JPS63125562A - Heat-resistant and impact-resistant resin composition - Google Patents

Heat-resistant and impact-resistant resin composition

Info

Publication number
JPS63125562A
JPS63125562A JP27110886A JP27110886A JPS63125562A JP S63125562 A JPS63125562 A JP S63125562A JP 27110886 A JP27110886 A JP 27110886A JP 27110886 A JP27110886 A JP 27110886A JP S63125562 A JPS63125562 A JP S63125562A
Authority
JP
Japan
Prior art keywords
resin
monomer
parts
sami
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27110886A
Other languages
Japanese (ja)
Inventor
Yasuo Kobayashi
康男 小林
Hiroyuki Nakamura
浩之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP27110886A priority Critical patent/JPS63125562A/en
Publication of JPS63125562A publication Critical patent/JPS63125562A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a resin compsn. having a high heat distortion temp. and excellent impact resistance, consisting of a specified after-imidated resin and a specified graft copolymer resin or a polycarbonate resin. CONSTITUTION:A resin compsn. consists of 30-80pts.wt. thermoplastic resin (A) having an imidation ratio of not lower than 70mol%, obtd. by imidating a copolymer having [eta]>0.40, composed of 94-45mol% of a styrene monomer, 1-20mol% of acrylonitrile monomer and 5-35mol% of maleic anhydride monomer, with cyclohexylamide in the presence of a zinc chloride catalyst in a molten state, and 70-20pts.wt. graft copolymer resin (B) obtd. by graft- copolymerizing 80-40wt% monomer mixture of a styrene monomer and acrylonitrile monomer in the presence of 20-60wt% rubbery polymer (e.g., polybutadiene) or 70-20pts.wt. polycarbonate resin (C). By blending the resin A having excellent heat resistance with the resin B or C, a material having a high heat distortion temp., excellent impact resistance and good moldability (melt fluidity) can be obtd.

Description

【発明の詳細な説明】 (技術分野) 本発明は、熱変形温度が高く、かつ耐衝撃性に優れた樹
脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a resin composition that has a high heat distortion temperature and excellent impact resistance.

さらに詳しくは、本発明は、スチレン、アクリロニトリ
ル、無水マレイン酸系共重合樹脂をシクロヘキシルアミ
ンと反応させたいわゆる後イミド化樹脂と、通常のAB
S系樹脂又はポリカーブネート樹脂から成る耐熱耐衝撃
性に優れた樹脂組成物に関するものである。
More specifically, the present invention uses a so-called post-imidized resin obtained by reacting a styrene, acrylonitrile, and maleic anhydride copolymer resin with cyclohexylamine, and a conventional AB
The present invention relates to a resin composition comprising an S-based resin or a polycarnate resin and having excellent heat and impact resistance.

(従来の技術及びその問題点) ABS系樹脂の耐熱性を高める手法の1つとして、スチ
レン系単量体と無水マレイン酸単量体からなる共重合体
(以下SMAと記す)を作シ、これとABS系樹脂をブ
レンドすることにより耐熱性を高めた変性ABS樹脂を
得る試みが以前から行なわれて来た(参考文献1.特公
昭47−50775号公報)。
(Prior art and its problems) As one of the methods to improve the heat resistance of ABS resin, a copolymer (hereinafter referred to as SMA) consisting of a styrene monomer and a maleic anhydride monomer (hereinafter referred to as SMA) is produced. Attempts have been made for some time to obtain modified ABS resins with improved heat resistance by blending them with ABS resins (Reference Document 1: Japanese Patent Publication No. 50775/1983).

しかしながらABS樹脂とブレンドするSMAは、その
熱分解温度が低いという本質的な欠点があり、これが為
に熱成形時の滞留安定性が問題であった。
However, SMA blended with ABS resin has an essential drawback of having a low thermal decomposition temperature, which has led to problems with retention stability during thermoforming.

そこでSMAにかえて、スチレン・N−置換マレイミド
系の共重合体(以下SMIと記す)と作りこれとABS
系樹脂をブレンドして、成形安定性に秀れた耐熱耐衝撃
性の樹脂組成物乞得る試みもなされており参考文献2.
特開昭57−125242号公報もその1つである。と
ころがこれらの文献ではマレイミド系単位としてN−メ
チルマレイミド、N−エチルマレイミド、N−イソプロ
ピルマレイミド、N−ブチルマレイミドなどのN−アル
キルマレイルフェニルマレイミド、N−ナフチルマレイ
ミドなどのN−アリールマレイミドその他各種の置換基
含有するN−置換マレイミドが挙げられているが中でも
最も好ましいとされているのは、どの文献に於てもN−
フェニルマレイミドであり、N−フェニルマレイミド以
外のマレイミドを実際に検討した例は殆んどない。わず
かに参考文献3.特開昭59−191749号公報にN
−メチルマレイミド単量体を用いて共重合したSMIと
ABS樹脂のブレンドの例が、また参考文献4.特開昭
58−129043号公報では、実験の比較例に於てN
−メチル及びN−エチルマレイミド構造を持つSMIを
ABSとブレンドする例を開示しているにすぎない。
Therefore, instead of SMA, we made a styrene/N-substituted maleimide copolymer (hereinafter referred to as SMI) and combined it with ABS.
Attempts have also been made to create a heat-resistant and impact-resistant resin composition with excellent molding stability by blending other resins, as described in Reference 2.
JP-A-57-125242 is one of them. However, in these documents, maleimide units include N-alkylmaleyl phenylmaleimide such as N-methylmaleimide, N-ethylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-arylmaleimide such as N-naphthylmaleimide, and various other types. N-substituted maleimides containing substituents are mentioned, but the most preferred one is N-substituted maleimide in all literature.
It is phenylmaleimide, and there are almost no examples in which maleimides other than N-phenylmaleimide have actually been investigated. Few references 3. N in Japanese Patent Application Laid-open No. 59-191749
- Examples of blends of SMI and ABS resins copolymerized using methylmaleimide monomers are also given in reference 4. In JP-A No. 58-129043, in a comparative example of the experiment, N
It merely discloses an example of blending SMI with -methyl and N-ethylmaleimide structures with ABS.

一般にN−アルキルマレイミドとスチレン系単量体の共
重合体は高い熱変形温度を有すると共に熱分解温度も高
く、成形時の熱安定性にも秀れているが、ニジストマー
成分を含まないため耐衝撃性が劣るのは常識である。こ
のため、前記参考文献4.ではSMAをメチルアミンに
よりV、イミド化してN−メチルマレイミド基含有のS
MIとし、これをABS系樹脂とブレンドしてその性能
を評価したところ、その熱変形温度が低かったので、S
MIとABS系樹脂とのブレンド比をかえて耐熱性を向
上させようとしたところ逆に簀撃強度が低下したと記さ
れている。以上要訳すると、N−アルキルマレイミド構
造を含むSMIは、ABS系樹脂とブレンドしても耐熱
性が低く、耐熱性素材として実用上性能が十分でないと
いう知見であった。
In general, copolymers of N-alkylmaleimide and styrene monomers have a high heat deformation temperature and high thermal decomposition temperature, and are excellent in thermal stability during molding, but they do not contain a nydistomer component and therefore have excellent thermal stability. It is common knowledge that impact resistance is inferior. For this reason, reference 4. Now, SMA is V-imidized with methylamine to obtain S containing N-methylmaleimide group.
When MI was blended with ABS resin and its performance was evaluated, its heat distortion temperature was low, so S
It is reported that when an attempt was made to improve heat resistance by changing the blend ratio of MI and ABS resin, the impact strength decreased. In summary, it was found that SMI containing an N-alkylmaleimide structure has low heat resistance even when blended with ABS resin, and does not have sufficient practical performance as a heat-resistant material.

一方SMI系樹脂とポリカーブネート樹脂(、以下pc
と記す)とのブレンド樹脂組成物も公知であシ、具体的
には参考文献5.特開昭53−129245号公報又は
参考文献6.0SP 4 、160 、792号公報が
これに相当する。この文献では、SMAを125゜〜2
00℃の温度範囲でメチルアミン水溶液等を用い加熱処
理次いで減圧し、反応生成物を蒸発せしめ残渣としてえ
られたイミド化共重合体を通常のPCとブレンドし引張
弾性率や撓み弾性率をpcよりも高めた新らしい素材を
提供している。
On the other hand, SMI resin and polycarnate resin (hereinafter pc
Blend resin compositions are also known, specifically described in reference document 5. JP-A-53-129245 or reference documents 6.0SP 4, 160, and 792 correspond to this. In this document, the SMA is 125° to 2
Heat treatment using an aqueous methylamine solution or the like in a temperature range of 00°C followed by vacuuming to evaporate the reaction product and blend the imidized copolymer obtained as a residue with ordinary PC to determine the tensile modulus and flexural modulus by pc. We offer new and improved materials.

ところでこの時のイミド化剤である第1アミンはアンモ
ニア水のみが用いられただけであるほか、得られたSM
IとPCとのブレンド物はその複合組成に殆んど無関係
に耐衝撃性が非常に低く、この素材では、自動車や、家
電、OA機器のハウジング素材として十分であるとは云
い難い。
By the way, only ammonia water was used as the primary amine which was the imidizing agent at this time, and the obtained SM
Blends of I and PC have extremely low impact resistance, almost regardless of their composite composition, and it is difficult to say that this material is sufficient as a housing material for automobiles, home appliances, and OA equipment.

(問題を解決するための手段) 前項に記載した技術的背景及び市場からの高性能樹脂複
合組成物に対する要求に応えるべく本発明者らはSMI
系樹脂とABS系樹脂及びSMI系樹脂とpcとの複合
化検討と鋭意行なりた。その結果、SMAに代り第3成
分単量体としてアクリロニトリル単量体(以下ANと記
す)を必須成分として含むスチレン系−アクリロニトリ
ルー無水マレイン、酸共重合体(以下各成分の英字の頭
文字を綴ってSAMAと記す)を、塩化亜鉛触媒の存在
下、シクロヘキシルアミンによって溶融状態下でイミド
化した樹脂(無水マレイン酸の略号MAをシクロへキシ
ルマレイミドの略号MIにかえて、以下SAMIと記す
)をブレンド素材として用い、これとABS系樹脂又は
pcとブレンドして得られる複合組成物が前述の文献で
は得られないような耐熱耐衝撃性のバランスが良く、成
形性(溶融流動性)も良好な素材となることを見出し本
発明に到達した。
(Means for Solving the Problem) In order to meet the technical background described in the previous section and the market demand for high-performance resin composite compositions, the present inventors developed SMI
We worked hard to study the combination of ABS resin, SMI resin, and PC. As a result, a styrene-acrylonitrile-maleic anhydride acid copolymer containing acrylonitrile monomer (hereinafter referred to as AN) as an essential component as a third component monomer instead of SMA (hereinafter the first letter of each component is (spelled as SAMA) is imidized in the melt with cyclohexylamine in the presence of a zinc chloride catalyst (hereinafter referred to as SAMI, with the abbreviation MA for maleic anhydride replaced by MI for cyclohexylmaleimide). is used as a blend material, and the composite composition obtained by blending this with ABS resin or PC has a good balance of heat resistance and impact resistance that cannot be obtained in the above-mentioned literature, and also has good moldability (melt flowability). The present invention was achieved by discovering that this material can be made into a material that is

即ち本発明は、 1、(a)  スチレン系単量体94〜45モル%、ア
クリロニトリル単量体1〜20モルチ及び無水マレイン
酸単量体5〜35モル饅から成る〔η:〕>0.40の
共重合体を、溶融状態下塩化亜鉛を触媒として、シクロ
ヘキシルアミンによってイミド化し、イミド化率が70
モルチ以上である熱可塑性共重合樹脂30〜80重量部
と (リ ゴム状重合体20〜60i量係の存在下にスチレ
ン系単量体およびアクリロニトリル単ft体から成る単
量体混合物80〜40重量%’tグラフト共重合して成
るグラフト共重合樹脂又はポリカービネート樹脂70〜
20重量部 よシなる耐熱耐衝撃性樹脂組成物を提供するものである
That is, the present invention has the following features: 1. (a) Consisting of 94 to 45 mol % of styrene monomer, 1 to 20 mol % of acrylonitrile monomer, and 5 to 35 mol % of maleic anhydride monomer [η:]>0. The copolymer of No. 40 was imidized with cyclohexylamine using zinc chloride as a catalyst in the melt, and the imidization rate was 70.
30 to 80 parts by weight of a thermoplastic copolymer resin having a molecular weight or higher and 80 to 40 parts by weight of a styrene monomer and acrylonitrile monomer in the presence of 20 to 60 parts by weight of a rubbery polymer. %'t Graft copolymer resin or polycarbonate resin formed by graft copolymerization 70~
A heat-resistant and impact-resistant resin composition of 20 parts by weight is provided.

本発明で、使用する熱可塑性共重合樹脂(a)(即ちS
AMI )は、スチレン系単量体−アクリロニトリル単
1l−N−ンクロヘキシルマレイミド単量体単位と少量
の無水マレイン酸単量体単位からなる共重合体を意味す
る。この共重合体はスチレン系単量体が94〜45モル
%、アクリロニトリル単量体が1〜20モルチそして無
水マレイン酸単量体が5〜35モルチから成る共重合体
(以下SAMA)であって、重合度の指標である極限粘
度〔η) (MEK30℃で測定)が0.4よりも大き
い共重合体と原料として、SAMAの溶融状態下で、塩
化亜鉛の如きルイス酸を触媒に用いシクロヘキシルアミ
ンライミド合剤としていわゆる高分子の後イミド化反応
によジイミド化しその反応時のイミド化率が、70モル
チ以上であるような、高分子主鎖中にシクロヘキシルマ
レイミド構造と持つ耐熱性の樹脂である。
In the present invention, the thermoplastic copolymer resin (a) used (i.e. S
AMI) means a copolymer consisting of a styrene monomer-acrylonitrile monomer unit and a small amount of maleic anhydride monomer unit. This copolymer is a copolymer (hereinafter referred to as SAMA) consisting of 94 to 45 mol % of styrene monomer, 1 to 20 mol % of acrylonitrile monomer, and 5 to 35 mol % of maleic anhydride monomer. , a copolymer with an intrinsic viscosity [η) (measured at MEK 30°C) greater than 0.4, which is an index of the degree of polymerization, and cyclohexyl A heat-resistant resin with a cyclohexylmaleimide structure in the polymer main chain, which is diimidized by a so-called post-imidization reaction of a polymer and has an imidization rate of 70 molti or more during the reaction as an amine limide mixture. It is.

SAMIの原料となるSAMAの製造方法(重合方法)
については特に制約はないが、水系の乳化又は懸濁重合
は、無水マレイン酸の加水分解をひきおこす恐れがある
ので回分式の溶液重合が塊状重合又は、連続式の塊状重
合法を採用することができる。
Manufacturing method (polymerization method) of SAMA, which is the raw material for SAMI
There are no particular restrictions on this, but since aqueous emulsion or suspension polymerization may cause hydrolysis of maleic anhydride, batch solution polymerization may be replaced by bulk polymerization or continuous bulk polymerization may be adopted. can.

重合はスチレン系、アクリロニトリル及び無水マレイン
酸単量体から成る初期仕込混合物を、窒素のような不活
性ガスの流通下、加熱開始又はラジカル開始剤を用いて
温度70〜120℃で重合することができる。重合の際
は、無水マレイン酸単位をできるだけ、ポリマー鎖中に
均一に分布せしめる目的で、無水マレイン酸単量体を重
合期間中分割添加することが望ましい。そうでないと、
スチレンと無水マレイン酸との交互共重合鎖が多くなっ
て共重合体の熱分解安定性が悪くなる。この場合の詳細
な技術内容は、参考文献7特開昭59−6253 号公
報に記載されている。
Polymerization can be carried out by starting the initial charge mixture consisting of styrene, acrylonitrile, and maleic anhydride monomers at a temperature of 70 to 120 °C under the flow of an inert gas such as nitrogen or by using a radical initiator. can. During polymerization, it is desirable to add the maleic anhydride monomer in portions during the polymerization period in order to distribute the maleic anhydride units as uniformly as possible in the polymer chain. Otherwise,
The number of alternating copolymer chains of styrene and maleic anhydride increases, resulting in poor thermal decomposition stability of the copolymer. Detailed technical content in this case is described in reference document 7, Japanese Patent Application Laid-Open No. 59-6253.

原料として用いるSAMAの共重合組成を限定した理由
は、スチレン系単量体が94モルチ以上を越えると、得
られるSAMIの耐熱性が高くないのでABSやPCに
ブレンドした場合耐熱性素材とならない。
The reason for limiting the copolymerization composition of SAMA used as a raw material is that if the styrenic monomer exceeds 94 moles, the resulting SAMI will not have high heat resistance, so it will not become a heat-resistant material when blended with ABS or PC.

一部スチレン系単量体が45モルチ以下になると、熱成
形時の流動性が乏しくなる。なおここで云うスチレン系
単量体とは、主としてスチレンそのものを指すがスチレ
ンの一部を同族体であるα−メチルスチレン、p−メチ
ルスチレンなどで代替することは可能である。(以下ス
チレン系単量体をSTと記す。) 次にSAMAのアクリロニトリル単量体の含有量は1〜
20モルチより好ましくは5〜20モルチがよい。アク
リロニトリル単量体(以下ANと記す)が1モル多以下
であると、ブレンドする相手樹脂であるABSやpcと
の親和性に乏しく得られる組成物の特に耐衝撃性が低下
し、一方ANが20モルチを越えると、滞留着色や劣化
があって好ましくない。
When the styrene monomer content is less than 45 molt, fluidity during thermoforming becomes poor. The styrene monomer referred to herein mainly refers to styrene itself, but it is possible to replace a portion of styrene with homologues such as α-methylstyrene and p-methylstyrene. (Hereinafter, the styrene monomer will be referred to as ST.) Next, the content of acrylonitrile monomer in SAMA is 1 to 1.
More preferably 5 to 20 moles is better than 20 moles. If the amount of acrylonitrile monomer (hereinafter referred to as AN) is 1 mole or less, it will have poor affinity with ABS and PC, which are the partner resins to be blended, and the resulting composition will have particularly low impact resistance. If it exceeds 20 molts, it is not preferable because it causes residual coloration and deterioration.

さらに原料SAMA中の無水マレイン酸単量体(以下M
Aと記す)の含有率を5〜35 mot%と規定したの
は、5 mot%以下ではこれをイミド化しても耐熱化
ブレンド素材としての価値に乏しい。一方35モルチ以
上にすると耐熱性は高くなるが単体の溶融流動性が乏し
く、組成物とした時にも熱成形時の安定性やサイクルア
ップに不都合となる。
Furthermore, maleic anhydride monomer (hereinafter M
The reason why the content of A) is specified to be 5 to 35 mot% is because if it is less than 5 mot%, even if it is imidized, it will have poor value as a heat-resistant blend material. On the other hand, if the amount is 35 molt or more, the heat resistance will be high, but the melt flowability of the single substance will be poor, and even when it is made into a composition, it will be disadvantageous in terms of stability during thermoforming and cycle-up.

次に原料SAMAの重合度指標である〔η〕を0.40
より大きいものと規定したのは、この値以下のSAMA
では、重合度が低すぎて仮に高効率でイミド化しても、
得られるSAMIの重合度は原料SAMAと同じか又は
若干低下するので、結果としてSAMIは重合度の低い
従ってもろい樹脂でしかない。
Next, the polymerization degree index of the raw material SAMA [η] was set to 0.40.
SAMA below this value is defined as larger.
So, even if the degree of polymerization is too low and imidization is performed with high efficiency,
The degree of polymerization of the obtained SAMI is the same as or slightly lower than that of the raw material SAMA, and as a result, SAMI is only a fragile resin with a low degree of polymerization.

従って原料SAMAの〔η〕は少なくても0.4より大
きいことが必要である。
Therefore, it is necessary that [η] of the raw material SAMA be greater than at least 0.4.

本発明は、イミド化反応を温度180〜260℃の範囲
即ち溶融状態下で、イミド化触媒としてルイス酸である
塩化亜鉛(Z n C12)を用い、イミド化剤として
は、n−アルキルアミンやアニリンよりも、もっと立体
障害の大きなンクロヘキンルアミンを用いて、高効率で
イミド比するところに、!¥f徴を持っている。
In the present invention, the imidization reaction is carried out at a temperature in the range of 180 to 260°C, that is, in a molten state, using zinc chloride (Z n C12), which is a Lewis acid, as an imidization catalyst, and n-alkylamine or n-alkylamine as an imidization agent. Using nclohekynylamine, which has more steric hindrance than aniline, it can be compared with imide with high efficiency! I have a ¥f mark.

参考文献8.特開昭57−55901号公報に述べられ
ている後イミド化反応東件は主として溶液法に々 よるアニリンや叛−アルキルアミンによるイミド化が対
象であり、これらの方法によってはシクロヘキシルアミ
ンや、ターシャリ−ブチルアミン或は2,3.6− )
リブロモアニリンなどのいわゆる立体障害のあるアミン
や電子吸引性の置換基のためにアミンの塩基性が低下し
たものはイミド化率が極端に低く実質的にはイミド化が
起りにくい。
Reference 8. The post-imidization reaction described in JP-A No. 57-55901 mainly targets imidization with aniline or alkylamine using a solution method, and depending on these methods, cyclohexylamine or tertiary -butylamine or 2,3.6-)
So-called sterically hindered amines such as ribromoaniline and amines whose basicity is lowered due to electron-withdrawing substituents have extremely low imidization rates and are virtually difficult to imidize.

本発明に於いてイミド化反応と溶融状態下に限定する理
由は、1つは触媒の塩化亜鉛が、原料SAMの溶媒とし
て溶液法後イミド化で通常用いられるメチルエチルケト
ン等と反応して無効になる恐れがあるためで6D、もう
一つは溶媒を使用しないため反応生成物であるSAMI
を単離精製するプロセスが省けるためである。
In the present invention, the reason why the imidization reaction is limited to the molten state is that the catalyst zinc chloride reacts with methyl ethyl ketone, etc., which is commonly used in imidization after the solution method as a solvent for the raw material SAM, and becomes ineffective. 6D because there is a risk, and SAMI which is a reaction product because no solvent is used.
This is because the process of isolating and purifying can be omitted.

一部ルイス酸である塩化亜鉛を触媒とする理由は、イミ
ド化反応に於て中間体のマレアミド酸共重合体からイミ
ド体への転化が脱水閉環反応であシこの時塩化亜鉛は、
高い°触媒作用を持つことがわかったからである。
The reason why zinc chloride, which is a partial Lewis acid, is used as a catalyst is that in the imidization reaction, the conversion from the intermediate maleamic acid copolymer to the imide form is a dehydration ring-closing reaction.
This is because it was found to have a high catalytic effect.

イミド化反応に於て、イミド化率とは で示される値を示し、耐熱化樹脂素材としてはイミド化
率が高い、即ち、SAMA原料中(j、MA単位がマレ
イミド(MI)単位に転化した割合が高ければ高いほど
SAMIの耐熱性が高く、又熟成形時の分解安定性が増
すので好都合である。
In the imidization reaction, the imidization rate is the value shown by, and the imidization rate is high for a heat-resistant resin material. The higher the ratio, the higher the heat resistance of SAMI and the higher the decomposition stability during ripening, which is advantageous.

ところが前述した如く、シクロヘキシルアミン、ターシ
ャリ−ブチルアミンの如く立体障害性の大きいアミンは
、従来のイミド化法ではイミド化率が高々30チどまシ
であシ、これではイミド化しても効果がない。本発明に
述べる製造法によって初めてイミド化率が70チ以上に
高まるのである。
However, as mentioned above, with amines with large steric hindrance such as cyclohexylamine and tertiary-butylamine, the imidization rate is only 30% at most in the conventional imidization method, and imidization is ineffective in this case. . Only by the production method described in the present invention can the imidization rate be increased to 70 or more.

またそのことによpSAMAよりも耐熱変形温度が向上
するほか、熱成形時の分解安定性も改良されABSやP
CK対する好適なブレンド素材となシうるのである。イ
ミド化率が70モルチ以下では、耐熱性も余り向上せず
熱安定性も不足である。
In addition, this not only improves the heat deformation temperature than pSAMA, but also improves the decomposition stability during thermoforming, making it suitable for ABS and P.
This makes it a suitable blend material for CK. If the imidization rate is less than 70 molar, the heat resistance will not improve much and the thermal stability will be insufficient.

本発明で使用するグラフト共重合樹脂とは、ゴム状重合
体の存在下にスチレン系単量体とアクリロニ) IJル
から成る単量体混合物をグラフト重合して得られる熱可
塑性樹脂である。ここでいうゴム状重合体とは、ポリブ
タジェンが最も一般的であるがその他にもスチレン・ブ
タジェン共重合ゴム(SBR)、アクリルゴム、エチレ
ン・プロfレン共重合ゴムなども用いることができる。
The graft copolymer resin used in the present invention is a thermoplastic resin obtained by graft polymerizing a monomer mixture consisting of a styrene monomer and acrylonitrile in the presence of a rubbery polymer. The rubbery polymer mentioned here is most commonly polybutadiene, but other polymers such as styrene-butadiene copolymer rubber (SBR), acrylic rubber, and ethylene-proflene copolymer rubber can also be used.

グラフト共重合樹脂におけるゴム状重合体と、スチレン
系単量体及びアクリロニトリルから成る単量体混合物の
組成は任嫌に選ぶことができるが、最終組成物の耐衝撃
性や加工性を考慮してゴム状重合体20〜60重量%単
量体混合物が80〜40重量%の比率が望ましい。ここ
でスチレン系単量体とは前述の如く、スチレンを主体と
するがその一部をα−メチルスチレンやp−メチルスチ
レンで代替することは可能である。一方、スチレン系単
量体(以下単にスチレンと記す)とアクリロニトリルと
の単量体混合物中の比率にも特に制約はないが、ブレン
ド素材SAMIとの相容性を考慮して(スチレン/アク
リロニトリル)比を(50〜80150〜20)重量比
の幅でコントロールすることが望ましい。
The composition of the monomer mixture consisting of the rubbery polymer, styrene monomer, and acrylonitrile in the graft copolymer resin can be arbitrarily selected, but it is important to consider the impact resistance and processability of the final composition. A ratio of 20 to 60% by weight of the rubbery polymer and 80 to 40% by weight of the monomer mixture is desirable. As mentioned above, the styrene monomer is mainly composed of styrene, but it is possible to replace a part of it with α-methylstyrene or p-methylstyrene. On the other hand, there are no particular restrictions on the ratio of styrene monomers (hereinafter simply referred to as styrene) and acrylonitrile in the monomer mixture, but considering compatibility with the blend material SAMI (styrene/acrylonitrile) It is desirable to control the ratio within a weight ratio range of (50 to 80 to 150 to 20).

本グラフト共重合体の製造方法には特に制約はなく、通
常の乳化重合、懸濁重合、溶液重合、塊状重合、塊状懸
濁重合のいずれの方法で製造してもよい。
There are no particular restrictions on the method for producing the present graft copolymer, and it may be produced by any conventional emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, or bulk suspension polymerization.

本発明に使用するポリカーボネートとは、一般にホスゲ
ン法又はエステル交換法で製造されるくり返し構造単位 で表わされるいわゆるビスフェノールA型ポリカフ&ネ
ート樹脂(以下PCと記す)を意味する。
The polycarbonate used in the present invention generally refers to a so-called bisphenol A type polycuff & nate resin (hereinafter referred to as PC) represented by a repeating structural unit produced by a phosgene method or a transesterification method.

くシ返し数nは、およそ、30〜120ぐらいのものが
適尚である。
The number n of combs is suitably about 30 to 120.

本発明に於ける組成物の製造方法としては、イミド化し
た熱可塑性樹脂とグラフト共重合樹脂或は、pcを公知
の手段で混合することにより製造することができる。
The composition of the present invention can be produced by mixing an imidized thermoplastic resin and a graft copolymer resin or PC by a known method.

即ち混合の手段としては、粉末同志又は4レツト同志或
は粉末とペレットの組合せで、ロール、バンバリーミキ
サ−、ニーダ−或は−軸又は二軸の押出機等の装置を利
用して実施できる。
That is, mixing can be carried out by using a combination of powders, four pellets, or a combination of powders and pellets using a device such as a roll, a Banbury mixer, a kneader, or a -screw or twin-screw extruder.

本発明に於て熱可塑性樹脂(、)とグラフト共重合体或
はp c (b)の混合比率は熱可塑性樹脂(、)が3
0〜80重量部グラフト共重合体或はp c (b)が
70〜20重量部の間が好ましい。熱可塑性樹脂(、)
が30部以下であると組成物は耐熱性が低くて目的の組
成物が得られないし又、コスト面と成形性が悪いという
問題がある。一方熱可塑性樹脂(a)が80重量部と超
えると組成物は耐熱性が上るものの耐衝撃性が低く、も
ろい組成物しか得られない。
In the present invention, the mixing ratio of the thermoplastic resin (,) and the graft copolymer or PC(b) is such that the thermoplastic resin (,) is 3
Preferably, the amount of graft copolymer or pc(b) is between 0 and 80 parts by weight and between 70 and 20 parts by weight. Thermoplastic resin(,)
If the amount is less than 30 parts, the composition will have low heat resistance and the desired composition will not be obtained, and there will also be problems in terms of cost and poor moldability. On the other hand, if the thermoplastic resin (a) exceeds 80 parts by weight, the composition will have improved heat resistance but will have low impact resistance and will only be brittle.

なお混合に際して必要に応じて公知の安定剤、滑剤、着
色剤、帯電防止剤その他の添加剤を配合することは可能
である。
In addition, it is possible to mix well-known stabilizers, lubricants, colorants, antistatic agents, and other additives as necessary during mixing.

(実施例) 以下、樹脂の製造例及び実施例を示し本発明をよシ具体
的に説明する。例中の部数及びチは特に断わらない限り
重量基準である。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to resin production examples and examples. Parts and parts in the examples are based on weight unless otherwise specified.

また例中に述べる共重合体及び組成物の性能評価は次の
方法に従がって行なった。
Performance evaluations of the copolymers and compositions described in the examples were conducted in accordance with the following method.

1、耐熱性:ビカット軟化点(Tvs)の測定JIS 
K−6870に準拠、荷重1080 (9)、昇温速度
50℃/hr 2、耐衝撃性:デュポン落錘衝撃試験(xsd、)W 
(kg)の錘を高さh(crn)から落下させ、20ケ
のサンプル中その半数以上が割れを生じなかった最底の
値 l5dp = W X h (kg” cm )3、溶
融流動性:メルトフローレート(MFR)メルトインデ
クサ−で測定(JIS K−6870)条件=230℃
 5 kfl荷重 1ull造例1)  N−シクロヘキシルマレイミド系
共重合体の合成 無水マレイン酸系共重合体の重合 スチレン50部、アクリロニトリル7部と無水Ωイ マレイン酸0.9部を開始剤ラウサルパーオキサイド0
.1部とともにメチルエチルケトン20部に溶解して反
応槽の中に仕込み、槽内の温度を75℃に保持しながら
十分に攪拌を行った。この中にア応させたところで重合
反応を停止し、無水マレイン酸系共重合体と得た。反応
液の一部とサンプリングし、重合体量を測定して重合率
を求めたところ53%であった。
1. Heat resistance: Vicat softening point (Tvs) measurement JIS
Compliant with K-6870, load 1080 (9), heating rate 50°C/hr 2, impact resistance: DuPont falling weight impact test (xsd,) W
A weight of (kg) is dropped from a height h (crn), and the lowest value at which more than half of the 20 samples do not crack is l5dp = W x h (kg” cm )3, melt fluidity: Melt flow rate (MFR) Measured with melt indexer (JIS K-6870) Conditions = 230°C
5 kfl load 1ull Production Example 1) Synthesis of N-cyclohexylmaleimide copolymer Polymerization of maleic anhydride copolymer 50 parts of styrene, 7 parts of acrylonitrile and 0.9 part of Ω-imaleic anhydride were added to the initiator lausal peroxide. 0
.. 1 part and 20 parts of methyl ethyl ketone were dissolved and charged into a reaction tank, and the temperature inside the tank was maintained at 75° C. and sufficiently stirred. The polymerization reaction was stopped when the mixture was reacted with the mixture, and a maleic anhydride copolymer was obtained. A portion of the reaction solution was sampled and the amount of polymer was measured to determine the polymerization rate, which was 53%.

また、配合する単量体の組成を変えた以外は前記の方法
と同様に行い、無水マレイン酸系共重合体SAMA 1
〜5を重合した。重合の結果を表1に示す。
In addition, the same method as described above was carried out except that the composition of the monomers to be blended was changed, and maleic anhydride copolymer SAMA 1
~5 was polymerized. The polymerization results are shown in Table 1.

なお、共重合体中の各単位組成は、元素分析および酸無
水物基のアルカリ滴定結果により算出した。
The composition of each unit in the copolymer was calculated based on the results of elemental analysis and alkaline titration of acid anhydride groups.

表  −1 本1)  〔η)=  tim   ηsp/eC→O (MEK中30℃で測定) 製造例2 N−シクロへキシルマレイミド構造含有共重合体(SA
MI)の合成 攪拌器と温度センサーのついたステンレス製300m1
のオートクレーブに製造例(1)で合成したSAMA−
1(スチレン=81.8mot%、アクリロニトリル=
 11.0 mot%、無水マレイン酸= 7.2 m
ot%で、MEK 30℃で測定した〔η)=0.60
)を100部(無水マレイン酸単位として0.073モ
ル)、第一級アミンとしてシクロヘキシルアミンを8.
73部(MARに対し1.2倍モル)と触媒としての塩
化亜鉛12.0部(MARに対し1.2倍モル)を同時
に仕込み窒素で置換したのち密閉してオイルパスでQ略
■ オートクレープの内部を昇温した。昇温した時点で反応
スタートとし、2時間加熱攪拌した。反応終了層、生成
物を分析するために内容物の一部をメチルエチルケトン
に溶解し、この溶液をメタノール中に再沈殿して白色プ
リマーを戸別乾燥した。
Table-1 Book 1) [η) = tim ηsp/eC→O (measured in MEK at 30°C) Production Example 2 N-cyclohexylmaleimide structure-containing copolymer (SA
MI) stainless steel 300ml with synthetic stirrer and temperature sensor
SAMA- synthesized in Production Example (1) in the autoclave of
1 (styrene = 81.8 mot%, acrylonitrile =
11.0 mot%, maleic anhydride = 7.2 m
ot%, measured at MEK 30°C [η) = 0.60
) (0.073 mol as maleic anhydride units) and 8.0 parts of cyclohexylamine as the primary amine.
73 parts (1.2 times the mole of MAR) and 12.0 parts of zinc chloride as a catalyst (1.2 times the mole of MAR) were charged at the same time and replaced with nitrogen, then sealed and placed in an oil path. The temperature inside the crepe was raised. The reaction was started when the temperature was raised, and the mixture was heated and stirred for 2 hours. In order to analyze the reaction-completed layer and product, a part of the contents was dissolved in methyl ethyl ketone, and this solution was reprecipitated in methanol to dry the white primer.

アルカリ滴定と元素分析によれば、このポリマー中ノシ
クロへキシルマレイミド単位は5.8モルチ未反応のM
AR単位は1,2モルチで、イミド化率は79モル多で
あった。
According to alkaline titration and elemental analysis, the nocyclohexylmaleimide unit in this polymer contains 5.8 moles of unreacted M
The AR unit was 1.2 mol, and the imidization rate was 79 mol.

得られたイミド化樹脂eの性質等を表−2に示す。The properties of the obtained imidized resin e are shown in Table 2.

なお共重合組成の異なる原料SAMA −i〜4につい
ても同様に実験した。但し、使用したアミンの種類、量
及び触媒の量は、SAMA中のMAR単位量に対応させ
若干変量した。その反応結果と樹脂単体の性質を表−2
にまとめて示す。
Note that the same experiment was conducted for raw materials SAMA-i to 4 having different copolymerization compositions. However, the type and amount of amine used and the amount of catalyst were slightly varied depending on the amount of MAR units in SAMA. Table 2 shows the reaction results and the properties of the resin itself.
are summarized in

製造例3 N−メチルマレイミド構造共重合樹脂の合成シクロヘキ
シルアミンの代シにメチルアミンをSAMA−1の代り
にSAMA−5を用いたほかは製造例(2)と同様に行
なった。但し、メチルアミンはエタノール40%溶液を
使用した。イミド化率は90モルチで製造例中最も高か
った。
Production Example 3 Synthesis of N-methylmaleimide structural copolymer resin The same procedure as Production Example (2) was carried out except that methylamine was used instead of cyclohexylamine and SAMA-5 was used instead of SAMA-1. However, as methylamine, a 40% ethanol solution was used. The imidization rate was 90 molti, the highest among the production examples.

製造例4 N−フェニルマレイミド構造共重合樹脂の合成ヘキシル
アミンの同じ実験例(SAMI−1)に比し少し高く8
2モルチであった。
Production Example 4 Synthesis of N-phenylmaleimide structural copolymer resin Compared to the same experimental example of hexylamine (SAMI-1), the yield was slightly higher 8
It was 2 molti.

製造例5 溶液法によるイミド構造共重合樹脂の合成SAMA−2
(M A単位11.7モルチ)を90部、トリエチルア
ミン0.9部及びMAに対し1.05倍モル当量のシク
ロヘキシルアミン11.2部をメチルエチルケトン20
0部に溶解しオートクレーヴ中で窒素置換后140℃で
7時間攪拌した。室温迄冷却后反応液を強く攪拌したメ
タノール3 、000部に注ぎ戸別乾燥した。得られた
共重合体を分析したところイミド化率は32モルチで低
かった。
Production Example 5 Synthesis of imide structure copolymer resin by solution method SAMA-2
(11.7 moles of MA units), 0.9 parts of triethylamine, and 11.2 parts of cyclohexylamine (1.05 times molar equivalent to MA) were added to 20 parts of methyl ethyl ketone.
The mixture was dissolved in 0 parts and stirred at 140° C. for 7 hours in an autoclave after purging with nitrogen. After cooling to room temperature, the reaction solution was poured into 3,000 parts of strongly stirred methanol and dried separately. When the obtained copolymer was analyzed, the imidization rate was as low as 32 mol.

〔実施例〕〔Example〕

実施例1,2.3 (製造例2)で製造したN−シクロヘキシルマレイミド
構造含有共重合樹脂(SAMI)のうち、表−2で示し
たSAMI −1、2、3を各々60部とグラフト共重
合体としてのABS (日本合成ゴム社製DP−611
ゴム量40%)40部を、プラベンダーグラストグラフ
を用い220℃X 50 rpm X 10分間混練し
た。得られた塊状物を細片化し、プレス成形によって評
価用試片を得た。プレス条件は220℃で8分子熱2分
加圧である。又、プレス前の細片を用いてメルトインデ
クサ−で溶融流動性も評価した。結果を表−3に示した
が、無水マレイン酸単位号が本発明の範囲内のものはイ
ミド化率が70モルチを越える時、ABSとのブレンド
物の物性は良好である。SAMI−1から3にイミド含
有率が高くなるにつれ組成物のT’vsが上昇し、一方
ISd。
Examples 1 and 2.3 Among the N-cyclohexylmaleimide structure-containing copolymer resins (SAMI) produced in Production Example 2, 60 parts each of SAMI-1, 2, and 3 shown in Table 2 were grafted together. ABS as a polymer (DP-611 manufactured by Japan Synthetic Rubber Co., Ltd.
40 parts (rubber content: 40%) were kneaded using a Prabender Grastograph at 220° C., 50 rpm, and 10 minutes. The obtained lump was cut into small pieces, and test pieces for evaluation were obtained by press molding. The pressing conditions were 8 molecules of heat and 2 minutes of pressure at 220°C. The melt fluidity was also evaluated using a melt indexer using the strips before pressing. The results are shown in Table 3. When the maleic anhydride unit number is within the range of the present invention and the imidization rate exceeds 70 molar, the physical properties of the blend with ABS are good. As the imide content increases from SAMI-1 to 3, the T'vs of the composition increases, while the ISd.

かわずか低下するが、そのバランスは良好である。However, the balance is good.

実施例4 製造例2で得たSAMI−3(M I含有率が最も高い
サンプル)40部とABS (DP−611)  を6
0部使用し、実施例1と同様にブラベンダーで混練実験
した。評価結果を表−3に示すが、組成物中のSAMI
含有率が低くとも、M工含有率が高いものであれば耐熱
・耐衝撃性のバランスが良い組成物を与えることがわか
る。
Example 4 40 parts of SAMI-3 (sample with the highest MI content) obtained in Production Example 2 and 6 parts of ABS (DP-611)
A kneading experiment was conducted using a Brabender in the same manner as in Example 1 using 0 parts. The evaluation results are shown in Table 3, and the SAMI in the composition
It can be seen that even if the content is low, if the M content is high, a composition with a good balance of heat resistance and impact resistance can be obtained.

実施例5    ゛ 製造例2で得たSAMI−2の(MI含有率が最も低い
)サンプルを70部ABS (DP−611)を30部
のブレンド比でブラベンダーで混練した。得られた樹脂
組成物の評価結果は表−3に示すがMI含有率が低いS
AMIの場合は組成物中のSAMI含量を高めて耐熱・
耐衝撃性のバランスを維持できることがわかる。
Example 5 A sample of SAMI-2 (with the lowest MI content) obtained in Production Example 2 was kneaded with a Brabender at a blending ratio of 70 parts ABS (DP-611) to 30 parts. The evaluation results of the obtained resin composition are shown in Table 3.
In the case of AMI, increase the SAMI content in the composition to improve heat resistance and
It can be seen that the balance of impact resistance can be maintained.

実施例6 本例はゴム含有量が相対的に低いABS (JSR製D
P−10:コ0ム量25%)をブレンド相手として選ん
だ場合である。SAMI−2を60部DP−10 t−
40部とを混線・プレス成形したサンプルの評価結果は
表−3に示すが、実施例2に比べ若干耐衝撃性に劣るも
のの耐熱性は高く、秀れた組成物を得た。
Example 6 This example uses ABS with a relatively low rubber content (D
This is the case when P-10: Column amount 25%) is selected as a blending partner. 60 copies of SAMI-2 DP-10 t-
Table 3 shows the evaluation results of a sample obtained by cross-wire and press-molding 40 parts of the sample. Although the impact resistance was slightly inferior to that of Example 2, the heat resistance was high and an excellent composition was obtained.

比較例1 製造例4による溶液法後イミド化サンプル(イミド合剤
ニアニリン) SAMI−4を60部ABS (DP−
611)を40部を混練したのちプレス成形して性能を
評価した。表−3に見る如〈実施例1と比較した時、ア
ニリンによる後イミド化樹脂はシクロヘキシルアミンに
よるそれに比し耐熱性が劣っていることが明らかである
Comparative Example 1 Imidized sample after solution method according to Production Example 4 (imide mixture nearaniline) 60 parts of SAMI-4 ABS (DP-
After kneading 40 parts of 611), it was press-molded and its performance was evaluated. As shown in Table 3, when compared with Example 1, it is clear that the heat resistance of the post-imidized resin using aniline is inferior to that using cyclohexylamine.

比較例2 S AMIとABSの組成物においてSAMIが少なす
ぎると性能が不十分な例である。SAMI−120部と
ABS(DP−611) 80部から成る組成物を先例
と同様に評価した。結果分表−3に示すが、耐熱性に乏
しくABSの耐熱性向上効果は殆んどない。
Comparative Example 2 This is an example in which performance is insufficient if SAMI is too small in a composition of SAMI and ABS. A composition consisting of 120 parts of SAMI and 80 parts of ABS (DP-611) was evaluated similarly to the previous example. The results are shown in Table 3, but the heat resistance is poor and there is almost no effect of improving the heat resistance of ABS.

比較例3 シクロヘキシルアミンによるイミド化サンプル(SAM
I)でも原料SAMA中のMAの含有率が低すぎると耐
熱化素材になりえない例で、製造例2のS&fI−6を
60部とABS 40部の組成物は表−3から明らかな
様に耐熱性に乏しく性能として不十分であった0 実施例7,8 本例はSAMIとpcの組成物の性能と調べた結果でろ
シM工含有量が中程度のサンプルSAMI−240部と
pc(三菱ガス化学製S−3000) 60部(実施例
7)及びSAMI−260部とPC40部(実施例8)
の2つの組成物の例を表−4に示す。但しブレンド条件
は240℃X50rpmX10分、プレス条件は240
℃×8分子熱、2分加圧である。これらのサンプルは耐
熱・耐衝撃性が高く又透明性も高くてpc単体に比し溶
融流れも良く、秀れた組成物であることがわかった。
Comparative Example 3 Imidized sample with cyclohexylamine (SAM
In I), if the content of MA in the raw material SAMA is too low, it cannot become a heat-resistant material, and as is clear from Table 3, the composition of Production Example 2 with 60 parts of S&fI-6 and 40 parts of ABS Examples 7 and 8 This example shows the performance of a composition of SAMI and pc. (Mitsubishi Gas Chemical S-3000) 60 parts (Example 7) and SAMI-260 parts and PC 40 parts (Example 8)
Examples of two compositions are shown in Table 4. However, the blending conditions are 240°C x 50 rpm x 10 minutes, and the pressing conditions are 240°C.
C. x 8 molecules of heat and pressurized for 2 minutes. These samples were found to be excellent compositions with high heat resistance and impact resistance, high transparency, and better melt flow than PC alone.

尚本項中の透明性の評価は目視による相対評価を行なっ
て ○ 透明性がよく単体のSAMIとほぼ同じ△ 若干透
明性が悪いが白濁していない× 不透明又は白濁(相分
離)と分類した。
The transparency evaluation in this section is based on a visual relative evaluation: ○ Good transparency, almost the same as SAMI alone △ Slightly poor transparency, but not cloudy × Classified as opaque or cloudy (phase separation) .

実施例9 &i I含有率の高いSAMI−3とPCの組成物の例
であシSAMI−3/1’C= 40/60のブレンド
を実施して評価した結果を表−4に示した。この系も物
性的にバランスがとれており特に耐熱性が高くまた透明
性も良かった。
Example 9 &i As an example of a composition of SAMI-3 and PC having a high I content, a blend of SAMI-3/1'C=40/60 was evaluated and the results are shown in Table 4. This system also had well-balanced physical properties, particularly high heat resistance, and good transparency.

比較例4 SAMI/PCの組成物に於て、SAMIとしてアニリ
ンによるイミド化物SAMI−4i用いて、実施例7と
同様に実施した。アニリンによるイミド化物はイミド基
含有率がほぼ同じであってもシクロヘキシルアミンによ
るイミド化物より少し耐熱性が低かった。このことはA
BS組成物と同じ挙動でありた。
Comparative Example 4 The same procedure as in Example 7 was carried out using SAMI-4i, an imidized product of aniline, as SAMI in a SAMI/PC composition. The imidized product using aniline had slightly lower heat resistance than the imidized product using cyclohexylamine even though the imide group content was almost the same. This is A
The behavior was the same as the BS composition.

比較例5 SAMI−5を40部とPC60部との組成物の物性の
評価し表−4に示した。イミド化剤がシクロヘキシルア
ミンでおっても溶液法で後イミド化したSAMIはイミ
ド化率が低いためSAMI自体の耐熱性が低く従ってP
Cとブレンドしたものの耐熱性も満足すべきものでなか
った(表−4参照)。
Comparative Example 5 The physical properties of a composition containing 40 parts of SAMI-5 and 60 parts of PC were evaluated and shown in Table 4. Even if the imidizing agent is cyclohexylamine, SAMI post-imidized by a solution method has a low imidization rate, so the heat resistance of SAMI itself is low, and therefore P
The heat resistance of the blend with C was also not satisfactory (see Table 4).

比較例6 SAMI−760部とPC40部の組成物の物性を評価
し表−4に示した。イミド化剤がメチルアミンの場合イ
ミド化率がかなり高いが単体の耐熱性は余り高くなく(
表−2のSAMI−7)従って、SAMI−760部と
pc40部の組成物も実施例8に比較して特徴はなかっ
た。又このSAMI−7/PCの組成物は透明性が悪か
った(表−4参照)。
Comparative Example 6 The physical properties of a composition containing 760 parts of SAMI and 40 parts of PC were evaluated and shown in Table 4. When the imidization agent is methylamine, the imidization rate is quite high, but the heat resistance of the single substance is not very high (
SAMI-7 in Table 2) Therefore, the composition containing 760 parts of SAMI-7 and 40 parts of pc also had no characteristics compared to Example 8. Also, this SAMI-7/PC composition had poor transparency (see Table 4).

比較例7 SAMI−1/PCの組成比が90/10の組成物の例
であるが、表−4に見る如く耐衝撃性が非常に低く、有
用な組成物となりえなかった。
Comparative Example 7 This is an example of a composition in which the composition ratio of SAMI-1/PC was 90/10, but as shown in Table 4, the impact resistance was very low and it could not be a useful composition.

実施例10 ABSとしてコ9ム含量の少ないDP−10を30部と
SAMI−3を70部の組成物の物性を評価した。表−
4にその結果を示すが、耐衝撃性が若干低いが逆にAB
S樹脂系としては高度の耐熱性を持ちしかも溶融流動性
も良好であった。
Example 10 The physical properties of a composition containing 30 parts of DP-10 with a low comb content and 70 parts of SAMI-3 as ABS were evaluated. Table -
The results are shown in 4, and the impact resistance is slightly lower, but on the contrary, AB
As an S resin system, it had a high degree of heat resistance and also had good melt fluidity.

比較例8 SAMI−2を90部DP−611が10部の組成物の
物性評価結果を表−4に示す。耐衝撃性が低く、素材と
して不適当であった。
Comparative Example 8 Table 4 shows the physical property evaluation results of a composition containing 90 parts of SAMI-2 and 10 parts of DP-611. It had low impact resistance and was unsuitable as a material.

〔参考例〕[Reference example]

実施例、比較例で用いたブレンド用樹脂単独の性能評価
データを表−5に示した。
Table 5 shows performance evaluation data for the individual blending resins used in Examples and Comparative Examples.

表  −5 傘1)   230℃  5kg 〔発明の効果〕 本発明により得られるSAMI/ABS組成物は、従来
の方法で得られたSAMI/ABSよりも耐熱性が向上
し有益であるほか、従来のABSでは適合不可能であっ
た高い耐熱性が要求される自動車内装材への可能性と拡
げ又、ガラス繊維などを充填するいわゆる高剛性難燃樹
脂組成物への新素材となシうる。
Table 5 Umbrella 1) 230°C 5kg [Effects of the Invention] The SAMI/ABS composition obtained by the present invention has improved heat resistance and is more beneficial than SAMI/ABS obtained by conventional methods. It can be used as a new material for so-called high-rigidity flame-retardant resin compositions that are filled with glass fibers, etc., and can be used as an automotive interior material that requires high heat resistance, which is not compatible with ABS.

一方SAMI/PCの組成物は、従来のSMI/PCで
は相容性の欠除から、非常に耐衝撃性が低く、実用性に
乏しいものであったが本発明の組成物では実例で示した
如く耐衝撃性も発現し、従来上りもよいSAM工/PC
組成物と作シうることかわかった。
On the other hand, the conventional SMI/PC composition had very low impact resistance and was impractical due to lack of compatibility, but the composition of the present invention showed this in practical examples. SAM/PC which has good impact resistance and has good climbing performance.
I found out that it can be made with the composition.

Claims (1)

【特許請求の範囲】 1、(a)スチレン系単量体94〜45モル%、アクリ
ロニトリル単量体1〜20モル%及び無水マレイン酸単
量体5〜35モル%から成る〔η〕>0.40の共重合
体を、溶融状態下塩化亜鉛を触媒として、シクロヘキシ
ルアミンによってイミド化し、イミド化率が70モル%
以上である熱可塑性樹脂30〜80重量部と (b)ゴム状重合体20〜60重量%の存在下にスチレ
ン系単量体およびアクリロニトリル単量体から成る単量
体混合物80〜40重量%をグラフト共重合して成るグ
ラフト共重合樹脂又はポリカーボネート樹脂70〜20
重量部 よりなる耐熱耐衝撃性樹脂組成物
[Scope of Claims] 1. (a) Consisting of 94 to 45 mol% of styrene monomers, 1 to 20 mol% of acrylonitrile monomers, and 5 to 35 mol% of maleic anhydride monomers [η]>0 .40 copolymer was imidized with cyclohexylamine using zinc chloride as a catalyst in a molten state, and the imidization rate was 70 mol%.
In the presence of 30 to 80 parts by weight of the above thermoplastic resin and (b) 20 to 60% by weight of the rubbery polymer, 80 to 40% by weight of a monomer mixture consisting of a styrene monomer and an acrylonitrile monomer is added. Graft copolymer resin or polycarbonate resin obtained by graft copolymerization 70 to 20
Heat-resistant and impact-resistant resin composition consisting of parts by weight
JP27110886A 1986-11-14 1986-11-14 Heat-resistant and impact-resistant resin composition Pending JPS63125562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27110886A JPS63125562A (en) 1986-11-14 1986-11-14 Heat-resistant and impact-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27110886A JPS63125562A (en) 1986-11-14 1986-11-14 Heat-resistant and impact-resistant resin composition

Publications (1)

Publication Number Publication Date
JPS63125562A true JPS63125562A (en) 1988-05-28

Family

ID=17495448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27110886A Pending JPS63125562A (en) 1986-11-14 1986-11-14 Heat-resistant and impact-resistant resin composition

Country Status (1)

Country Link
JP (1) JPS63125562A (en)

Similar Documents

Publication Publication Date Title
JPS6126936B2 (en)
JPH0241544B2 (en)
US4588774A (en) Thermodynamically miscible polymer compositions
JP3471830B2 (en) Glass fiber reinforced thermoplastic resin composition
JPH0347814A (en) Imidated copolymer and resin modifier and resin compatibilizing agent produced by using the same
US4568722A (en) Polymer compositions containing styrene/cyanostyrene copolymers
JPS63125562A (en) Heat-resistant and impact-resistant resin composition
JPH06345934A (en) Polymer composition
JPS6046122B2 (en) Method for producing thermoplastic polymer
JP2501561B2 (en) Optical disc material
KR100243751B1 (en) A thermoplastics composition with improved impact
JPS6343404B2 (en)
JPS62179553A (en) Thermoplastic resin composition
JPH0425303B2 (en)
JPS62290748A (en) Heat-resistant, impact-resistant resin composition
JPS627757A (en) Transparent heat-resistant thermoplastic resin composition
JPS6238380B2 (en)
JPS6345740B2 (en)
JPS62207346A (en) Transparent resin composition
JPH0129222B2 (en)
JPH02175743A (en) N-substituted maleimide polymer composition
JPH0262585B2 (en)
JPS619459A (en) Thermoplastic resin composition
JPH11116750A (en) Flow modifier for noncrystalline polymer and noncrystalline polymer composition
JPH0242854B2 (en)