JPH0511141B2 - - Google Patents

Info

Publication number
JPH0511141B2
JPH0511141B2 JP27447584A JP27447584A JPH0511141B2 JP H0511141 B2 JPH0511141 B2 JP H0511141B2 JP 27447584 A JP27447584 A JP 27447584A JP 27447584 A JP27447584 A JP 27447584A JP H0511141 B2 JPH0511141 B2 JP H0511141B2
Authority
JP
Japan
Prior art keywords
weight
polymer
copolymer
heat
methacrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27447584A
Other languages
Japanese (ja)
Other versions
JPS61155443A (en
Inventor
Isao Sasaki
Koji Nishida
Masaru Morimoto
Yoshio Nakai
Yasunobu Shimomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP27447584A priority Critical patent/JPS61155443A/en
Publication of JPS61155443A publication Critical patent/JPS61155443A/en
Publication of JPH0511141B2 publication Critical patent/JPH0511141B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は、透明な耐熱性メタクリル樹脂組成物
に関する。 [発明の技術的背景とその問題点] メタクリル酸メチルを主成分とするメタクリル
樹脂は光学的性質及び耐候性が際めて優れ、かつ
機械的性質、熱的性質並びに成形加工性などにつ
いても比較的バランスのとれた性能を有している
ため、これらの特性を生かして看板、照明用カバ
ー、銘板、自動車部品、電気機器部品、装飾用あ
るいは雑貨品など多くの分野で広く使用されてお
り、新たな用途開発も進められている。 しかし、一面では熱変形温度が100℃前後と、
耐熱性が十分でないために、その用途の展開が制
約されている分野もかなりあり、耐熱性の向上に
対する要求には根強いものがある。 メタクリル樹脂の耐熱性を向上させる方法につ
いてはすでに多くの提案がなされ、例えばメタク
リル酸メチルとα−メチルスチレンを共重合させ
る方法、メタクリル酸メチル、α−メチルスチレ
ン及び無水マレイン酸を共重合させる方法(特公
昭49−10156号)、メタクリル酸メチル、スチレン
及び無水マレイン酸を共重合させる方法(特公昭
56−43242号)、メタクリル酸メチル、α−メチル
スチレン、スチレンおよび無水マレイン酸を共重
合させる方法(特開昭56−81322号)、ポリ−α−
メチルスチレンをメタクリル酸メチルに溶解した
後メタクリル酸メチルを重合させる方法(特公昭
43−1616号、特公昭49−8718号)、メタクリル酸
メチルおよびN−アリルマレイン酸イミドを共重
合させる方法(特公昭43−9753号)、メタクリル
酸メチル、α−メチルスチレン及びマレイミドを
共重合させる方法、多官能単量体を用いた架橋ポ
リマーの存在下でメタクリル酸メチルを共重合さ
せる方法、メタクリル酸メチルにメタクリル酸を
共重合させる方法、メタクリル酸メチル、α−メ
チルスチレンおよびアクリロニトリルを共重合さ
せる方法などが提案されている。しかし、上記提
案の方法では重合速度が極めて小さいために、生
産性が著しく低くて実用性がなかつたり、機械的
性質、耐候性及び光学的性質が低下したり、また
成形品が著しく着色したり、あるいは、成形領域
が狭いために、成形加工性が悪いなど、いずれの
場合にも、耐熱性はある程度改善されるものの、
実用化するにあたつて多くの問題点が残されてい
るのが現状である。 [発明の目的] 本発明の目的は、上記した問題点の解消にあ
り、メタクリル樹脂本来の優れた光学的性質、機
械的性質、耐候性、成形加工性、生産性などの諸
特性を低下させることなく、かつ透明性にも優れ
た耐熱性メタクリル樹脂組成物を提供することで
ある。 [発明の概要] 本発明者らはかかる現状に鑑み、メタクリル樹
脂本来の優れた光学的性質、機械的性質、耐候
性、成形加工性、生産性などの諸特性を低下させ
ることなく、かつ透明性にも優れた耐熱性メタク
リル樹脂に関して鋭意研究を行なつた結果、特定
の配合組成を有するメタクリル酸メチル−α−メ
チルスチレン−スチレン又はビニルトルエン−無
水マレイン酸の4元共重合体構造を有する共重合
体とメタクリルイミド環構造単位を含有する重合
体との樹脂混合物がその目的を達成し得ることを
見い出し、本発明を完成するに至つたものであ
る。 すなわち、本発明の耐熱性メタクリル樹脂組成
物は、 (A) メタクリル酸メチル 40〜97重量% (B) α−メチルスチレン 1〜20重量% (C) スチレンもしくはビニルトルエン
1〜20重量%及び (D) 無水マレイン酸 1〜20重量% よりなる混合物を重合して得られる共重合体
() 1〜99重量% 並びに 一般式: (式中、Rは水素原子、炭素原子数1〜10の脂肪
族基、又は脂環族基もしくは芳香族基を含む炭素
数5〜10の炭化水素基を表わす) で示されるメタクリルイミド環構造単位を2重量
%以上含有する重合体() 1〜99重量% から成ることを特徴とするものである。 本発明の組成物において共重合体()を構成
するために使用されるメタクリル酸メチル(A)は、
メタクリル樹脂本来の光学的性質、耐候性又は機
械的性質を保持し、かつメタクリルイミド環構造
単位含有重合体()との相溶性をよくするため
の成分である。()中の(A)の割合が40重量%未
満では上記の特性が失われ、97重量%を超えると
耐熱性の向上が望めなくなる。好ましい割合は50
〜80重量%である。また、共重合体()の構成
成分であるα−メチルスチレン(B)は、直接的にも
耐熱性を向上させる成分であるが、かつ耐熱性向
上成分である無水マレイン酸の共重合反応性を高
めることにより間接的にも耐熱性を向上させる成
分である。()中の(B)の割合が1重量%未満で
は生産性及び耐熱性の面で劣り、20重量%を超え
ると生産性および共重合体の耐熱分解性が低下す
る。好ましい割合は3〜10重量%である。さらに
また、共重合体()の構成成分であるスチレン
又はビニルトルエンは、直接的には耐熱性を向上
させる成分ではないが、耐熱性向上成分である無
水マレイン酸の共重合反応性を高めることによ
り、間接的に耐熱性を向上させると同時に生産性
の向上に対して著しい効果を示すものである。
()中の(C)の割合が、1重量%未満であると間
接的に耐熱性が低下し、生産性の面でも劣る。20
重量%を超えると光学的性質、耐候性が低下する
ようになる。好ましい割合は5〜18重量%であ
る。使用されるビニルトルエンとしては、オル
ト、メタ、パラ置換体があげられ、これらは1種
又は2種以上の混合物として使用される。 さらにまた、共重合体()の構成成分である
無水マレイン酸(D)は、共重合させるα−メチルス
チレン、スチレン又はビニルトルエンとの相互作
用により共重合体の耐熱性を向上させる成分であ
る。()中の(D)の割合が1重量%未満では生産
性及び耐熱性の点で劣り、20重量%を超えると機
械的性質及び光学的性質が低下し、さらに耐煮沸
性が悪くなる。好ましい割合は5〜15重量%であ
る。 本発明の組成物においては、最終的に得られる
ブレンド樹脂の耐熱性、機械的性質、光学的性
質、あるいは成形加工性などの樹脂特性全般のバ
ランスを考慮すると、共重合体()中のα−メ
チルスチレン由来の構造単位のモル数をα、スチ
レン又はビニルトルエン由来の構造単位のモル数
をβ、無水マレイン酸由来の構造単位のモル数を
γとしたとき、(α+β)/γが0.9〜1.7となる
ことが最も好ましい。0.9未満の場合には耐水性、
機械的性質が低下する傾向が認められ、1.7を超
える場合には光学的性質、耐熱性の低下が認めら
れる。 本発明の耐熱性メタクリル樹脂組成物を構成す
る第二の重合体()は、メタクリルイミド樹脂
本来の耐熱性を付与するためのものである。すな
わち、耐熱性を重視する場合には、重合体()
中のメタクリルイミド環構造単位を増加させれば
よく、機械的特性を重視する場合には、メタクリ
ルイミド環構造単位を減少させ、他の構造単位
(たとえば、メタクリル酸メチル由来の構造単位)
を増加させることが好ましい。 上記メタクリルイミド環構造単位中、Rで表わ
される炭素原子数1〜10の脂肪族基としては、メ
チルアミン、エチルアミン、プロピルアミン、ブ
チルアミン、ペンチルアミン、ヘキシルアミン、
ヘプチルアミン、オクチルアミン、ノニルアミ
ン、デシルアミンなどの直鎖型及び分枝型などが
挙げられる。また、脂環族基もしくは芳香族基を
含む炭素数5〜10の炭化水素基としてはシクロペ
ンチルアミン、シクロヘキシルアミン、アニリ
ン、オルトトルイジン、メタトルイジン、パラト
ルイジン、2,4,6−トリメチルアニリンおよ
びパラエチルアニリンなどが挙げられる。重合体
()中のメタクリルイミド環構造単位の割合は、
通常、2重量%以上で、好ましくは10重量%以上
である。この割合が2重量%未満の場合には十分
な耐熱性が望めない。重合体()の重量平均分
子量は、通常4万〜50万で、好ましくは4万〜10
万である。この分子量が4万未満の場合には機械
的強度が劣り、50万を超える場合には成形加工性
が劣る。また、重合度は、通常200〜3000で、好
ましくは400〜2000である。 メタクリルイミド環構造成分を含有する重合体
()の製造方法としては、特に制限はないが、
アンモニア、アンモニア発生剤、第一級アミン及
び第一級アミン発生剤から成る群より選ばれる少
なくとも1種のイミド化剤を用い、メタクリル樹
脂重合体を熱分解縮合反応させる方法(例えば、
米国特許第2146209号、西独国特許第1077872号、
同第1242369号)などが挙げられる。透明性が優
れたメタクリルイミド環構造単位を有する重合体
()を得るには、非重合性溶媒中に原料メタク
リル樹脂を溶解した均一溶液系に、上記イミド化
剤を導入して熱分解縮合反応せしめた後、得られ
た反応生成物から揮発性物質を分離除去すること
が好ましい。 原料メタクリル樹脂とは、上記イミド化剤と反
応して得られるメタクリルイミド環構造単位を形
成しうるメタクリル酸誘導体を含有する共重合体
である。メタクリル酸誘導体としては、例えば、
メタクリル酸、メタクリル酸メチル、メタクリル
酸エチル、メタクリル酸ブチル、メタクリル酸
tert−ブチル、メタクリル酸ヘキシル、メタクリ
ル酸オクチル、メタクリル酸ドデシルなどが使用
される。これらの中でも、メタクリル酸メチルが
好ましい。共重合成分としては、メタクリル酸誘
導体と共重合可能なビニル単量体が挙げられる。
例えば、メタクリル酸、メタクリル酸メチル、メ
タクリル酸エチル、メタクリル酸ブチル、メタク
リル酸tert−ブチル、メタクリル酸ヘキシル、メ
タクリル酸オクチル、メタクリル酸ドデシルなど
のメタクリル酸誘導体;スチレン、ビニルトルエ
ン、α−メチルスチレン、クロルスチレンなどの
スチレン誘導体;アクリル酸、アクリル酸メチ
ル、アクリル酸エチル、アクリル酸プロピル、ア
クリル酸ブチル、アクリル酸ヘキシル、アクリル
酸オクチル、アクリル酸ドデシルなどのアクリル
酸誘導体が挙げられ、これらは1種もしくは2種
以上の混合物として使用される。これらの中で
も、スチレンが好ましい。 メタクリルイミド環構造単位を形成するための
イミド化剤としては、アンモニア、メチルアミ
ン、ブチルアミン、尿素、及び1,3ジメチル尿
素などが挙げられる。これらの中でも、耐熱性の
観点からメチルアミンが好ましい。非重合性溶媒
としては、原料メタクリル樹脂及び生成物メタク
リルイミド環構造成分含有重合体が溶解可能な非
重合性溶媒であればよく、ベンゼン、メタノー
ル、トルエン・メタノールの混合溶媒、キシレ
ン・メタノールの混合溶媒等が使用される。 重合体()は、重合体の酸化劣化を防止する
ために、通常、5000ppm以下、好ましくは
1000ppm以下の酸素濃度雰囲気下、通常、150〜
350℃、好ましくは170〜250℃の温度で製造され
る。また、重合体の側鎖の加水分解を防止するた
めに、通常、5000ppm以下、好ましくは1000ppm
以下の無水雰囲気下で製造される。 本発明の組成物は0.5〜75のフローレート
(FR)(ASTM D−1238に準拠して230℃、10
Kg/cm2荷重下での10分間の押出量(g))を有す
る成形材料として特に有用なものである。 本発明のメタクリル樹脂組成物の配合割合は、
組成物中、共重合体()が、通常、1〜99重量
%で、好ましくは5〜95重量%である。この割合
が1重量%未満の場合には機械的特性が劣り、89
重量%を超えると耐煮沸性などの化学的特性が劣
る。 本発明の組成物を製造する方法としては特に制
限はないが、例えば共重合体()を常法に従つ
て塊状重合、懸濁重合などにより製造し、得られ
た共重合体()と重合体()とを混合後、
200〜300℃の温度で溶融、混練、押出を行なつて
ブレンド樹脂を製造する方法、重合体を製造する
に使用される単量体混合物に重合体を溶解後、懸
濁分散剤を含んだ水媒体中で懸濁重合あるいは塊
状重合する方法などが採用できる。 本発明の組成物には、必要に応じて、紫外線吸
収剤、剥離剤、酸化防止剤、離型剤、染顔料など
の添加剤を添加してもよい。 以下実施例及び比較例を掲げ、本発明をさらに
詳しく説明する。 [発明の実施例] 実施例1〜3、比較例1及び2 メタクリル酸メチル650g、α−メチルスチレ
ン50g、スチレン150g及び無水マレイン酸150g
からなる単量体混合物1000gに、分子量調節剤と
してt−ドデシルメルカプタン2.3gを加え、こ
の混合物を冷却管、温度計及び撹拌棒を備えた内
容積2のセパラブルフラスコに入れた。次いで
撹拌しながら、窒素ガスを吹き込んで系内の空気
を追い出した後、加熱してフラスコ内温度が70℃
になつたところで重合開始剤としてアゾビスイソ
ブチロニトリル0.2gを添加し、内温95℃から15
分間保持した後、室温まで冷却し、600センチポ
イズのシロツプ状部分重合物を得た。 この部分重合物1000gに対してラウロイルパー
オキシド4g、分子量調節剤としてt−ドデシル
メルカプタン3.0g、紫外線吸収剤として“チヌ
ビン−P”(商品名、チバガイギー社製)0.3g、
剥離剤として“JP−504”(商品名、城北化学(株)
製)0.2g、安定剤として“Mark329”(商品名、
アデカアーガス(株)製)1g、離型剤としてステア
リン酸モノグリセリド1gを加え、充分撹拌して
溶解させた。この部分重合体混合物を、ポリ塩化
ビニル製ガスケツトを介して3mmの間隔をおいて
2枚の強化ガラス板で形成されたセルに熱電対を
セツトしてなる鋳型中に注入し、80℃の温水中で
重合硬化させた。そして温水中に浸漬してから内
温がピークに達するまでの時間を確認して30分経
過後、温水中から鋳型を取り出し、130℃の空気
加熱炉中で2時間熱処理した。冷却後ガラス板を
はずし板厚約3mmの樹脂板を得た。この板を切
断、粉砕し、3〜4mm程度のペレツト状とした。
かくして共重合体()が得られた。 5のオートクレーブ中に、十分乾燥した原料
メタクリル樹脂重合体(三菱レイヨン(株)製、商品
名:アクリペツトVH)1000g及び乾燥トルエン
1000gを仕込んで撹拌溶解した。得られた混合物
を、乾燥メタノール中にメチルアミンガスを溶解
して40重量%濃度とした溶液387.5gに添加して
加熱溶解撹拌後、230℃、3時間、圧力50Kg/cm2
の条件下でメタクリルイミド環形成反応を行つ
た。得られた透明のシロツプ溶液を熱風乾燥機内
で120℃一昼夜乾燥して溶媒を除去して切断粉砕
した後、3〜4mm程度のペレツト状とした。 N−メチルメタクリルイミド環形成は、核磁気
共鳴吸収スペクトル(日本電子(株)製 FX−90−
Q、d−6ジメチルスルホキシド5重量%溶液、
内部基準:テトラメチルシラン、120℃で測定)
を測定評価した結果は、2.95ppm(δ値)におけ
る吸収により確認された。面積比よりN−メチル
メタクリルイミド化率は、60%であつた。これを
加熱成形して、試験片を作成すると透明な試片と
なり、実用耐熱温度(熱変形温度)(HDT)は、
125℃であつた。かくして、N−メチルメタクリ
ルイミド環構造含有重合体()が得られた。 前記共重合体()と上記重合体()とを表
1に示す割合でヘンシエルミキサーでブレンド
後、二軸押出機で265℃の温度で賦形してペレツ
ト化した。 このペレツトを下記の条件で射出成形し、得ら
れた試験片(110mm×110mm×2mm厚)から表2の
評価結果を得た。 射出成形機:(株)日本製鋼所製、V−17−65型スク
リユー式自動射出成形機 射出成形条件:シリンダー温度250〜260℃、射出
圧700Kg/cm2金型温度60℃
[Technical Field of the Invention] The present invention relates to a transparent heat-resistant methacrylic resin composition. [Technical background of the invention and its problems] Methacrylic resin whose main component is methyl methacrylate has excellent optical properties and weather resistance, and is also compared in terms of mechanical properties, thermal properties, moldability, etc. Due to its well-balanced performance, it is widely used in many fields such as signboards, lighting covers, nameplates, automobile parts, electrical equipment parts, decorations, and miscellaneous goods. Development of new uses is also underway. However, on one side, the heat distortion temperature is around 100℃,
There are many fields in which the development of applications is restricted due to insufficient heat resistance, and there is a deep-rooted demand for improved heat resistance. Many proposals have already been made for methods of improving the heat resistance of methacrylic resins, such as a method of copolymerizing methyl methacrylate and α-methylstyrene, and a method of copolymerizing methyl methacrylate, α-methylstyrene, and maleic anhydride. (Special Publication No. 49-10156), a method for copolymerizing methyl methacrylate, styrene, and maleic anhydride (Special Publication No. 10156),
56-43242), method of copolymerizing methyl methacrylate, α-methylstyrene, styrene, and maleic anhydride (Japanese Patent Application Laid-open No. 56-81322), poly-α-
A method in which methyl styrene is dissolved in methyl methacrylate and then methyl methacrylate is polymerized (Tokuko Sho
43-1616, Japanese Patent Publication No. 49-8718), method for copolymerizing methyl methacrylate and N-allylmaleimide (Japanese Patent Publication No. 43-9753), copolymerization of methyl methacrylate, α-methylstyrene, and maleimide. A method of copolymerizing methyl methacrylate in the presence of a crosslinked polymer using a polyfunctional monomer, a method of copolymerizing methacrylic acid with methyl methacrylate, a method of copolymerizing methyl methacrylate, α-methylstyrene, and acrylonitrile. Polymerization methods have been proposed. However, since the polymerization rate of the above proposed method is extremely low, productivity is extremely low and it is not practical, mechanical properties, weather resistance, and optical properties are decreased, and the molded product is significantly colored. In either case, the heat resistance is improved to some extent, but the molding area is narrow and the molding processability is poor.
At present, many problems remain before it can be put into practical use. [Objective of the Invention] The object of the present invention is to solve the above-mentioned problems, which reduce the inherent excellent properties of methacrylic resin such as optical properties, mechanical properties, weather resistance, moldability, and productivity. It is an object of the present invention to provide a heat-resistant methacrylic resin composition that is free from heat and has excellent transparency. [Summary of the Invention] In view of the current situation, the present inventors have developed a transparent resin without deteriorating its inherent excellent optical properties, mechanical properties, weather resistance, moldability, productivity, etc. As a result of intensive research into heat-resistant methacrylic resins with excellent properties, we have developed a four-component copolymer structure of methyl methacrylate-α-methylstyrene-styrene or vinyltoluene-maleic anhydride with a specific composition. The inventors have discovered that a resin mixture of a copolymer and a polymer containing a methacrylimide ring structural unit can achieve the object, and have completed the present invention. That is, the heat-resistant methacrylic resin composition of the present invention contains (A) methyl methacrylate 40 to 97% by weight (B) α-methylstyrene 1 to 20% by weight (C) styrene or vinyltoluene
A copolymer () obtained by polymerizing a mixture consisting of 1 to 20% by weight and (D) maleic anhydride 1 to 20% by weight, and the general formula: (In the formula, R represents a hydrogen atom, an aliphatic group having 1 to 10 carbon atoms, or a hydrocarbon group having 5 to 10 carbon atoms including an alicyclic group or an aromatic group) It is characterized by consisting of 1 to 99% by weight of a polymer (2) containing 2% by weight or more of units. Methyl methacrylate (A) used to constitute the copolymer () in the composition of the present invention is:
This component maintains the original optical properties, weather resistance, or mechanical properties of the methacrylic resin and improves its compatibility with the polymer containing methacrylimide ring structural units. If the proportion of (A) in parentheses is less than 40% by weight, the above properties will be lost, and if it exceeds 97% by weight, no improvement in heat resistance can be expected. The preferred ratio is 50
~80% by weight. In addition, α-methylstyrene (B), which is a constituent component of the copolymer (), is a component that directly improves heat resistance. It is a component that indirectly improves heat resistance by increasing . If the proportion of (B) in parentheses is less than 1% by weight, productivity and heat resistance will be poor, and if it exceeds 20% by weight, productivity and heat decomposition resistance of the copolymer will decrease. The preferred proportion is 3-10% by weight. Furthermore, although styrene or vinyltoluene, which is a component of the copolymer (), is not a component that directly improves heat resistance, it can increase the copolymerization reactivity of maleic anhydride, which is a heat resistance improving component. This indirectly improves heat resistance and at the same time shows a remarkable effect on improving productivity.
If the proportion of (C) in parentheses is less than 1% by weight, heat resistance will indirectly decrease and productivity will also be poor. 20
If it exceeds the weight percentage, the optical properties and weather resistance will deteriorate. The preferred proportion is 5-18% by weight. Examples of the vinyl toluene used include ortho-, meta-, and para-substituted vinyl toluenes, and these may be used alone or as a mixture of two or more. Furthermore, maleic anhydride (D), which is a component of the copolymer (), is a component that improves the heat resistance of the copolymer through interaction with copolymerized α-methylstyrene, styrene, or vinyltoluene. . If the proportion of (D) in parentheses is less than 1% by weight, productivity and heat resistance will be poor; if it exceeds 20% by weight, mechanical properties and optical properties will deteriorate, and boiling resistance will further deteriorate. The preferred proportion is 5-15% by weight. In the composition of the present invention, considering the overall balance of resin properties such as heat resistance, mechanical properties, optical properties, and moldability of the blended resin finally obtained, α in the copolymer () - When the number of moles of the structural unit derived from methylstyrene is α, the number of moles of the structural unit derived from styrene or vinyltoluene is β, and the number of moles of the structural unit derived from maleic anhydride is γ, (α+β)/γ is 0.9 Most preferably it is ~1.7. Water resistance if less than 0.9;
A tendency for mechanical properties to decrease is observed, and when it exceeds 1.7, a decrease in optical properties and heat resistance is observed. The second polymer () constituting the heat-resistant methacrylic resin composition of the present invention is for imparting the heat resistance inherent to methacrylimide resin. In other words, if heat resistance is important, polymer ()
It is sufficient to increase the number of methacrylimide ring structural units in the structure, but if mechanical properties are important, the number of methacrylimide ring structural units can be decreased and other structural units (for example, structural units derived from methyl methacrylate) may be used.
It is preferable to increase. In the above methacrylimide ring structural unit, examples of the aliphatic group having 1 to 10 carbon atoms represented by R include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine,
Examples include linear and branched types such as heptylamine, octylamine, nonylamine, and decylamine. Examples of hydrocarbon groups having 5 to 10 carbon atoms containing alicyclic groups or aromatic groups include cyclopentylamine, cyclohexylamine, aniline, orthotoluidine, metatoluidine, paratoluidine, 2,4,6-trimethylaniline, and paratoluidine. Examples include ethylaniline. The proportion of methacrylimide ring structural units in the polymer () is
It is usually 2% by weight or more, preferably 10% by weight or more. If this proportion is less than 2% by weight, sufficient heat resistance cannot be expected. The weight average molecular weight of the polymer () is usually 40,000 to 500,000, preferably 40,000 to 100,000.
Ten thousand. If the molecular weight is less than 40,000, the mechanical strength will be poor, and if it exceeds 500,000, the moldability will be poor. Further, the degree of polymerization is usually 200 to 3000, preferably 400 to 2000. There are no particular restrictions on the method for producing the polymer () containing a methacrylimide ring structure component, but
A method of subjecting a methacrylic resin polymer to a thermal decomposition condensation reaction using at least one imidizing agent selected from the group consisting of ammonia, an ammonia generator, a primary amine, and a primary amine generator (for example,
US Patent No. 2146209, West German Patent No. 1077872,
No. 1242369). In order to obtain a polymer () having a methacrylimide ring structural unit with excellent transparency, the imidizing agent is introduced into a homogeneous solution system in which the raw material methacrylic resin is dissolved in a non-polymerizable solvent, and a thermal decomposition condensation reaction is carried out. After the reaction is allowed to stand, it is preferable to separate and remove volatile substances from the obtained reaction product. The raw material methacrylic resin is a copolymer containing a methacrylic acid derivative capable of forming a methacrylimide ring structural unit obtained by reacting with the imidizing agent. Examples of methacrylic acid derivatives include:
Methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methacrylic acid
Tert-butyl, hexyl methacrylate, octyl methacrylate, dodecyl methacrylate, etc. are used. Among these, methyl methacrylate is preferred. Examples of copolymerizable components include vinyl monomers that can be copolymerized with methacrylic acid derivatives.
For example, methacrylic acid derivatives such as methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, tert-butyl methacrylate, hexyl methacrylate, octyl methacrylate, dodecyl methacrylate; styrene, vinyltoluene, α-methylstyrene, Styrene derivatives such as chlorstyrene; acrylic acid derivatives such as acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, and dodecyl acrylate; Or they are used as a mixture of two or more. Among these, styrene is preferred. Examples of the imidizing agent for forming the methacrylimide ring structural unit include ammonia, methylamine, butylamine, urea, and 1,3 dimethylurea. Among these, methylamine is preferred from the viewpoint of heat resistance. The non-polymerizable solvent may be any non-polymerizable solvent that can dissolve the raw material methacrylic resin and the product methacrylic imide ring structure component-containing polymer, such as benzene, methanol, a mixed solvent of toluene and methanol, and a mixture of xylene and methanol. Solvents etc. are used. The polymer () is usually 5000 ppm or less, preferably 5000 ppm or less, in order to prevent oxidative deterioration of the polymer.
Under an oxygen concentration atmosphere of 1000ppm or less, usually 150~
Produced at a temperature of 350°C, preferably 170-250°C. In addition, in order to prevent hydrolysis of the side chains of the polymer, it is usually 5000 ppm or less, preferably 1000 ppm or less.
Produced under anhydrous atmosphere: The composition of the present invention has a flow rate (FR) of 0.5 to 75 (according to ASTM D-1238 at 230°C, 10
It is particularly useful as a molding material having an extrusion rate (g) in 10 minutes under a load of Kg/ cm2 . The blending ratio of the methacrylic resin composition of the present invention is
In the composition, the amount of the copolymer () is usually 1 to 99% by weight, preferably 5 to 95% by weight. If this proportion is less than 1% by weight, the mechanical properties will be poor and 89
If it exceeds % by weight, chemical properties such as boiling resistance will be poor. There are no particular limitations on the method for producing the composition of the present invention, but for example, the copolymer () is produced by bulk polymerization, suspension polymerization, etc. in accordance with a conventional method, and the resulting copolymer () and polymer After mixing with coalescence (),
A method of producing a blended resin by melting, kneading, and extruding at a temperature of 200 to 300°C, and after dissolving the polymer in the monomer mixture used to produce the polymer, it contains a suspending and dispersing agent. Suspension polymerization or bulk polymerization in an aqueous medium can be employed. Additives such as ultraviolet absorbers, release agents, antioxidants, mold release agents, dyes and pigments may be added to the composition of the present invention, if necessary. The present invention will be explained in more detail below with reference to Examples and Comparative Examples. [Examples of the invention] Examples 1 to 3, Comparative Examples 1 and 2 650 g of methyl methacrylate, 50 g of α-methylstyrene, 150 g of styrene, and 150 g of maleic anhydride
2.3 g of t-dodecyl mercaptan was added as a molecular weight regulator to 1000 g of a monomer mixture consisting of the following: 2.3 g of t-dodecyl mercaptan was added as a molecular weight regulator, and the mixture was placed in a separable flask with an internal volume of 2 and equipped with a condenser, a thermometer, and a stirring bar. Next, while stirring, blow nitrogen gas to drive out the air in the system, and then heat until the temperature inside the flask reaches 70℃.
When the temperature reached 15°C, 0.2g of azobisisobutyronitrile was added as a polymerization initiator, and the temperature was increased from 95°C to 15°C.
After holding for a minute, the mixture was cooled to room temperature to obtain a syrup-like partial polymer having a particle size of 600 centipoise. For 1000 g of this partial polymer, 4 g of lauroyl peroxide, 3.0 g of t-dodecyl mercaptan as a molecular weight regulator, 0.3 g of "Tinuvin-P" (trade name, manufactured by Ciba Geigy) as an ultraviolet absorber,
“JP-504” (product name, Johoku Kagaku Co., Ltd.) as a release agent
) 0.2g, “Mark329” (product name,
1 g of Adeka Argus Co., Ltd. and 1 g of stearic acid monoglyceride as a mold release agent were added, and the mixture was sufficiently stirred to dissolve. This partial polymer mixture was injected through a polyvinyl chloride gasket into a mold consisting of a thermocouple set in a cell made of two tempered glass plates spaced 3 mm apart, and heated to 80°C water. It was polymerized and cured inside. After 30 minutes of checking the time from immersion in hot water until the internal temperature reaches its peak, the mold was taken out of the hot water and heat treated in an air heating oven at 130°C for 2 hours. After cooling, the glass plate was removed to obtain a resin plate with a thickness of about 3 mm. This plate was cut and crushed into pellets of about 3 to 4 mm.
A copolymer () was thus obtained. In the autoclave in Step 5, 1000 g of a sufficiently dried raw material methacrylic resin polymer (manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acrypet VH) and dry toluene were placed.
1000g was charged and dissolved with stirring. The resulting mixture was added to 387.5 g of a solution of methylamine gas dissolved in dry methanol to give a concentration of 40% by weight, heated, dissolved and stirred, and then heated at 230°C for 3 hours at a pressure of 50 kg/cm 2
The methacrylimide ring formation reaction was carried out under the following conditions. The resulting transparent syrup solution was dried in a hot air dryer at 120° C. overnight to remove the solvent, cut and ground into pellets of about 3 to 4 mm. N-methylmethacrylimide ring formation was determined by nuclear magnetic resonance absorption spectrum (FX-90- manufactured by JEOL Ltd.).
Q, 5% by weight solution of d-6 dimethyl sulfoxide,
Internal standard: tetramethylsilane, measured at 120°C)
The measurement and evaluation results were confirmed by the absorption at 2.95 ppm (δ value). Based on the area ratio, the N-methylmethacrylimidation rate was 60%. When this is heated and molded to create a test piece, it becomes a transparent test piece, and the practical heat resistance temperature (heat distortion temperature) (HDT) is
It was 125℃. In this way, an N-methylmethacrylimide ring structure-containing polymer () was obtained. The copolymer () and the polymer () were blended in a Henschel mixer in the proportions shown in Table 1, and then shaped into pellets using a twin-screw extruder at a temperature of 265°C. This pellet was injection molded under the following conditions, and the evaluation results shown in Table 2 were obtained from the resulting test piece (110 mm x 110 mm x 2 mm thickness). Injection molding machine: Japan Steel Works, Ltd., V-17-65 screw type automatic injection molding machine Injection molding conditions: Cylinder temperature 250-260℃, injection pressure 700Kg/cm 2 Mold temperature 60℃

【表】【table】

【表】【table】

【表】 比較例 3〜5 メタクリル酸メチル、α−メチルスチレンおよ
び無水マレイン酸を表3に示すような割合で配合
した単量体混合物1000gに、分子量調節剤として
t−ドデシルメルカプタン2.6gを加え、この混
合物を冷却管、温度計および撹拌棒を備えた内容
積2のセパラブルフラスコに入れた。次いで撹
拌しながら、窒素ガスを吹き込んで系内の空気を
追い出した後、加熱してフラスコ内温度が70℃で
重合開始剤としてアゾビスイソブチロニトリル
0.25gを添加し、内温95℃から15分間保持して室
温まで冷却し、シロツプ状部分重合物を得た。 この部分重合物1000gに対してラウロイルパー
オキシド4g、分子量調節剤としてt−ドデシル
メルカプタン3.0g、紫外線吸収剤として“チヌ
ビン−P”(商品名、チバガイギー社製)0.2g、
剥離剤として“JP−504”(商品名、城北化学(株)
製)0.2g、安定剤として“Mark329”(商品名、
アデカアーガス(株)製)1g、離型剤としてステア
リン酸モノグリセリド1gを加え、充分撹拌して
溶解させた。この部分重合体混合物を、ポリ塩化
ビニル製ガスケツトを介して3mmの間隔とした2
枚の強化ガラス板で形成されたセルに熱電対をセ
ツトしてなる鋳型中に注入し、80℃の温水中で重
合硬化させた。そして温水中に浸漬してから内温
がピークに達するまでの時間を確認してから30分
経過後、温水中から鋳型を取り出し、ついで130
℃の空気加熱炉中で2時間熱処理した。冷却後ガ
ラス板をはずし、板厚約3mmの樹脂板を得た。こ
の板を切断、粉砕し、3〜4mm程度のペレツト状
とした。
[Table] Comparative Examples 3 to 5 2.6 g of t-dodecyl mercaptan was added as a molecular weight regulator to 1000 g of a monomer mixture containing methyl methacrylate, α-methylstyrene, and maleic anhydride in the proportions shown in Table 3. This mixture was placed in a 2-volume separable flask equipped with a condenser, thermometer, and stirring bar. Next, while stirring, nitrogen gas was blown in to drive out the air in the system, and then heated to bring the temperature inside the flask to 70°C, and azobisisobutyronitrile was added as a polymerization initiator.
0.25 g was added, and the internal temperature was kept at 95° C. for 15 minutes and cooled to room temperature to obtain a syrup-like partial polymer. For 1000 g of this partial polymer, 4 g of lauroyl peroxide, 3.0 g of t-dodecyl mercaptan as a molecular weight regulator, 0.2 g of "Tinuvin-P" (trade name, manufactured by Ciba Geigy) as an ultraviolet absorber,
“JP-504” (product name, Johoku Kagaku Co., Ltd.) as a release agent
) 0.2g, “Mark329” (product name,
1 g of Adeka Argus Co., Ltd. and 1 g of stearic acid monoglyceride as a mold release agent were added, and the mixture was sufficiently stirred to dissolve. This partial polymer mixture was placed between two tubes with a spacing of 3 mm through a polyvinyl chloride gasket.
It was poured into a mold consisting of a thermocouple set in a cell formed from a sheet of tempered glass, and polymerized and hardened in warm water at 80°C. Then, after 30 minutes have passed after immersing the mold in hot water and checking the time until the internal temperature reaches its peak, remove the mold from the warm water, and then
Heat treatment was carried out for 2 hours in an air heating oven at .degree. After cooling, the glass plate was removed to obtain a resin plate with a thickness of about 3 mm. This plate was cut and crushed into pellets of about 3 to 4 mm.

【表】 このペレツトを40mmφの単軸押出機を用いて
265℃で賦形した。このペレツトを用いて、実施
例1と同じ条件下で射出成形し、得られた試験片
を評価した。その結果を表4に示す。
[Table] This pellet is made using a 40mmφ single screw extruder.
It was shaped at 265°C. Using this pellet, injection molding was carried out under the same conditions as in Example 1, and the obtained test pieces were evaluated. The results are shown in Table 4.

【表】 実施例 4〜6 メタクリル酸メチル665g、α−メチルスチレ
ン55g、p−メチルスチレン140g及び無水マレ
イン酸140gからなる単量体混合物を、実施例1
と同様に重合させて、厚さ3mmの板状共重合体を
得た。この共重合体を切断、粉砕後、実施例1の
N−メチルメタクリルイミド環含有重合体と表5
の割合で混合し、2軸押出機(温度260℃)で賦
形してペレツトとした後、このペレツトを実施例
1と同様に射出成形して得られた試験片を評価し
た。結果を表6に示す。
[Table] Examples 4 to 6 A monomer mixture consisting of 665 g of methyl methacrylate, 55 g of α-methylstyrene, 140 g of p-methylstyrene and 140 g of maleic anhydride was added to Example 1.
Polymerization was carried out in the same manner as above to obtain a plate-like copolymer with a thickness of 3 mm. After cutting and pulverizing this copolymer, the N-methylmethacrylimide ring-containing polymer of Example 1 and Table 5
The pellets were mixed in a ratio of 1 to 1, and formed into pellets using a twin-screw extruder (temperature: 260°C).The pellets were then injection molded in the same manner as in Example 1, and the test pieces obtained were evaluated. The results are shown in Table 6.

【表】【table】

【表】 実施例7〜10、比較例6〜11 実施例1と同様にして共重合体()を製造し
た。メタクリルイミド含有重合体()は、実施
例()と同様の方法で製造したが、表7の如く
メチルアミン仕込みを変えて、各種メタクリルイ
ミド化率を変化させて製造した。原料メタクリル
樹脂重合体はポリメチルメタクリレート(三菱レ
イヨン(株)製、商品名:アクリペツトVH)、メチ
ルメタクリレート−スチレン共重合体(ダイセル
(株)製、商品名:セビアンMAS30)及びメチルメ
タクリレート−メチルアクリレート共重合体(三
菱レイヨン(株)製、アクリペツトMF)を使用し
た。比較例としては、表7の如くポリメチルメタ
クリレート樹脂重合体、メチルメタクリレート−
スチレン共重合体、メチルメタクリレート−メチ
ルアクリレート共重合体をそのまま成形して評価
した。結果を表8に示す。
[Table] Examples 7 to 10, Comparative Examples 6 to 11 Copolymers () were produced in the same manner as in Example 1. The methacrylimide-containing polymer (2) was produced in the same manner as in Example (2), but by changing the methylamine charge as shown in Table 7 and varying the various methacrylimidization rates. The raw material methacrylic resin polymers are polymethyl methacrylate (manufactured by Mitsubishi Rayon Co., Ltd., product name: Acrypet VH), methyl methacrylate-styrene copolymer (manufactured by Daicel Co., Ltd.)
Co., Ltd., trade name: Cevian MAS30) and methyl methacrylate-methyl acrylate copolymer (Mitsubishi Rayon Co., Ltd., Acrypet MF) were used. As a comparative example, as shown in Table 7, polymethyl methacrylate resin polymer, methyl methacrylate-
A styrene copolymer and a methyl methacrylate-methyl acrylate copolymer were molded as they were and evaluated. The results are shown in Table 8.

【表】【table】

【表】【table】

【表】 [発明の効果] 以上に詳述した通り、本発明のメタクリル樹脂
組成物は、メタクリル樹脂本来の優れた光学的性
質、機械的性質、耐候性、成形加工性、生産性な
どの諸特性を保持したまま良好な透明性及び耐熱
性を有するものであり、その工業的価値は極めて
大である。
[Table] [Effects of the Invention] As detailed above, the methacrylic resin composition of the present invention has excellent optical properties, mechanical properties, weather resistance, moldability, productivity, etc. inherent to methacrylic resin. It has good transparency and heat resistance while retaining its properties, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】 1 (A) メタクリル酸メチル 40〜97重量% (B) α−メチルスチレン 1〜20重量% (C) スチレンもしくはビニルトルエン
1〜20重量%及び (D) 無水マレイン酸 1〜20重量% よりなる混合物を重合して得られる共重合体
() 1〜99重量% 並びに 一般式: (式中、Rは水素原子、炭素原子数1〜10の脂肪
族基、又は脂環族基もしくは芳香族基を含む炭素
数5〜10の炭化水素基を表わす) で示されるメタクリルイミド環構造単位を2重量
%以上含有する重合体() 1〜99重量% から成ることを特徴とする耐熱性メタクリル樹脂
組成物。 2 共重合体()を構成するαーメチルスチレ
ン由来の構造単位のモル数をα、スチレンもしく
はビニルトルエン由来の構造単位のモル数をβ並
びに無水マレイン酸由来の構造単位のモル数をγ
とするとき(α+β)/γが0.9〜1.7である特許
請求の範囲第1項記載の耐熱性メタクリル樹脂組
成物。 3 重合体()が、メタクリルイミド環構造単
位2重量%以上とビニル単量体又はビニル単量体
の混合物に由来する構造単位98重量%未満とから
なる特許請求の範囲第1項記載の耐熱性メタクリ
ル樹脂組成物。 4 ビニル単量体が、メタクリル酸誘導体、スチ
レン誘導体及びアクリル酸誘導体からなる群より
選ばれる少なくとも1種のものである特許請求の
範囲第3項記載の耐熱性メタクリル樹脂組成物。
[Claims] 1 (A) Methyl methacrylate 40-97% by weight (B) α-methylstyrene 1-20% by weight (C) Styrene or vinyltoluene
A copolymer () obtained by polymerizing a mixture consisting of 1 to 20% by weight and (D) maleic anhydride 1 to 20% by weight, and the general formula: (In the formula, R represents a hydrogen atom, an aliphatic group having 1 to 10 carbon atoms, or a hydrocarbon group having 5 to 10 carbon atoms including an alicyclic group or an aromatic group) A heat-resistant methacrylic resin composition comprising 1 to 99% by weight of a polymer containing 2% by weight or more of units. 2 The number of moles of structural units derived from α-methylstyrene constituting the copolymer () is α, the number of moles of structural units derived from styrene or vinyltoluene is β, and the number of moles of structural units derived from maleic anhydride is γ.
The heat-resistant methacrylic resin composition according to claim 1, wherein (α+β)/γ is 0.9 to 1.7. 3. The heat resistance according to claim 1, wherein the polymer () comprises 2% by weight or more of methacrylimide ring structural units and less than 98% by weight of structural units derived from a vinyl monomer or a mixture of vinyl monomers. methacrylic resin composition. 4. The heat-resistant methacrylic resin composition according to claim 3, wherein the vinyl monomer is at least one selected from the group consisting of methacrylic acid derivatives, styrene derivatives, and acrylic acid derivatives.
JP27447584A 1984-12-28 1984-12-28 Heat-resistant methacrylic resin composition Granted JPS61155443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27447584A JPS61155443A (en) 1984-12-28 1984-12-28 Heat-resistant methacrylic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27447584A JPS61155443A (en) 1984-12-28 1984-12-28 Heat-resistant methacrylic resin composition

Publications (2)

Publication Number Publication Date
JPS61155443A JPS61155443A (en) 1986-07-15
JPH0511141B2 true JPH0511141B2 (en) 1993-02-12

Family

ID=17542205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27447584A Granted JPS61155443A (en) 1984-12-28 1984-12-28 Heat-resistant methacrylic resin composition

Country Status (1)

Country Link
JP (1) JPS61155443A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125292A1 (en) * 2019-12-20 2021-06-24 株式会社クラレ Methacrylic copolymer, production method therefor, methacrylic copolymer composition, and molded body
CN115348979A (en) * 2020-03-24 2022-11-15 株式会社可乐丽 Methacrylic copolymer, composition, molded body, method for producing film or sheet, and laminate

Also Published As

Publication number Publication date
JPS61155443A (en) 1986-07-15

Similar Documents

Publication Publication Date Title
JP3471830B2 (en) Glass fiber reinforced thermoplastic resin composition
JPS61204255A (en) Polymer composition, formed composition and manufacture
JPH0510385B2 (en)
JPH0511141B2 (en)
EP0208291B1 (en) Heat-resistant methacrylic resin composition
JPH0129220B2 (en)
JP2594289B2 (en) Production method of transparent heat-resistant resin
JPS6020904A (en) Novel thermoplastic polymer
JPS6390516A (en) Heat-resistant thermoplastic resin
JPS6020905A (en) Novel thermoplastic polymer
JPH0517941B2 (en)
JPS61200108A (en) Rubber-modified thermoplastic resin composition
JPH03205407A (en) Transparent heat-resistant copolymer
JPH0129219B2 (en)
JPS6060111A (en) Thermoplastic polymer
JPS6343404B2 (en)
JPH0243207A (en) Modified copolymer
JPH0150336B2 (en)
JPS619459A (en) Thermoplastic resin composition
JPS6220549A (en) Discoloration-resistant resin composition
JPS6321186A (en) Optical disk material
JPH01289815A (en) Transparent thermoplastic molding material which is stable to thermal deformation, its production, and its use
JPH0696658B2 (en) Heat resistant resin composition
JPS6147707A (en) Heat-resistant copolymer
JPH10168258A (en) Thermoplastic resin composition