JPS6343404B2 - - Google Patents

Info

Publication number
JPS6343404B2
JPS6343404B2 JP59166009A JP16600984A JPS6343404B2 JP S6343404 B2 JPS6343404 B2 JP S6343404B2 JP 59166009 A JP59166009 A JP 59166009A JP 16600984 A JP16600984 A JP 16600984A JP S6343404 B2 JPS6343404 B2 JP S6343404B2
Authority
JP
Japan
Prior art keywords
weight
units
copolymer
membered cyclic
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59166009A
Other languages
Japanese (ja)
Other versions
JPS6143604A (en
Inventor
Ikuji Ootani
Akihiro Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP16600984A priority Critical patent/JPS6143604A/en
Publication of JPS6143604A publication Critical patent/JPS6143604A/en
Publication of JPS6343404B2 publication Critical patent/JPS6343404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規な変性共重合体の製造方法、さら
に詳しくいえば、使用目的に応じ機械的強度、耐
油性、耐熱性及び熱安定性のような物性と加工性
とがバランスのとれた透明な熱可塑性の変性共重
合体を任意に製造する方法に関するものである。 従来の技術 近年、電子レンジ内食器、弱電部品あるいは工
業部品などの各種用途において、優れた耐熱性、
機械的強度及び耐油性を有し、その上透明で、か
つ安価である樹脂の要求が特に強くなりつつあ
る。 ところで、現在市販されている樹脂の中で、無
色透明であつて機械的強度と耐熱性の優れた樹脂
としては、ポリカーボネート樹脂が知られてい
る。しかしながらこの樹脂はエンジニアリングプ
ラスチツクであり、高価格であるために汎用には
至つていない。 熱可塑性樹脂の中で、比較的低価格で市販され
機械的強度、耐油性、耐侯性及び抜群の無色透明
性を有しているものは、メタクリル酸メチル樹脂
であるが、このメタクリル酸メチル樹脂は、耐熱
性、特に熱変形性と熱分解性の点に劣るという欠
点を有している。 そのため、メタクリル酸メチル樹脂の望ましい
物性をそこなわずに、さらに耐熱性を向上させる
方法として、メタクリル酸メチルと各種コモノマ
ーとを共重合させる方法が提案された。ところで
この際に用いるコモノマーとしては、アクリル
酸、メタクリル酸、無水マレイン酸のような不飽
和カルボン酸や不飽和ジカルボン酸無水物、α―
メチルスチレンのような芳香族ビニル化合物が一
般的であるが、これらのコモノマー類は、メタク
リル酸メチルを主体とする系に導入された場合、
いずれも200〜260℃の成形加工温度でガスを発生
する上に、メタクリル酸メチル樹脂よりも外観的
に劣る成形品となるために、実用化される段階に
至つていない。 このような事情のもとで、本発明者らは、メタ
クリル酸メチル樹脂の熱変形性及び熱安定性の双
方を改善すべく鋭意研究を重ね、先に分子中で一
般式 (式中のR1とR3は水素原子又はメチル基であ
る) で表わされる六員環酸無水物単位を形成させるこ
とにより、まず第一の目的を達成しうることを見
出した。この六員環酸無水物単位は、アクリル酸
又はメタクリル酸単位より二次的に誘導されるも
のである。 しかしながら、このような六員環酸無水物単位
の導入による高熱変形性を有する樹脂も、ポリカ
ーボネートに比較すると耐熱性の点で、必ずしも
満足しうるものではない。 他方、メタクリル酸メチルの単独重合体又は共
重合体を押出機中でアンモニア又は第一級アミン
と反応させることにより分子中に、一般式 (式中のR1及びR2は水素原子又はメチル基、
R3は水素原子、アルキル基、シクロアルキル基
又はアリール基である) で表わされる六員環イミド単位が形成されること
(特開昭52−63989号公報)や、六員環酸無水物単
位をもつ重合体をイミド化して上記の六員環イミ
ド単位に変性すること(特開昭58−71928号公報)
が知られている。 しかしながら、このような六員環イミド単位を
もつ重合体は、耐熱性は向上するが機械的強度や
成形加工性が低いという欠点がある。 発明が解決しようとする問題点 本発明は、使用目的に応じ、それぞれ機械的強
度、耐油性、耐熱性、熱安定性のような物性と成
形加工性とがバランスしたメタクリル酸メチル系
共重合体を、任意に製造するための方法を提供す
ることを目的としてなされたものである。 問題点を解決するための手段 本発明者らは、ポリカーボネート樹脂に匹敵す
るバランスのとれた物性を有するメタクリル酸メ
チル系共重合体を開発するために種々研究を重ね
た結果、メタクリル酸メチル単位に加えて芳香族
ビニル化合物単位、メタクリル酸単位及び六員環
酸無水物単位を含む共重合体中の六員環酸無水物
単位の一部をイミド化することにより熱変形性が
向上し、しかもそのイミド化の程度を適正に選ぶ
ことによつて機械的強度や流動性も維持されうる
ことを見出しこの知見に基づいて本発明をなすに
至つた。 すなわち、本発明は、(A)メタクリル酸メチル単
位29〜95重量%、(B)芳香族ビニル化合物単位1〜
67重量%、(C)メタクリル酸単位1〜10重量%及び
(D)一般式 で表わされる六員環酸無水物単位3〜50重量%か
ら成る共重合体とアンモニア又は有機第一アミン
とを反応させるに当り、アンモニア又は有機第一
アミンの使用量を、前記六員環酸無水物単位に基
づき0.2当量よりも多い量で、かつ所要のアミド
化率が得られるのに十分な量に調節することを特
徴とする、(A)メタクリル酸メチル単位29〜95重量
%、(B)芳香族ビニル化合物単位1〜67重量%、(C)
メタクリル酸単位1〜10重量%、及び(D)一般式 (式中のRは水素原子、アルキル基、シクロア
ルキル基又はアリール基である) で表わされる六員環単位3〜50重量%から成り、
かつ一般式()で表わされる六員環酸無水物単
位に対する一般式()で表わされる六員環イミ
ド単位の重量割合が1/10よりも多く10以下の範囲
に調製された共重合体の製造方法によるものであ
る。 本発明方法において原料として用いる共重合体
における(A)単位のメタクリル酸メチル単位は該共
重合体の主体となる単量体単位であつて、機械的
強度の改良と耐油性向上の役割を果たすものであ
り、その含有量は該共重合体に対して29〜95重量
%の範囲である。この含有量が29重量%未満では
該共重合体の機械的強度が低下し、また95重量%
を超えると該共重合体の加熱時の流動性と熱安定
性が低下する。 次に第2の単量体単位である(B)単位の芳香族ビ
ニル化合物単位は、該共重合体の加熱時の流動性
及び熱安定性を向上させる役割を果たすものであ
つて、その含有量は該共重合体に対して1〜67重
量%の範囲である。その含有量が1重量%未満で
は、該共重合体の加熱時の流動性及び熱安定性が
低下し、一方67重量%を超えると機械的強度及び
耐油性が低下する。 さらに、この共重合体における前記メタクリル
酸メチル単位と芳香族ビニル化合物単位の合計量
は49〜96重量%の範囲にあるのが好ましく、この
量が49重量%未満では該共重合体はぜい弱とな
り、一方96重量%を超えると、該共重合体の熱変
形性及び熱安定性が低下する。 この芳香族ビニル化合物単位としては、例えば
スチレン、α―メチルスチレン、p―メチルスチ
レン、2,4―ジメチルスチレン、p―tert―ブ
チルスチレン、p―クロロスチレンなどの単重体
単位が挙げられるが、これらの中でスチレン単位
が最も一般的である。 また、この共重合体中の(C)単位のメタクリル酸
単位は該共重合体の熱変形性を高める役割を果た
すものであり、その含有量は該共重合体重量に基
づき1〜10重量%の範囲であつて、その量が10重
量%を超えると、200℃以上の温度で射出成形を
行う際、ガスが発生して成形品の外観を損なうた
め好ましくない。 本発明の共重合体における(D)単位の六員環酸無
水物単位は熱変形温度と熱安定性を高める役割を
果たすものであるが、その(D)単位は共重合体重量
に基づき3〜50重量%、好ましくは10〜40重量%
の範囲である。この量が3重量%未満では熱変形
性と熱安定性の向上は期待できず、一方50重量%
を超えると、共重合体の熱変形温度は著しく高め
られるものの、機械的強度が低下し、成形加工性
も低下する。 このような(A)ないし(D)の単量体単位をもつ共重
合体は、それぞれ対応する単量体の所要量をラジ
カル共重合させることによつて、製造することが
できる。重合方法としては、特に制限はないが、
特に連続基状重合法又は連続溶液重合法が望まし
く、さらに該共重合体の組成をできるだけ均一に
する点で、重合反応器は完全混合が好ましい。連
続溶液重合の場合、溶剤としては、例えばトルエ
ン、エチルベンゼンなどの芳香族炭化水素、アセ
トン、メチルエチルケトン、メチルインブチルケ
トン、シクロヘキサノンなどのケトン類、炭素数
1〜6のアルキル又はシクロアルキルアルコール
類、テトラヒドロフランやジオキサンなどのエー
テル類、エチレングリコールモノアルキルエーテ
ル類などが用いられる。 本発明方法においては、上記の(A)ないし(D)の単
量体単位をもつ共重合体にアンモニア又は有機第
一アミンを反応させ、(D)の単量体単位の一部をイ
ミド化するのであるが、このイミド化は例えばオ
ートクレーブ中に原料共重合体を仕込み、次いで
溶液状態でアンモニア又は有機第一アミンを加
え、200〜270℃の温度で1〜5時間反応させる
か、あるいは、押出機を用い、これに原料共重合
体を溶融状態で、アンモニア又は有機第一アミン
とともに連続的に供給し混合押出したのち、減圧
室でイミドに環化させる方法などによつて行うこ
とができる。 この際用いる有機第一アミンは脂肪族、芳香族
のいずれでもよい。また、アンモニアとしては、
液状アンモニア、アンモニアガス、アンモニア水
を使用することができ、脂肪族第一級アミンとし
ては、例えばメチルアミン、エチルアミン、n―
プロピルアミン、イソプロピルアミン、ブチルア
ミン、ベンチルアミン、ヘキシルアミン、シクロ
ヘキシルアミン、アリルアミンなどが挙げられ、
これらは水溶液としても用いることができる。ま
た芳香族アミンとしては、例えばアニリン、o―
トルイジン、p―トルイジン、o―クロロアニリ
ン、p―クロロアニリン、2,4,6―トリクロ
ロアニリン、α―ナフチルアミン、β―ナフチル
アミンなどが挙げられ、またベンジルアミン、
DL―、D―又はL―α―フエネチルアミン、β
―フエネチルアミンなども用いることができる。
さらに、2―ジエチルアミノエチルアミンのよう
なポリアミン類、イソプロパノールアミンのよう
なヒドロキシルアミン類も使用できる。 これらのアンモニア又は有機第一アミンは、原
料共重合体中の六員環酸無水物単位すなわち(D)単
位に基づき0.2当量よりも多い量、通常0.3〜1.4当
量の割合で用いる。この量は(D)単位のイミド化率
に密接な関係を有し、0.2当量では9%、0.4当量
では27%、0.7当量では45%、1.4当量では91%程
度のイミド化率になる。 このようにして、本発明方法に従えば、アンモ
ニア又は有機第一アミンの使用量を増減すること
により、分子中の六員環酸無水物単位に対する六
員環イミド単位の重量割合が1/10よりも多く10以
下の範囲にある任意の共重合体を得ることができ
る。この重量割合が1/10以下では、イミド化によ
る物性向上が不十分である。 そして、六員環イミド単位が多いほど得られる
共重合体の機械的強度、耐熱性、熱安定性は良く
なるが、成形加工性、耐水性が低下する傾向があ
るので、使用目的に応じ、それぞれ適正な物性を
もつ共重合体を得ることができる。 本発明方法により得られる共重合体中の各単量
体単位の定量は、例えば赤外分光分析法その他の
分析法を利用することにより容易に行うことがで
きる。すなわち、メタクリル酸メチル単位は1730
cm-1、六員環酸無水物単位は1800cm-1及び1760cm
-1において特性吸収を示すのでこれを利用して行
うことができる。また、六員環イミド単位の場
合、N―置換体は1670cm-1に明確な吸収を有し、
メタクリル酸メチル単位の1730cm-1と区別しうる
が、1700cm-1の吸収はメタクリル酸メチル単位の
1730cm-1と分離しにくいので、この六員環イミド
単位の定量は元素分析による窒素分定量法を用い
るのが好ましい。 一方、アクリル酸又はメタクリル酸単位の定量
は中和滴定法が最も好ましく、アセトン中でアル
コール性NaOH溶液による迅速滴定は六員環酸
無水物単位と区別して定量できる。また芳香族ビ
ニル化合物単位の定量については、赤外分光光度
計が一般的であるが、特にその量が少量のときは
紫外吸光法を用いる。 なお、共重合体全重量当り、少なくとも2重量
%の六員環イミド単位が存在すると熱変形性の顕
著な向上がみられるので、この程度の六員環イミ
ド単位が生成するまでイミド化するのが有利であ
る。 このようにして得られた共重合体は、分子間で
架橋化し、ゲルを形成することはなく、ジメチル
ホルムアミドのような有機溶剤に可溶であり、か
つ完全な熱可塑性を示す。 発明の効果 本発明方法によると、アンモニウム又は有機第
一アミンの使用量を増減することにより、機械的
強度、耐油性、耐熱性、熱安定性のような物性
と、成形加工性、耐水性のような物性との間で、
それぞれ異なつたレベルのバランスを有するメク
クリル酸メチル系共重合体を任意に得ることがで
きるので、使用目的に応じそれぞれに適正な物性
バランスをもつ共重合体を提供しうるという利点
がある。 実施例 次に実施例によつて本発明をさらに詳細に説明
するが、本発明はこれらの例によつて何ら限定さ
れるものではない。 なお、各物性の測定法は次のとおりである。 (1) ビカツト軟化温度:ASTM−D1525 (2) 引張り強さ:ASTM−D638 (3) 曲げ強さ及び 曲げ弾性率:ASTM−D790 (4) 加熱変形温度:ASTM−D648 (5) 色調:射出成形片を肉眼観察する。 (6) 熱安定性:窒素気流中、昇温速度10℃/分の
条件で熱天秤分析における重合体の重量
減少が1%の場合の温度で表わす。 (7) MFI(Melt flow index):JIS K 7210 230
℃、3.8g荷重条件。 (8) 飽和吸水率:厚さ0.2mmのシートを圧縮成形
し23℃の水中に浸漬。10日間で吸水によ
る重量増加は平衡に達する。 参考例 1 スチレン11重量部、メタクリル酸9重量部、メ
タクリル酸メチル60重量部、エチルベンゼン20重
量部及びオクチルメルカプタン0.1重量部から成
る混合液を調製し、この混合液を0.5/hrの速
度で連続して内容積2のジヤケツト付完全混合
反応器に供給して重合を行つた。重合開始剤とし
て1,1―ジ―tert―ブチルパーオキシ―3,
3,5―トリメチルシクロヘキサンを用い、重合
温度は110℃であつた。固形分42重量%の重合反
応液を連続して高温真空室へ供給して、未反応物
の除去及び六員環酸無水物の生成を行つた。この
生成共重合体の中和滴定及び赤外分光光度計によ
る組成分析の結果は、スチレン単位15重量%、メ
タクリル酸メチル単位70重量%、メタクリル酸単
位4重量%及び六員環酸無水物単位11重量%であ
つた。 参考例 2 スチレン6重量部、メタクリル酸22重量部、メ
タクリル酸メチル32重量部、シクロヘキサノン40
重量部及びオクチルメルカプタン0.18重量部から
成る混合液を調製し、その他は実施例1と全く同
様に重合を行つた。得られた共重合体の組成分析
の結果はスチレン単位10重量%、メタクリル酸メ
チル単位50重量%、メタクリル酸単位5重量%及
び六員環酸無水物単位35重量%であつた。 実施例 1 参考例1で得た共重合体0.5Kgをペレツト状で
5のオートクレーブに仕込み、次いでジメチル
ホルムアミド3.0Kgを投入し、かきまぜて全量溶
解後、六員環酸無水物単位量に対し0.4当量のア
ンモニアを含有する28%アンモニア水を仕込み、
75℃、2時間処理した。反応液を取り出し、n―
ヘキサンでポリマーを析出、精製後この共重合体
を250℃、2時間、16torrの揮発炉で処理を行つ
た。最終的に得られた生成物はほとんど無色透明
で、その赤外分光光度計による測定より、六員環
酸無水物に特徴的な1800cm-1及び1760cm-1の吸収
の減少がみられ、同時に1700cm-1の新しい吸収か
ら六員環イミドの生成が認められた。元素分析の
窒素含有量より、六員環イミド単位は3重量%で
あつた。 次に、アンモニアの仕込量を種々変化させて、
六員環酸無水物単位量から六員環イミド単位への
変性量を変化させ同じ実験を繰り返した。 このようにして得られた共重合体の組成、物性
を、原料共重合体のそれらとともに第1表に示
す。 この表から明らかなように分子中の六員環酸無
水物単位に対する六員環イミド単位の重量割合が
1/10以下ではほとんど物性の変化が認められない
ので、それよりも多くすることが必要である。
Industrial Application Field The present invention describes a method for producing a novel modified copolymer, and more specifically, the present invention provides a method for producing a novel modified copolymer, and more specifically, a method for producing a modified copolymer, which has a balance between physical properties such as mechanical strength, oil resistance, heat resistance, and thermal stability, and processability depending on the purpose of use. The present invention relates to a method for optionally producing a thermoplastic modified copolymer that is clear and transparent. Conventional technology In recent years, excellent heat resistance,
There is a growing demand for resins that have mechanical strength and oil resistance, are transparent, and are inexpensive. By the way, among the resins currently available on the market, polycarbonate resin is known as a resin that is colorless and transparent and has excellent mechanical strength and heat resistance. However, this resin is an engineering plastic and is expensive, so it has not been widely used. Among thermoplastic resins, methyl methacrylate resin is commercially available at a relatively low price and has mechanical strength, oil resistance, weather resistance, and outstanding colorless transparency. has the disadvantage of being inferior in heat resistance, particularly in terms of thermal deformability and thermal decomposition. Therefore, a method of copolymerizing methyl methacrylate and various comonomers has been proposed as a method for further improving the heat resistance without impairing the desirable physical properties of methyl methacrylate resin. By the way, the comonomers used in this case include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic anhydride, unsaturated dicarboxylic acid anhydrides, α-
Aromatic vinyl compounds such as methylstyrene are common, but when these comonomers are introduced into a system based on methyl methacrylate,
All of these resins generate gas at molding temperatures of 200 to 260°C, and they produce molded products that are inferior in appearance to methyl methacrylate resin, so they have not yet reached the stage of practical use. Under these circumstances, the present inventors conducted intensive research to improve both the heat deformability and thermal stability of methyl methacrylate resin, and first developed the general formula in the molecule. It has been found that the first object can be achieved by forming a six-membered cyclic acid anhydride unit represented by the formula (R 1 and R 3 are hydrogen atoms or methyl groups). This six-membered cyclic acid anhydride unit is secondarily derived from an acrylic acid or methacrylic acid unit. However, even resins having high heat deformability due to the introduction of six-membered cyclic acid anhydride units are not necessarily satisfactory in terms of heat resistance compared to polycarbonate. On the other hand, by reacting a homopolymer or copolymer of methyl methacrylate with ammonia or a primary amine in an extruder, the general formula (R 1 and R 2 in the formula are hydrogen atoms or methyl groups,
R3 is a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group) (Japanese Patent Application Laid-open No. 71928/1983)
It has been known. However, although such polymers having six-membered ring imide units have improved heat resistance, they have the drawback of low mechanical strength and moldability. Problems to be Solved by the Invention The present invention is directed to a methyl methacrylate copolymer that has a balance of physical properties such as mechanical strength, oil resistance, heat resistance, and thermal stability, and moldability, depending on the purpose of use. The purpose of this work is to provide a method for arbitrarily producing . Means for Solving the Problems The present inventors have conducted various studies to develop a methyl methacrylate copolymer with well-balanced physical properties comparable to polycarbonate resins. In addition, by imidizing a part of the six-membered cyclic acid anhydride units in the copolymer containing aromatic vinyl compound units, methacrylic acid units, and six-membered cyclic acid anhydride units, the heat deformability is improved. We have found that mechanical strength and fluidity can be maintained by appropriately selecting the degree of imidization, and based on this knowledge, we have accomplished the present invention. That is, the present invention comprises (A) 29 to 95% by weight of methyl methacrylate units, and (B) 1 to 95% by weight of aromatic vinyl compound units.
67% by weight, (C) 1 to 10% by weight of methacrylic acid units, and
(D) General formula When reacting a copolymer consisting of 3 to 50% by weight of six-membered cyclic acid anhydride units represented by ammonia or organic primary amine, the amount of ammonia or organic primary amine to be used is adjusted to (A) 29 to 95% by weight of methyl methacrylate units, characterized in that the amount is greater than 0.2 equivalents based on the anhydride units and is adjusted to an amount sufficient to obtain the required amidation rate; B) 1 to 67% by weight of aromatic vinyl compound units, (C)
1 to 10% by weight of methacrylic acid units, and (D) general formula (R in the formula is a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group) consisting of 3 to 50% by weight of six-membered ring units,
and a copolymer prepared such that the weight ratio of the six-membered cyclic imide units represented by the general formula () to the six-membered cyclic acid anhydride units represented by the general formula () is more than 1/10 and 10 or less. This is due to the manufacturing method. The methyl methacrylate unit (A) in the copolymer used as a raw material in the method of the present invention is the main monomer unit of the copolymer, and plays a role in improving mechanical strength and oil resistance. The content ranges from 29 to 95% by weight based on the copolymer. When this content is less than 29% by weight, the mechanical strength of the copolymer decreases, and when this content is less than 29% by weight,
If it exceeds this amount, the copolymer's fluidity and thermal stability during heating will decrease. Next, the aromatic vinyl compound unit (B), which is the second monomer unit, plays a role in improving the fluidity and thermal stability of the copolymer during heating, and its content The amount ranges from 1 to 67% by weight, based on the copolymer. If the content is less than 1% by weight, the fluidity and thermal stability during heating of the copolymer will decrease, while if it exceeds 67% by weight, the mechanical strength and oil resistance will decrease. Furthermore, the total amount of the methyl methacrylate units and aromatic vinyl compound units in this copolymer is preferably in the range of 49 to 96% by weight; if this amount is less than 49% by weight, the copolymer becomes brittle. On the other hand, if it exceeds 96% by weight, the thermal deformability and thermal stability of the copolymer will decrease. Examples of the aromatic vinyl compound unit include monomer units such as styrene, α-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, p-tert-butylstyrene, and p-chlorostyrene, Among these, styrene units are the most common. In addition, the methacrylic acid unit (C) in this copolymer plays a role in increasing the heat deformability of the copolymer, and its content is 1 to 10% by weight based on the weight of the copolymer. If the amount exceeds 10% by weight, gas is generated during injection molding at a temperature of 200° C. or higher, which impairs the appearance of the molded product, which is not preferable. The six-membered cyclic acid anhydride unit (D) in the copolymer of the present invention plays a role in increasing the heat distortion temperature and thermal stability. ~50% by weight, preferably 10-40% by weight
is within the range of If this amount is less than 3% by weight, no improvement in heat deformability and thermal stability can be expected;
If it exceeds 100%, the heat deformation temperature of the copolymer will be significantly increased, but the mechanical strength will decrease and the moldability will also decrease. Copolymers having such monomer units (A) to (D) can be produced by radical copolymerization of required amounts of the corresponding monomers. There are no particular restrictions on the polymerization method, but
Particularly preferred is a continuous base polymerization method or a continuous solution polymerization method, and in order to make the composition of the copolymer as uniform as possible, complete mixing in the polymerization reactor is preferred. In the case of continuous solution polymerization, examples of solvents include aromatic hydrocarbons such as toluene and ethylbenzene, ketones such as acetone, methyl ethyl ketone, methyl imbutyl ketone, and cyclohexanone, alkyl or cycloalkyl alcohols having 1 to 6 carbon atoms, and tetrahydrofuran. Ethers such as dioxane and ethylene glycol monoalkyl ethers are used. In the method of the present invention, a copolymer having the above monomer units (A) to (D) is reacted with ammonia or an organic primary amine, and a part of the monomer units of (D) are imidized. However, for this imidization, for example, the raw material copolymer is placed in an autoclave, then ammonia or organic primary amine is added in a solution state, and the reaction is carried out at a temperature of 200 to 270°C for 1 to 5 hours, or, This can be carried out by using an extruder, continuously supplying the raw material copolymer in a molten state with ammonia or an organic primary amine, mixing and extruding it, and then cyclizing it into an imide in a reduced pressure chamber. . The organic primary amine used in this case may be either aliphatic or aromatic. In addition, as ammonia,
Liquid ammonia, ammonia gas, aqueous ammonia can be used, and examples of aliphatic primary amines include methylamine, ethylamine, n-
Examples include propylamine, isopropylamine, butylamine, benzylamine, hexylamine, cyclohexylamine, allylamine, etc.
These can also be used as aqueous solutions. Examples of aromatic amines include aniline, o-
Examples include toluidine, p-toluidine, o-chloroaniline, p-chloroaniline, 2,4,6-trichloroaniline, α-naphthylamine, β-naphthylamine, and benzylamine,
DL-, D- or L-α-phenethylamine, β
- Phenethylamine etc. can also be used.
Furthermore, polyamines such as 2-diethylaminoethylamine and hydroxylamines such as isopropanolamine can also be used. These ammonia or organic primary amines are used in an amount of more than 0.2 equivalents, usually 0.3 to 1.4 equivalents, based on the six-membered cyclic acid anhydride units, ie, (D) units, in the raw material copolymer. This amount is closely related to the imidization rate of the (D) unit, with the imidization rate being about 9% at 0.2 equivalents, 27% at 0.4 equivalents, 45% at 0.7 equivalents, and 91% at 1.4 equivalents. In this way, according to the method of the present invention, by increasing or decreasing the amount of ammonia or organic primary amine used, the weight ratio of the six-membered cyclic imide unit to the six-membered cyclic acid anhydride unit in the molecule can be reduced to 1/10. Any copolymer ranging from more than 10 can be obtained. If this weight ratio is less than 1/10, the improvement in physical properties due to imidization is insufficient. The greater the number of six-membered ring imide units, the better the mechanical strength, heat resistance, and thermal stability of the copolymer obtained, but the moldability and water resistance tend to decrease. Copolymers with appropriate physical properties can be obtained. The amount of each monomer unit in the copolymer obtained by the method of the present invention can be easily determined by using, for example, infrared spectroscopy or other analytical methods. That is, methyl methacrylate units are 1730
cm -1 , six-membered cyclic acid anhydride units are 1800 cm -1 and 1760 cm
This can be done by utilizing characteristic absorption at -1 . In addition, in the case of a six-membered ring imide unit, the N-substituted product has a clear absorption at 1670 cm -1 ,
It can be distinguished from the 1730 cm -1 of the methyl methacrylate unit, but the absorption at 1700 cm -1 is the same as that of the methyl methacrylate unit.
Since it is difficult to separate from 1730 cm -1 , it is preferable to use a nitrogen content determination method based on elemental analysis to quantify this six-membered ring imide unit. On the other hand, the neutralization titration method is most preferable for quantifying acrylic acid or methacrylic acid units, and rapid titration with an alcoholic NaOH solution in acetone can be used to quantify acrylic acid or methacrylic acid units separately from six-membered cyclic acid anhydride units. For quantitative determination of aromatic vinyl compound units, an infrared spectrophotometer is generally used, but especially when the amount is small, an ultraviolet absorption method is used. Note that when at least 2% by weight of six-membered ring imide units are present based on the total weight of the copolymer, a remarkable improvement in heat deformability is observed, so imidization is not carried out until this amount of six-membered ring imide units are produced. is advantageous. The copolymer thus obtained is intermolecularly crosslinked, does not form a gel, is soluble in organic solvents such as dimethylformamide, and exhibits complete thermoplasticity. Effects of the Invention According to the method of the present invention, physical properties such as mechanical strength, oil resistance, heat resistance, and thermal stability, moldability, and water resistance can be improved by increasing or decreasing the amount of ammonium or organic primary amine used. Between physical properties such as
Since methyl meccrylate copolymers having different levels of balance can be arbitrarily obtained, there is an advantage that copolymers with an appropriate balance of physical properties can be provided depending on the purpose of use. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. In addition, the measurement method of each physical property is as follows. (1) Vikatsu softening temperature: ASTM-D1525 (2) Tensile strength: ASTM-D638 (3) Bending strength and flexural modulus: ASTM-D790 (4) Heating distortion temperature: ASTM-D648 (5) Color tone: Injection Visually observe the molded piece. (6) Thermal stability: Expressed as the temperature at which the weight loss of the polymer is 1% in thermobalance analysis under conditions of a heating rate of 10°C/min in a nitrogen stream. (7) MFI (Melt flow index): JIS K 7210 230
℃, 3.8g load condition. (8) Saturated water absorption rate: A 0.2mm thick sheet is compression molded and immersed in water at 23℃. Weight gain due to water absorption reaches equilibrium in 10 days. Reference Example 1 A mixed solution consisting of 11 parts by weight of styrene, 9 parts by weight of methacrylic acid, 60 parts by weight of methyl methacrylate, 20 parts by weight of ethylbenzene and 0.1 part by weight of octyl mercaptan was prepared, and this mixed solution was continuously mixed at a rate of 0.5/hr. The mixture was then supplied to a jacketed complete mixing reactor having an internal volume of 2 to carry out polymerization. 1,1-di-tert-butylperoxy-3, as a polymerization initiator
3,5-trimethylcyclohexane was used and the polymerization temperature was 110°C. A polymerization reaction solution with a solid content of 42% by weight was continuously supplied to a high-temperature vacuum chamber to remove unreacted substances and produce a six-membered cyclic acid anhydride. The results of neutralization titration and composition analysis using an infrared spectrophotometer of this copolymer were as follows: 15% by weight of styrene units, 70% by weight of methyl methacrylate units, 4% by weight of methacrylic acid units, and 6-membered cyclic acid anhydride units. It was 11% by weight. Reference example 2 6 parts by weight of styrene, 22 parts by weight of methacrylic acid, 32 parts by weight of methyl methacrylate, 40 parts by weight of cyclohexanone
A mixed solution consisting of 0.18 parts by weight of octyl mercaptan and 0.18 parts by weight of octyl mercaptan was prepared, and polymerization was carried out in the same manner as in Example 1 except for the following. Composition analysis of the obtained copolymer revealed that it contained 10% by weight of styrene units, 50% by weight of methyl methacrylate units, 5% by weight of methacrylic acid units, and 35% by weight of six-membered cyclic acid anhydride units. Example 1 0.5 kg of the copolymer obtained in Reference Example 1 was charged in the form of pellets into an autoclave No. 5, and then 3.0 kg of dimethylformamide was added, stirred to dissolve the entire amount, and then 0.4 kg per unit amount of six-membered cyclic acid anhydride was added. Prepare 28% ammonia water containing an equivalent amount of ammonia,
It was treated at 75°C for 2 hours. Take out the reaction solution and
After the polymer was precipitated with hexane and purified, the copolymer was treated in a volatilization furnace at 250° C. and 16 torr for 2 hours. The final product was almost colorless and transparent, and measurements using an infrared spectrophotometer showed a decrease in absorption at 1800 cm -1 and 1760 cm -1 , which is characteristic of six-membered cyclic acid anhydrides. The formation of a six-membered ring imide was observed from the new absorption at 1700 cm -1 . From the nitrogen content determined by elemental analysis, the six-membered ring imide unit was 3% by weight. Next, by varying the amount of ammonia charged,
The same experiment was repeated by changing the amount of modification of six-membered cyclic acid anhydride units to six-membered cyclic imide units. The composition and physical properties of the copolymer thus obtained are shown in Table 1 together with those of the raw material copolymer. As is clear from this table, if the weight ratio of the six-membered cyclic imide unit to the six-membered cyclic acid anhydride unit in the molecule is less than 1/10, almost no change in physical properties will be observed, so it is necessary to increase it more than that. It is.

【表】 * 比較例
実施例 2 参考例2で得た共重合体0.5Kgをペレツト状で
3Kgのジメチルホルムアミドと共に5のオート
クレーブに仕込み溶解させ、次いで六員環酸無水
物単位に対し0.3当量のアンモニアを含有するア
ンモニア水を仕込み、75℃、2時間で反応を行わ
せた。反応生成物は無色透明な粘稠な液状であつ
た。次いでこの液状体を270℃、5torrの揮発炉で
2時間処理した。最終的に得られた反応生成物は
やや黄色気味で透明であつた。組成分析の結果及
びその他の特性について、原料共重合体のそれら
とともに第2表に示す。 実施例 3 実施例2における0.3当量のアンモニアの代り
に0.3当量のメチルアミンを用いる以外は、実施
例2と同様してイミド化処理を行つた。反応生成
物はやや黄味であるが透明であつた。 このN―メチル置換六員環イミドの赤外分光光
度計による測定では、1670cm-1にその新しい吸収
が認められ、アンモニアによるイミドと明確に区
別できる。その特性を第2表に示す。
[Table] * Comparative Example Example 2 0.5 kg of the copolymer obtained in Reference Example 2 was charged in the form of pellets with 3 kg of dimethylformamide and dissolved in the autoclave No. 5, and then 0.3 equivalent of the six-membered cyclic acid anhydride unit was added. Aqueous ammonia containing ammonia was charged, and the reaction was carried out at 75°C for 2 hours. The reaction product was a colorless and transparent viscous liquid. Next, this liquid was treated in a volatilization furnace at 270° C. and 5 torr for 2 hours. The finally obtained reaction product was slightly yellowish and transparent. The results of compositional analysis and other properties are shown in Table 2 along with those of the raw material copolymer. Example 3 Imidization treatment was carried out in the same manner as in Example 2 except that 0.3 equivalent of methylamine was used instead of 0.3 equivalent of ammonia in Example 2. The reaction product was slightly yellowish but transparent. When this N-methyl-substituted six-membered ring imide was measured using an infrared spectrophotometer, a new absorption was observed at 1670 cm -1 and it could be clearly distinguished from the imide produced by ammonia. Its properties are shown in Table 2.

【表】【table】

【表】【table】

【表】 可溶である。
[Table] Soluble.

Claims (1)

【特許請求の範囲】 1 (A)メタクリル酸メチル単位29〜95重量%、(B)
芳香族ビニル化合物単位1〜67重量%、(C)メタク
リル酸単位1〜10重量%及び(D)一般式 で表わされる六員環酸無水物単位3〜50重量%か
ら成る共重合体とアンモニア又は有機第一アミン
とを反応させるに当り、アンモニア又は有機第一
アミンの使用量を、前記六員環酸無水物単位に基
づき0.2当量よりも多い量で、かつ所要のアミド
化率が得られるのに十分な量に調節することを特
徴とする、(A)メタクリル酸メチル単位29〜95重量
%、(B)芳香族ビニル化合物単位1〜67重量%、(C)
メタクリル酸単位1〜10重量%、及び(D)一般式 及び (式中のRは水素原子、アルキル基、シクロア
ルキル基又はアリール基である) で表わされる六員環単位3〜50重量%から成り、
かつ一般式()で表わされる六員環酸無水物単
位に対する一般式()で表わされる六員環イミ
ド単位の重量割合が1/10よりも多く10以下の範囲
に調整された共重合体の製造方法。
[Claims] 1 (A) 29 to 95% by weight of methyl methacrylate units, (B)
1 to 67% by weight of aromatic vinyl compound units, (C) 1 to 10% by weight of methacrylic acid units, and (D) general formula When reacting a copolymer consisting of 3 to 50% by weight of six-membered cyclic acid anhydride units represented by ammonia or organic primary amine, the amount of ammonia or organic primary amine to be used is adjusted to (A) 29 to 95% by weight of methyl methacrylate units, characterized in that the amount is greater than 0.2 equivalents based on the anhydride units and is adjusted to an amount sufficient to obtain the required amidation rate; B) 1 to 67% by weight of aromatic vinyl compound units, (C)
1 to 10% by weight of methacrylic acid units, and (D) general formula as well as (R in the formula is a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group) consisting of 3 to 50% by weight of six-membered ring units,
and a copolymer in which the weight ratio of the six-membered cyclic imide units represented by the general formula () to the six-membered cyclic acid anhydride units represented by the general formula () is adjusted to a range of more than 1/10 and 10 or less. Production method.
JP16600984A 1984-08-08 1984-08-08 Modified copolymer Granted JPS6143604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16600984A JPS6143604A (en) 1984-08-08 1984-08-08 Modified copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16600984A JPS6143604A (en) 1984-08-08 1984-08-08 Modified copolymer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15665589A Division JPH0243207A (en) 1989-06-21 1989-06-21 Modified copolymer

Publications (2)

Publication Number Publication Date
JPS6143604A JPS6143604A (en) 1986-03-03
JPS6343404B2 true JPS6343404B2 (en) 1988-08-30

Family

ID=15823198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16600984A Granted JPS6143604A (en) 1984-08-08 1984-08-08 Modified copolymer

Country Status (1)

Country Link
JP (1) JPS6143604A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731067A (en) * 1986-10-06 1988-03-15 Arco Chemical Company Extended shelf life water-absorbing composition which facilitates fiber formation
CA1274936A (en) * 1986-12-25 1990-10-02 Akihiro Watanabe Random copolymer containing hexagonal imide units, a process for producing the same, and an optical disc substrate made of the random copolymer
FR2696469B1 (en) * 1992-10-02 1994-12-02 Atochem Elf Sa Process for the preparation of useful glutarimide copolymers and intermediate compounds.
JP6486048B2 (en) * 2014-09-25 2019-03-20 株式会社日本触媒 Imide structure-containing (meth) acrylic resin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871928A (en) * 1981-10-07 1983-04-28 ロ−ム・アンド・ハ−ス・コンパニ− Thermoplastic non-bridgeable anhydrous polymer and imide polymer and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871928A (en) * 1981-10-07 1983-04-28 ロ−ム・アンド・ハ−ス・コンパニ− Thermoplastic non-bridgeable anhydrous polymer and imide polymer and manufacture

Also Published As

Publication number Publication date
JPS6143604A (en) 1986-03-03

Similar Documents

Publication Publication Date Title
JP2607789B2 (en) Method for producing heat-resistant transparent acrylic resin
JPH07509742A (en) Transparent molding compound consisting of glutarimide-containing polymer and styrene-acrylonitrile copolymer
JP3471830B2 (en) Glass fiber reinforced thermoplastic resin composition
JPS6343404B2 (en)
JPH0243207A (en) Modified copolymer
JP2594289B2 (en) Production method of transparent heat-resistant resin
JPS645049B2 (en)
US6858672B2 (en) Safe process for making polymers containing N-phenylimide groups
JPS6046122B2 (en) Method for producing thermoplastic polymer
EP0154059B1 (en) Moldable compositions having improved surface gloss
JPS6060111A (en) Thermoplastic polymer
JPS62129334A (en) Methacrylimide-maleimide resin composition
JP3331602B2 (en) Resin composition
JPS63105051A (en) Thermoplastic resin composition
JP2561043B2 (en) Method for producing heat-resistant methacrylic resin
KR930005998B1 (en) Process for preparing acrylic group resin having heat resistance and good transparency
JPH07165816A (en) Heat-resistant resin
JP2501555B2 (en) Transparent thermoplastic resin composition
JPS6220549A (en) Discoloration-resistant resin composition
JPH0511141B2 (en)
JPH05105716A (en) Methacrylimide group-containing polymer having excellent reproducibility of color tone and its production
JPS62179553A (en) Thermoplastic resin composition
KR20040056893A (en) Thermal Resistant Copolymer Resin and Method for Preparing the Same
JPH0215583B2 (en)
JPS627757A (en) Transparent heat-resistant thermoplastic resin composition