of maleic anhydride has a high heat deformation temperature and a high thermal decomposition temperature (Kobunshi Journal,
Vol. 36, No. 7, p. 447, published in 1979), has excellent thermal stability during molding, but has poor mechanical properties, typified by impact resistance (LE Colemanet al, J.
Polymer Sci, Volume 38, Page 241, published in 1959)
Therefore, various attempts have been made to improve the mechanical properties by blending other polymers. For example, U.S. Patent No. 3,642,949 proposes a composition in which an N-substituted alkylmaleimide copolymer is blended with a graft copolymer based on a rubber-like polymer. There is a problem that the temperature is still insufficient, and when the amount of graft copolymer blended is reduced to satisfy the heat distortion temperature, the impact resistance is significantly reduced. Therefore, the present inventors conducted extensive studies with the aim of obtaining a thermoplastic material with excellent heat resistance, represented by heat distortion temperature and pyrolysis temperature, and mechanical properties, represented by impact resistance, in a well-balanced manner. The inventors have discovered that the above object can be effectively achieved by blending a copolymer using a -substituted phenylmaleimide with a specific graft copolymer, and have thus arrived at the present invention. That is, the present invention involves polymerizing a monomer mixture consisting of (A) 45 to 70% by weight of N-substituted phenylmaleimide and 55 to 30% by weight of at least one other vinyl monomer copolymerizable therewith. Copolymer 20-95
parts by weight and (B) 80 to 20% by weight of a monomer mixture consisting of at least one type of styrene and another vinyl monomer copolymerizable therewith in the presence of 20 to 80% by weight of the rubbery polymer. Graft copolymer formed by polymerization
The object of the present invention is to provide a thermoplastic resin composition containing 80 to 5 parts by weight. The above N-substituted phenylmaleimide copolymer (A)
has a high heat distortion temperature and pyrolysis temperature, but
By itself, it is brittle and has poor impact resistance. Graft copolymers (B) such as acrylonitrile-butadiene-styrene copolymers have excellent impact resistance, but are insufficient in heat resistance as typified by heat distortion temperature. However, the composition of the present invention consisting of an N-substituted phenylmaleimide copolymer (A) and a graft copolymer (B) is composed of a conventional N-substituted alkylmaleimide copolymer and a graft copolymer. Compared to other compositions, it exhibits significantly improved impact resistance while maintaining high heat distortion and thermal decomposition temperatures. The N-substituted phenylmaleimide constituting the copolymer (A) of the present invention is a monomer represented by the following formula (). However, X 1 and X 2 in the formula are each independently hydrogen,
Indicates halogen, aryl group, aralkyl group, alkyl group, cycloalkyl group, etc. If X 1 and X 2 have the above-mentioned 5-membered ring imide structure, substituents having any chemical structure can be applied to the present invention, but usually in the above formula ()
Those in which X 1 and X 2 are hydrogen, bromine, chlorine, methyl group, ethyl group, phenyl group, or substituted phenyl group are generally used. In addition, other vinyl monomer mixtures copolymerizable with N-substituted phenylmaleimide include styrene,
Aromatic vinyl monomers represented by α-methylstyrene, indene, acenaphthylene, etc., (meth)acrylic acid ester monomers represented by methyl methacrylate, methyl acrylate, etc., and acrylonitrile, methacrylonitrile, etc. Typical examples include vinyl cyanide monomers, and two or more of these can be used in combination. Particularly preferred among these vinyl monomers are styrene, α-methylstyrene, methyl methacrylate, and acrylonitrile. The amount of copolymerized N-substituted phenylmaleimide in the copolymer (A) is 45 to 70% by weight, and 45% by weight.
If it is less than 70% by weight, the heat distortion temperature of the resulting copolymer and thus the composition will be lowered, and if it exceeds 70% by weight, the impact resistance of the composition will be lowered, which is not preferable. The method for producing the copolymer (A) is not particularly limited, and it can be produced by conventional emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, or bulk-suspension polymerization. The graft copolymer (B) used in the present invention is a monomer mixture consisting of styrene and at least one other vinyl monomer copolymerizable with it in the presence of a rubbery polymer. It is made by
The other vinyl monomers mentioned here include aromatic vinyl monomers, (meth)acrylic acid ester monomers, vinyl cyanide monomers, and the like. Particularly preferred monomers for grafting onto the rubbery polymer to improve or control the impact strength of the composition are styrene, α-methylstyrene, methyl methacrylate, acrylonitrile, and N-phenylmaleimide. . Examples of rubbery polymers include diene rubbers such as polybutadiene rubber, acrylonitrile-butadiene copolymer rubber (NBR), and styrene-butadiene copolymer rubber (SBR), and acrylic rubbers such as polybutyl acrylate and polypropyl acrylate. , ethylene-propylene-diene rubber (EPDM), etc. can be used. however,
The ratio of the rubbery polymer to the vinyl monomer mixture in the graft copolymer (B) is important; mass mixture 80-20% by weight, especially
It is necessary to polymerize 70-30% by weight. If the proportion of the rubbery polymer is less than 20% by weight, the resulting composition will not have sufficient impact resistance;
Exceeding this is not preferred because it not only reduces the mechanical strength of the composition obtained, but also gives undesirable results in appearance such as gloss. Note that these graft copolymers (B) are produced by known polymerization methods such as emulsion polymerization, bulk polymerization, and bulk-suspension polymerization. The resin composition of the present invention can be obtained by blending the above-mentioned copolymer (A) and graft copolymer (B), and the blending ratio is such that (A) is 20 to 95 parts by weight, especially 30 to 90 parts by weight, 80 to 5 parts by weight of (B), particularly 70 to 10 parts by weight (total 100 parts by weight). If the amount of copolymer (A) is less than 20 parts by weight, only a composition with an extremely low heat distortion temperature will be obtained, and if it exceeds 95 parts by weight, the impact resistance of the composition will decrease, which is not preferable. Further, by further blending another polymer (C) with the thermoplastic resin composition of the present invention, various properties can be exhibited. Examples of such polymers (C) include (co)polymers of vinyl monomers such as styrene, α-methylstyrene, methyl methacrylate, and acrylonitrile, and amide-based monomers such as nylon. Examples include polyester polymers such as polyethylene terephthalate and polybutylene terephthalate, among them styrene-acrylonitrile copolymer, styrene-α-methylstyrene-acrylonitrile copolymer, and styrene-methacrylic acid. Methyl-acrylonitrile copolymer, methyl methacrylate-acrylonitrile copolymer,
Styrene-methyl methacrylate copolymer and methyl methacrylate homopolymer can be preferably used. There are no particular restrictions on the method of blending the above copolymer (A) and graft copolymer (B). For example, powdered polymers may be mixed in advance or not mixed before being fed to an extruder in a desired ratio and melted. Methods such as mixing are adopted. In addition, the thermoplastic resin composition of the present invention may be added with antioxidants such as ordinary hindered phenol antioxidants, phosphorus antioxidants, and sulfur antioxidants to improve thermal stability, or may be used as a lubricant. It is also possible to further improve the fluidity by adding . Depending on the purpose, fiber reinforcing agents such as glass fibers, inorganic fillers, colorants, and pigments can also be blended.
Furthermore, flame retardation can be achieved by mixing general halogenated organic compound flame retardants such as tetrabromobisphenol A, decabromobiphenyl ether, and brominated polycarbonate with antimony oxide into the resin composition of the present invention. be. As explained above, the thermoplastic resin composition of the present invention has an excellent balance of heat resistance represented by heat distortion temperature and thermal decomposition temperature, and mechanical properties represented by impact resistance. It is expected that it will be applied to a variety of applications. The present invention will be further explained below using reference examples and examples. In addition, the heat distortion temperature in the reference examples and examples is ASTM D-648-56, and the Izod impact value is
Measured according to ASTM D-256-56Method A. The pyrolysis temperature was determined by increasing the temperature at a rate of 10°C/min under a nitrogen stream using a thermogravimetric analyzer, measuring the change in weight of the sample, and determining the pyrolysis temperature as the temperature at which the sample weight decreased by 3%. . Also, the number of parts is parts by weight, %
represents weight %. Reference example 1 (1) N-substituted phenylmaleimide copolymer (A),
Preparation of N-alkylmaleimide copolymer (A') Among the raw material monomers shown in Table 1, 100 parts of a vinyl monomer mixture was dissolved in 100 parts of methyl ethyl ketone along with 0.3 parts of benzoyl peroxide initiator. The mixture was charged into a reaction tank and thoroughly stirred while maintaining the temperature inside the tank at 75°C. Polymerization is carried out by dropping a predetermined amount of N-substituted phenylmaleimide or N-alkylmaleimide dissolved in 100 parts of methyl ethyl ketone into the solution at a predetermined rate.
N-substituted phenylmaleimide copolymers (A) and N-alkylmaleimide copolymers (A') having various compositions were obtained. When the contents of N-substituted phenylmaleimide and N-alkylmaleimide were determined from morphological analysis, a copolymer having the copolymer composition shown in Table 1 was obtained. (2) Preparation of maleic anhydride copolymer (A″) 100 parts of vinyl monomer was mixed with 0.3 parts of benzoyl peroxide initiator and 100 parts of methyl ethyl ketone.
Dissolve the liquid into a reaction tank and set the temperature inside the tank to 75%.
Sufficient stirring was performed while maintaining the temperature at °C. Polymerization was carried out while a predetermined amount of maleic anhydride dissolved in 100 parts of methyl ethyl ketone was added dropwise at a predetermined rate to prepare maleic anhydride-based copolymers (A'') having two types of composition.Elemental analysis The maleic anhydride content was determined from the following, and the copolymers shown in Table 1 were obtained.

【表】 (3) グラフト共重合体(B)の調製 各種ゴム状重合体の存在下にスチレンおよびこ
れと共重合可能な他のビニル系単量体混合物を重
合して、表2に示した組成を持つグラフト共重合
体(B)10種を調製した。なお、表2中PBDとはポ
リブタジエンゴム、SBRとはスチレン25%とブ
タジエン75%からなるスチレン―ブタジエン共重
合体ゴム、EPDMとは添素価23、ムーニー粘度
60のエチレン/プロピレン/5―エチリデン―2
―ノルボネン三元共重合体ゴム(エチレン/プロ
ピレン=68.5/31.5モル比)を表わす。
[Table] (3) Preparation of graft copolymer (B) Styrene and a mixture of other vinyl monomers copolymerizable with it were polymerized in the presence of various rubber-like polymers, and the mixture shown in Table 2 was prepared. Ten types of graft copolymers (B) with the following compositions were prepared. In Table 2, PBD is polybutadiene rubber, SBR is styrene-butadiene copolymer rubber consisting of 25% styrene and 75% butadiene, and EPDM is element value 23 and Mooney viscosity.
60 ethylene/propylene/5-ethylidene-2
-Represents norbornene terpolymer rubber (ethylene/propylene = 68.5/31.5 molar ratio).

【表】 (4) 重合体(C)の調製 表3に示した組成をもつ重合体(C)を4種調製し
た。
[Table] (4) Preparation of polymer (C) Four types of polymer (C) having the compositions shown in Table 3 were prepared.

【表】 実施例 1 参考例1で調製した(A)N―置換フエニルマレイ
ミド系共重合体(A―1〜A―12)、(A′)N―
アルキルマレイミド系共重合体(A′―1,A′―
2)、(A″)無水マレイン酸系共重合体(A″―1,
A″―2)、(B)グラフト共重合体(B―1〜B―
10)および(C)重合体(C―1〜C―4)を表4の
割合で配合し、押出機で溶融押出後、射出成形し
て得られた試験片の物性を測定した。熱変形温
度、熱分解温度およびアイゾツト衝撃強度の測定
結果を表4に配合比とともに示した。
[Table] Example 1 (A) N-substituted phenylmaleimide copolymers (A-1 to A-12) prepared in Reference Example 1, (A') N-
Alkylmaleimide copolymer (A′-1, A′-
2), (A″) Maleic anhydride copolymer (A″-1,
A″-2), (B) graft copolymer (B-1 to B-
10) and (C) polymers (C-1 to C-4) were blended in the proportions shown in Table 4, and after melt extrusion using an extruder, the physical properties of the test pieces obtained by injection molding were measured. The measurement results of heat distortion temperature, thermal decomposition temperature and Izod impact strength are shown in Table 4 together with the blending ratio.

【表】【table】

【表】 表4から明らかなように、本発明の組成物(No.
2〜3、6、8、10〜14)は、熱変形温度、熱分
解温度および衝撃強度の三者が均衡してすぐれて
いる。これに対して、(A)N―置換フエニルマレイ
ミド系共重合体のN―置換フエニルマレイミド含
有量、(B)グラフト共重合体のゴム状重合体含有量
あるいは(A)と(B)の混合割合のいずれかあるいはと
もに外れる場合(No.1、4〜5、7、9、15〜
22)は、熱変形温度が高くても衝撃強度が不十分
であつたり(No.1、4〜5、7、9、15〜17)、
衝撃強度が高くても熱変形温度が不十分であつた
りする(No.18〜22)。また、(A′)N―アルキル
マレイミド系共重合体を使用した場合(No.23,
24)は熱変形温度が低く(No.23)、熱変形温度を
上げると衝撃強度が低下する(No.24)。また、
(A″)無水マレイン酸系共重合体を使用した場合
(No.25,26)は、熱変形温度、衝撃強度ともに高
くバランスがとれているが、熱分解温度が低く成
形時の熱安定性が劣る。
[Table] As is clear from Table 4, the composition of the present invention (No.
Nos. 2 to 3, 6, 8, and 10 to 14) are excellent in thermal deformation temperature, thermal decomposition temperature, and impact strength in a well-balanced manner. In contrast, (A) the N-substituted phenylmaleimide content of the N-substituted phenylmaleimide copolymer, (B) the rubbery polymer content of the graft copolymer, or (A) and (B) If any or both of the mixing ratios are off (No. 1, 4-5, 7, 9, 15-
22) have insufficient impact strength even if the heat distortion temperature is high (No. 1, 4-5, 7, 9, 15-17),
Even if the impact strength is high, the heat distortion temperature may be insufficient (Nos. 18 to 22). In addition, when (A') N-alkylmaleimide copolymer is used (No. 23,
24) has a low heat distortion temperature (No. 23), and as the heat distortion temperature increases, the impact strength decreases (No. 24). Also,
(A″) When using maleic anhydride copolymer (No. 25, 26), both heat distortion temperature and impact strength are high and well-balanced, but thermal decomposition temperature is low and thermal stability during molding is low. is inferior.

Claims (1)

【特許請求の範囲】[Claims] 1 (A) N―置換フエニルマレイミド45〜70重量
%およびこれと共重合可能な他のビニル系単量体
の少なくとも1種55〜30重量%からなる単量体混
合物を重合してなる共重合体20〜95重量部および
(B)ゴム状重合体20〜80重量%の存在下にスチレン
およびこれと共重合可能な他のビニル系単量体の
少なくとも1種からなる単量体混合物80〜20重量
%を重合してなるグラフト共重合体80〜5重量部
を配合してなる熱可塑性樹脂組成物。
1 (A) A copolymer obtained by polymerizing a monomer mixture consisting of 45 to 70% by weight of N-substituted phenylmaleimide and 55 to 30% by weight of at least one other vinyl monomer copolymerizable with this. 20-95 parts by weight of polymer and
(B) Polymerizing 80 to 20% by weight of a monomer mixture consisting of styrene and at least one other vinyl monomer copolymerizable with it in the presence of 20 to 80% by weight of a rubbery polymer. A thermoplastic resin composition containing 80 to 5 parts by weight of a graft copolymer.
JP1186682A 1982-01-29 1982-01-29 Thermoplastic resin composition Granted JPS58129043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186682A JPS58129043A (en) 1982-01-29 1982-01-29 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186682A JPS58129043A (en) 1982-01-29 1982-01-29 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS58129043A JPS58129043A (en) 1983-08-01
JPS6314740B2 true JPS6314740B2 (en) 1988-04-01

Family

ID=11789635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186682A Granted JPS58129043A (en) 1982-01-29 1982-01-29 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS58129043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342748U (en) * 1986-09-03 1988-03-22

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206657A (en) * 1982-05-26 1983-12-01 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPH0764963B2 (en) * 1983-08-24 1995-07-12 電気化学工業株式会社 Thermoplastic resin composition
JPS6191239A (en) * 1983-09-12 1986-05-09 アトランテイツク・リツチフイ−ルド・カンパニ− Polymer alloy
US4663390A (en) * 1983-10-03 1987-05-05 Atlantic Richfield Company Methylmethacrylate/phenylmaleimide copolymer and styrene/maleic anhydride copolymer containing polymer alloys
JPS60155255A (en) * 1984-01-23 1985-08-15 Denki Kagaku Kogyo Kk Plated article of thermoplastic resin composition
JPS60181155A (en) * 1984-02-28 1985-09-14 Denki Kagaku Kogyo Kk Thermoplastic resin composition having improved wear resistance
JPS60184546A (en) * 1984-03-05 1985-09-20 Denki Kagaku Kogyo Kk Thermoplastic resin composition for foam molding
JPS60212450A (en) * 1984-04-05 1985-10-24 Denki Kagaku Kogyo Kk Molded article of lamp housing part
WO1986004337A1 (en) * 1985-01-17 1986-07-31 Mitsubishi Rayon Co., Ltd. Process for producing maleimide copolymer, and thermoplastic resin prepared by using said copolymer
JPS61174247A (en) * 1985-01-29 1986-08-05 Mitsubishi Rayon Co Ltd Heat-resistant, impact-resistant thermoplastic resin composition
JPS61179252A (en) * 1985-02-04 1986-08-11 Mitsubishi Rayon Co Ltd Thermoplastic resin composition having excellent resistance to heat and impact
CA1272321A (en) * 1985-08-27 1990-07-31 Mune Iwamoto Rubber dispersed copolymer resin
JPH0651742B2 (en) * 1985-10-17 1994-07-06 電気化学工業株式会社 Optical equipment parts moldings
JPH0794586B2 (en) * 1987-06-03 1995-10-11 株式会社日本触媒 Methacrylic resin composition with improved thermal decomposition resistance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1213061A (en) * 1964-04-21 1970-11-18 Ici Ltd Copolymers of acrylonitrile (and/or methacrylonitrile) aromatic olefine and n-aryl maleimide
US3766142A (en) * 1964-04-21 1973-10-16 Ici Ltd Acrylonitrile copolymers
JPS53117050A (en) * 1977-03-19 1978-10-13 Bayer Ag Thermoplastic molding composition
JPS5798536A (en) * 1980-12-11 1982-06-18 Mitsubishi Monsanto Chem Co Heat-resistant resin composition
JPS57125242A (en) * 1981-01-28 1982-08-04 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS57125241A (en) * 1981-01-28 1982-08-04 Denki Kagaku Kogyo Kk Heat-resistant resin composition
JPS57167341A (en) * 1981-04-08 1982-10-15 Asahi Chem Ind Co Ltd Thermoplastic resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1213061A (en) * 1964-04-21 1970-11-18 Ici Ltd Copolymers of acrylonitrile (and/or methacrylonitrile) aromatic olefine and n-aryl maleimide
US3652726A (en) * 1964-04-21 1972-03-28 Ici Ltd Thermoplastic compositions
US3766142A (en) * 1964-04-21 1973-10-16 Ici Ltd Acrylonitrile copolymers
JPS53117050A (en) * 1977-03-19 1978-10-13 Bayer Ag Thermoplastic molding composition
US4204047A (en) * 1977-03-19 1980-05-20 Bayer Aktiengesellschaft Thermoplastic moulding composition
JPS5798536A (en) * 1980-12-11 1982-06-18 Mitsubishi Monsanto Chem Co Heat-resistant resin composition
JPS57125242A (en) * 1981-01-28 1982-08-04 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS57125241A (en) * 1981-01-28 1982-08-04 Denki Kagaku Kogyo Kk Heat-resistant resin composition
JPS57167341A (en) * 1981-04-08 1982-10-15 Asahi Chem Ind Co Ltd Thermoplastic resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342748U (en) * 1986-09-03 1988-03-22

Also Published As

Publication number Publication date
JPS58129043A (en) 1983-08-01

Similar Documents

Publication Publication Date Title
JPS6314740B2 (en)
EP0267574B1 (en) Heat resistant copolymer composition
JPH0466902B2 (en)
US4490507A (en) Process for producing rubber modified thermoplastic resin
JPH08134312A (en) Resin composition excellent in impact resistance
EP0393685A1 (en) Imidated copolymers and uses thereof
US5218069A (en) Imidated copolymers and uses thereof
JPH0530861B2 (en)
JPS6313453B2 (en)
US5180780A (en) Rubber-modified styrene-based copolymer
JP4156403B2 (en) Impact-resistant reinforcing material, production method thereof, and impact-resistant reinforced polystyrene composition
JP3386532B2 (en) Thermoplastic resin composition
EP0216065A1 (en) Blends based on vinyl-aromatic polymers having high tenacity and impact strength
JPH09216980A (en) Resin composition
JPS6225700B2 (en)
KR0153071B1 (en) Thermoplastic resin composition for high thermal stability and good weatherability
JPH0125337B2 (en)
JPH05279547A (en) Transparent thermoplastic resin composition
JPS6248712A (en) Rubber-dispersed copolymer resin
JPH05202263A (en) Thermoplastic resin composition
JPH08239551A (en) Thermoplastic resin composition and its production
JPH08134316A (en) Thermoplastic polymer composition excellent in impact resistance
KR19990019314A (en) Thermoplastic resin composition with excellent impact strength
KR100217790B1 (en) Rubber-reinforced styrene resin composition
JPH0125336B2 (en)