JPH0510385B2 - - Google Patents

Info

Publication number
JPH0510385B2
JPH0510385B2 JP27408984A JP27408984A JPH0510385B2 JP H0510385 B2 JPH0510385 B2 JP H0510385B2 JP 27408984 A JP27408984 A JP 27408984A JP 27408984 A JP27408984 A JP 27408984A JP H0510385 B2 JPH0510385 B2 JP H0510385B2
Authority
JP
Japan
Prior art keywords
weight
polymer
methacrylic resin
copolymer
methyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27408984A
Other languages
Japanese (ja)
Other versions
JPS61152758A (en
Inventor
Isao Sasaki
Koji Nishida
Masaru Morimoto
Yoshio Nakai
Yasunobu Shimomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP27408984A priority Critical patent/JPS61152758A/en
Publication of JPS61152758A publication Critical patent/JPS61152758A/en
Publication of JPH0510385B2 publication Critical patent/JPH0510385B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

発明の技術分野 本発明は、透明な耐熱性メタクリル暹脂組成物
に関する。 発明の技術的背景ずその問題点 メタクリル酞メチルを䞻成分ずするメタクリル
暹脂は光孊的性質及び耐候性が際めお優れ、か぀
機械的性質、熱的性質䞊びに成圢加工性などに぀
いおも比范的バランスのずれた性胜を有しおいる
ため、これらの特性を生かしお看板、照明甚カバ
ヌ、銘板、自動車郚品、電気機噚郚品、装食甚あ
るいは雑貚品など倚くの分野で広く䜿甚されおお
り、新たな甚途開発も進められおいる。 しかし、䞀面では熱倉圢枩床が100℃前埌ず、
耐熱性が十分でないために、その甚途の展開が制
玄されおいる分野もかなりあり、耐熱性の向䞊に
察する芁求には根匷いものがある。 メタクリル暹脂の耐熱性を向䞊させる方法に぀
いおはすでに倚くの提案がなされ、䟋えばメタク
リル酞メチルずα−メチルスチレンを共重合させ
る方法、メタクリル酞メチル、α−メチルスチレ
ン及び無氎マレむン酞を共重合させる方法特公
昭49−10156号、メタクリル酞メチル、スチレン
及び無氎マレむン酞を共重合させる方法特公昭
56−43242号、メタクリル酞メチル、α−メチル
スチレン、スチレンおよび無氎マレむン酞を共重
合させる方法特開昭56−81322号、ポリヌα−
メチルスチレンをメタクリル酞メチルに溶解した
埌メタクリル酞メチルを重合させる方法特公昭
43−1616号、特公昭49−8718号、メタクリル酞
メチルおよび−アリルマレむン酞むミドを共重
合させる方法特公昭43−9753号、メタクリル
酞メチル、α−メチルスチレン及びマレむミドを
共重合させる方法、倚官胜単量䜓を甚いた架橋ポ
リマヌの存圚䞋でメタクリル酞メチルを共重合さ
せる方法、メタクリル酞メチルにメタクリル酞を
共重合させる方法、メタクリル酞メチル、α−メ
チルスチレンおよびアクリロニトリルを共重合さ
せる方法などが提案されおいる。しかし、䞊蚘提
案の方法では重合速床が極めお小さいために、生
産性が著しく䜎くお実甚性がなか぀たり、機械的
性質、耐候性及び光孊的性質が䜎䞋したり、たた
成圢品が著しく着色したり、あるいは、成圢領域
が狭いために、成圢加工性が悪いなど、いずれの
堎合にも、耐熱性はある皋床改善されるものの、
実甚化するにあた぀お倚くの問題点が残されおい
るのが珟状である。 発明の目的 本発明の目的は、䞊蚘した問題点の解消にあ
り、メタクリル暹脂本来の優れた光孊的性質、機
械的性質、耐候性、成圢加工性、生産性などの諞
特性を䜎䞋させるこずなく、か぀透明性にも優れ
た耐熱性メタクリル暹脂組成物を提䟛するこずで
ある。 発明の抂芁 本発明者らはかかる珟状に鑑み、メタクリル暹
脂本来の優れた光孊的性質、機械的性質、耐候
性、成圢加工性、生産性などの諞特性を䜎䞋させ
るこずなく、か぀透明性にも優れた耐熱性メタク
リル暹脂に関しお鋭意研究を行な぀たり結果、特
定の配合組成を有するメタクリル酞メチル−α−
メチルスチレン−無氎マレむン酞の元共重合䜓
構造を有する共重合䜓ずメタクリルむミド環構造
単䜍を含有する重合䜓ずの暹脂混合物がその目的
を達成し埗るこずを芋い出し、本発明を完成する
に至぀たものである。 すなわち、本発明の耐熱性メタクリル暹脂組成
物は、 (A) メタクリル酞メチル 50〜98重量 (B) Bα−メチルスチレン 〜25重量及び (C) 無氎マレむン酞 〜25重量 よりなる混合物を重合しお埗られる共重合䜓
 〜99重量 䞊びに 䞀般匏 匏䞭、は氎玠原子、炭玠原子数〜10の脂肪
族基、又は脂環族基もしくは芳銙族基を含む炭玠
数〜10の炭化氎玠基を衚わす で瀺されるメタクリルむミド環構造単䜍を重量
以䞊含有する重合䜓〜99重量から成
るこずを特城ずするものである。 本発明の組成物においお共重合䜓を構成
するために䜿甚されるメタクリル酞メチル(A)は、
メタクリル暹脂本来の光孊的性質、耐候性又は機
械的性質を保持し、か぀メタクリルむミド環構造
単䜍含有重合䜓ずの盞溶性をよくするため
の成分である。䞭の(A)の割合が50重量未
満では䞊蚘の特性が倱われ、98重量を超えるず
耐熱性の向䞊が望めなくなる。奜たしい割合は60
〜80重量である。たた、共重合䜓の構成
成分であるα−メチルスチレン(B)は、盎接的にも
耐熱性を向䞊させる成分であるが、か぀耐熱性向
䞊成分である無氎マレむン酞の共重合反応性を高
めるこずにより間接的にも耐熱性を向䞊させる成
分である。䞭の(B)の割合が重量未満で
は生産性及び耐熱性の面で劣り、25重量を超え
るず機械的性質、光孊的性質が䜎䞋し、さらに耐
煮沞性が劣る傟向を瀺す。奜たしい割合は〜15
重量である。さらに、共重合䜓の構成成
分である無氎マレむン酞(C)は、共重合させるα−
メチルスチレンずの盞互䜜甚により共重合䜓の耐
熱性を向䞊させる成分である。䞭の(C)の割
合が重量未満では生産性及び耐熱性の点で劣
り、25重量を超えるず機械的性質が䜎䞋し、さ
らに耐煮沞性が悪くなる。奜たしい割合は〜25
重量である。 本発明の組成物においおは、最終的に埗られる
ブレンド暹脂の耐熱性、機械的性質、光孊的性
質、あるいは成圢加工性などの暹脂特性党般のバ
ランスを考慮するず、共重合䜓䞭のα−メ
チルスチレン由来の構造単䜍のモル数をα、無氎
マレむン酞由来の構造単䜍のモル数をβずしたず
き、αβが0.9〜1.7ずなるこずが最も奜たし
い。αβが0.9未満の堎合には耐氎性、機械的
性質が䜎䞋する傟向が認められ、1.7を超える堎
合には光孊的性質、耐熱性の䜎䞋が認められる。 本発明の組成物を構成する第二の重合䜓
は、メタクリルむミド暹脂本来の耐熱性を付䞎す
るためのものである。 すなわち、耐熱性を重芖する堎合には、重合䜓
䞭のメタクリルむミド環構造単䜍を増加さ
せればよく、機械的特性を重芖する堎合には、メ
タクリルむミド環構造単䜍を枛少させ、他の構造
単䜍たずえば、メタクリル酞メチル由来の構造
単䜍を増加させるこずが奜たしい。 䞊蚘メタクリルむミド環構造単䜍䞭、で衚わ
される炭玠原子数〜10の脂肪族基ずしおは、メ
チルアミン、゚チルアミン、プロピルアミン、ブ
チルアミン、ペンチルアミン、ヘキシルアミン、
ヘプチルアミン、オクチルアミン、ノニルアミ
ン、デシルアミンなどの盎鎖型及び分枝型などが
挙げられる。たた、脂環族基もしくは芳銙族基を
含む炭玠数〜10の炭化氎玠基ずしおはシクロペ
ンチルアミン、シクロヘキシルアミン、アニリ
ン、オルトトルむゞン、メタトルむゞン、パラト
ルむゞン、−トリメチルアニリンおよ
びパラ゚チルアニリンなどが挙げられる。重合䜓
䞭のメタクリルむミド環構造単䜍の割合は、
通垞、重量以䞊で、奜たしくは10重量以䞊
である。この割合が重量未満の堎合には十分
な耐熱性が望めない。重合䜓の重量平均分
子量は、通垞䞇〜50䞇で、奜たしくは䞇〜10
䞇である。この分子量が䞇未満の堎合には機械
的匷床が劣り、50䞇を超える堎合には成圢加工性
が劣る。たた、重合床は、通垞200〜3000で、奜
たしくは400〜2000である。 メタクリルむミド環構造成分を含有す重合䜓
の補造方法ずしおは、特に制限はないが、
アンモニア、アンモニア発生剀、第䞀玚アミン及
び第䞀玚アミン発生剀より成る矀から遞ばれる少
なくずも皮のむミド化剀を甚い、メタクリル暹
脂重合䜓を熱分解結合反応させる方法䟋えば、
米囜特蚱第2146209号、西独囜特蚱第1077872号、
同第1242369号などが挙げられる。透明性が優
れたメタクリルむミド環構造単䜍を重合䜓
を埗るには、非重合性溶媒䞭に原料メタクリル暹
脂を溶解した均䞀溶液系に、䞊蚘むミド化剀を導
入しお熱分解瞮合反応せしめた埌、埗られた反応
生成物から揮発性物質を分離陀去するこずが奜た
しい。 原料メタクリル暹脂ずは、䞊蚘むミド化剀ず反
応しお埗られるメタクリルむミド環構造単䜍を圢
成しうるメタクリル酞誘導䜓を含有する共重合䜓
である。メタクリル酞誘導䜓ずしおは、䟋えば、
メタクリル酞、メタクリル酞メチル、メタクリル
酞゚チル、メタクリル酞ブチル、メタクリル酞
tert−ブチル、メタクリル酞ヘキシル、メタクリ
ル酞オクチル、メタクリル酞ドデシルなどが䜿甚
される。これらの䞭でも、メタクリル酞メチルが
奜たしい。共重合成分ずしおは、メタクリル酞誘
導䜓ず共重合可胜なビニル単量䜓が挙げられる。
䟋えば、スチレン、ビニルトル゚ン、α−メチル
スチレン、クロルスチレンなどのスチレン誘導
䜓アクリル酞、アクリル酞メチル、アクリル酞
゚チル、アクリル酞プロピル、アクリル酞ブチ
ル、アクリル酞ヘキシル、アクリル酞オクチル、
アクリル酞ドデシルなどのアクリル酞誘導䜓が挙
げられる。これらの䞭でも、スチレンが奜たし
い。 メタクリルむミド環構造単䜍を圢成するための
むミド化剀ずしおは、アンモニア、メチルアミ
ン、ブチルアミン、尿玠、及びゞメチル尿
玠などが挙げられる。これらの䞭でも、耐熱性の
芳点からメチルアミンが奜たしい。非重合性溶媒
ずしおは、原料メタクリル暹脂及び生成物メタク
リルむミド環構造成分含有重合䜓が溶解可胜な非
重合性溶媒であればよく、ベンれン、メタノヌ
ル、トルメ゚ン・メタノヌルの混合溶媒、キシレ
ン・メタノヌルの混合溶媒等が䜿甚される。 重合䜓は、重合䜓の酞化劣化を防止する
ために、通垞、5000ppm以䞋、奜たしくは
1000ppm以䞋の酞玠濃床雰囲気䞋、通垞、150〜
350℃、奜たしくは170〜250℃の枩床で補造され
る。たた、重合䜓の偎鎖の加氎分解を防止するた
めに、通垞、5000ppm以䞋、奜たしくは1000ppm
以䞋の無氎雰囲気䞋で補造される。 本発明の組成物は0.5〜75のフロヌレヌト
FRASTM −1238に準拠しお230℃、10
Kgcm2荷重䞋での10分間の抌出量を甚す
る成圢材料ずしお特に有甚なものである。 本発明のメタクリル暹脂組成物の配合割合は、
組成物䞭、共重合䜓が、通垞、〜99重量
で、奜たしくは〜95重量である。この割合
が重量未満の堎合には耐熱性が劣り、99重量
を超えるず機械的性質の向䞊が望めない。 本発明の組成物を補造する方法ずしおは特に制
限はないが、䟋えば共重合䜓を垞法に埓぀
お塊状重合、懞濁重合などにより補造し、埗られ
た共重合䜓ず重合䜓ずを混合埌、
200〜300℃の枩床で溶融、混緎、抌出を行な぀お
ブレンド暹脂を補造する方法、重合䜓を補造する
に䜿甚される単量䜓混合物に重合䜓を溶解埌、懞
濁分散剀を含んだ氎媒䜓䞭で懞濁重合あるいは塊
状重合する方法などが採甚できる。 本発明の組成物には、必芁に応じお、玫倖線吞
収剀、剥離剀、酞化防止材、離型剀、染顔料など
の添加剀を添加しおもよい。 以䞋実斜䟋及び比范䟋を揚げ、本発明をさらに
詳しく説明する。 発明の実斜䟋 実斜䟋、比范䟋〜 メタクリル酞メチル、α−メチルスチレンおよ
び無氎マレむン酞を衚に瀺すように割合で配合
した単量䜓混合物1000に、分子量調節剀ずしお
−ドデシルメルカプタン2.5を加え、この混
合物を冷华管、枩床蚈および攪拌棒を備えた内容
積のセパラブルフラスコに入れた。次いで攪
拌しながら、窒玠ガスを吹き蟌んで系内の空気を
远い出した埌、加熱しおフラスコ内枩床が70℃に
な぀たずころで2′−アゟビス−−ゞ
メチルバレロニトリル0.2を添加し、内枩95
℃から15分間保持しお宀枩たで冷华し、シロツプ
状郚分重合物を埗た。 この郚分重合物1000に察しおラりロむルパヌ
オキシド、分子量調節剀−ドデシルメルカ
プタン3.0、玫倖線吞収剀ずしお“チヌビン−
”商品名、チバガむギヌ瀟補0.3、剥離剀
ずしお“JP−504”商品名、城北化孊(æ ª)補0.2
、安定剀ずしお“MarK 329”商品名、アデ
カアヌガス(æ ª)補、離型剀ずしおステアリン
酞モノグリセリドを加え、充分攪拌しお溶解
させた。この郚分重合䜓混合物を、ポリ塩化ビニ
ル補ガスケツトを介しおmmの間隔をおいお枚
の匷化ガラス板で圢成されたセルに熱電察をセツ
トしおなる鋳型䞭に泚入し、80℃の枩氎䞭で重合
硬化させた。そしお枩氎䞭に浞挬しおから内枩が
ピヌクに達するたでの時間を確認しおから30分経
過埌、枩氎䞭から鋳型を取り出し、130℃の空気
加熱炉䞭で時間熱凊理した。冷华埌ガラス板を
はずし板厚玄mmの暹脂板を埗た。この板を切
断、粉砕し、〜mm皋床のペレツト状ずした。
かくしお共重合䜓が埗られた。
[Technical Field of the Invention] The present invention relates to a transparent heat-resistant methacrylic resin composition. [Technical background of the invention and its problems] Methacrylic resin whose main component is methyl methacrylate has excellent optical properties and weather resistance, and is also compared in terms of mechanical properties, thermal properties, moldability, etc. Due to its well-balanced performance, it is widely used in many fields such as signboards, lighting covers, nameplates, automobile parts, electrical equipment parts, decorations, and miscellaneous goods. Development of new uses is also underway. However, on one side, the heat distortion temperature is around 100℃,
There are many fields in which the development of applications is restricted due to insufficient heat resistance, and there is a deep-rooted demand for improved heat resistance. Many proposals have already been made for methods of improving the heat resistance of methacrylic resins, such as a method of copolymerizing methyl methacrylate and α-methylstyrene, and a method of copolymerizing methyl methacrylate, α-methylstyrene, and maleic anhydride. (Special Publication No. 49-10156), a method for copolymerizing methyl methacrylate, styrene, and maleic anhydride (Special Publication No. 10156),
56-43242), method for copolymerizing methyl methacrylate, α-methylstyrene, styrene and maleic anhydride (JP-A-56-81322), polyα-
A method in which methyl styrene is dissolved in methyl methacrylate and then methyl methacrylate is polymerized (Tokuko Sho
43-1616, Japanese Patent Publication No. 49-8718), method for copolymerizing methyl methacrylate and N-allylmaleimide (Japanese Patent Publication No. 43-9753), copolymerization of methyl methacrylate, α-methylstyrene, and maleimide. A method of copolymerizing methyl methacrylate in the presence of a crosslinked polymer using a polyfunctional monomer, a method of copolymerizing methacrylic acid with methyl methacrylate, a method of copolymerizing methyl methacrylate, α-methylstyrene, and acrylonitrile. Polymerization methods have been proposed. However, since the polymerization rate of the above proposed method is extremely low, productivity is extremely low and it is not practical, mechanical properties, weather resistance, and optical properties are decreased, and the molded product is significantly colored. In either case, the heat resistance is improved to some extent, but the molding area is narrow and the molding processability is poor.
At present, many problems remain before it can be put into practical use. [Objective of the Invention] The object of the present invention is to solve the above-mentioned problems, which reduce the inherent excellent properties of methacrylic resin such as optical properties, mechanical properties, weather resistance, moldability, and productivity. It is an object of the present invention to provide a heat-resistant methacrylic resin composition that is free from heat and has excellent transparency. [Summary of the Invention] In view of the current situation, the present inventors have developed a transparent resin without deteriorating its inherent excellent optical properties, mechanical properties, weather resistance, moldability, productivity, etc. As a result of intensive research into heat-resistant methacrylic resin with excellent properties, we have developed methyl methacrylate-α- with a specific composition.
It was discovered that a resin mixture of a copolymer having a methyl styrene-maleic anhydride ternary copolymer structure and a polymer containing a methacrylimide ring structural unit can achieve the object, and in completing the present invention. It has been reached. That is, the heat-resistant methacrylic resin composition of the present invention consists of (A) 50-98% by weight of methyl methacrylate, (B) 1-25% by weight of Bα-methylstyrene, and (C) 1-25% by weight of maleic anhydride. Copolymer (I) obtained by polymerizing the mixture 1 to 99% by weight and general formula: (In the formula, R represents a hydrogen atom, an aliphatic group having 1 to 10 carbon atoms, or a hydrocarbon group having 5 to 10 carbon atoms including an alicyclic group or an aromatic group) It is characterized by consisting of 1 to 99% by weight of a polymer () containing 2% by weight or more of units. Methyl methacrylate (A) used to constitute the copolymer () in the composition of the present invention is:
This component maintains the original optical properties, weather resistance, or mechanical properties of the methacrylic resin and improves its compatibility with the polymer containing methacrylimide ring structural units. If the proportion of (A) in parentheses is less than 50% by weight, the above properties will be lost, and if it exceeds 98% by weight, no improvement in heat resistance can be expected. The preferred ratio is 60
~80% by weight. In addition, α-methylstyrene (B), which is a constituent component of the copolymer (), is a component that directly improves heat resistance. It is a component that indirectly improves heat resistance by increasing . If the proportion of (B) in parentheses is less than 1% by weight, productivity and heat resistance will be poor; if it exceeds 25% by weight, mechanical properties and optical properties will deteriorate, and boiling resistance will tend to deteriorate. show. The preferred ratio is 5-15
Weight%. Furthermore, maleic anhydride (C), which is a component of the copolymer (), is a copolymerized α-
A component that improves the heat resistance of the copolymer through interaction with methylstyrene. If the proportion of (C) in parentheses is less than 1% by weight, productivity and heat resistance will be poor; if it exceeds 25% by weight, mechanical properties will deteriorate and boiling resistance will further deteriorate. The preferred ratio is 5-25
Weight%. In the composition of the present invention, considering the overall balance of resin properties such as heat resistance, mechanical properties, optical properties, and moldability of the blended resin finally obtained, α in the copolymer () - When the number of moles of the structural unit derived from methylstyrene is α and the number of moles of the structural unit derived from maleic anhydride is β, it is most preferable that α/β is 0.9 to 1.7. When α/β is less than 0.9, water resistance and mechanical properties tend to decrease, and when it exceeds 1.7, optical properties and heat resistance tend to decrease. Second polymer () constituting the composition of the present invention
is for imparting the inherent heat resistance of methacrylimide resin. In other words, when placing emphasis on heat resistance, it is sufficient to increase the methacrylimide ring structural unit in the polymer (); when placing importance on mechanical properties, the methacrylimide ring structural unit may be reduced and other It is preferable to increase the number of structural units (for example, structural units derived from methyl methacrylate). In the above methacrylimide ring structural unit, examples of the aliphatic group having 1 to 10 carbon atoms represented by R include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine,
Examples include linear and branched types such as heptylamine, octylamine, nonylamine, and decylamine. Examples of hydrocarbon groups having 5 to 10 carbon atoms containing alicyclic groups or aromatic groups include cyclopentylamine, cyclohexylamine, aniline, orthotoluidine, metatoluidine, paratoluidine, 2,4,6-trimethylaniline, and paratoluidine. Examples include ethylaniline. The proportion of methacrylimide ring structural units in the polymer () is
It is usually 2% by weight or more, preferably 10% by weight or more. If this proportion is less than 2% by weight, sufficient heat resistance cannot be expected. The weight average molecular weight of the polymer () is usually 40,000 to 500,000, preferably 40,000 to 100,000.
Ten thousand. If the molecular weight is less than 40,000, the mechanical strength will be poor, and if it exceeds 500,000, the moldability will be poor. Further, the degree of polymerization is usually 200 to 3000, preferably 400 to 2000. There are no particular restrictions on the method for producing the polymer () containing a methacrylimide ring structure component, but
A method of subjecting a methacrylic resin polymer to a thermal decomposition bonding reaction using at least one imidizing agent selected from the group consisting of ammonia, an ammonia generator, a primary amine, and a primary amine generator (for example,
US Patent No. 2146209, West German Patent No. 1077872,
No. 1242369). Polymer of methacrylimide ring structural unit with excellent transparency ()
To obtain the above, the above imidizing agent is introduced into a homogeneous solution system in which the raw material methacrylic resin is dissolved in a non-polymerizable solvent to cause a thermal decomposition condensation reaction, and then volatile substances are separated from the resulting reaction product. It is preferable to remove it. The raw material methacrylic resin is a copolymer containing a methacrylic acid derivative capable of forming a methacrylimide ring structural unit obtained by reacting with the imidizing agent. Examples of methacrylic acid derivatives include:
Methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methacrylic acid
Tert-butyl, hexyl methacrylate, octyl methacrylate, dodecyl methacrylate, etc. are used. Among these, methyl methacrylate is preferred. Examples of copolymerizable components include vinyl monomers that can be copolymerized with methacrylic acid derivatives.
For example, styrene derivatives such as styrene, vinyltoluene, α-methylstyrene, chlorostyrene; acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate,
Examples include acrylic acid derivatives such as dodecyl acrylate. Among these, styrene is preferred. Examples of the imidizing agent for forming the methacrylimide ring structural unit include ammonia, methylamine, butylamine, urea, and 1,3 dimethylurea. Among these, methylamine is preferred from the viewpoint of heat resistance. The non-polymerizable solvent may be any non-polymerizable solvent that can dissolve the raw material methacrylic resin and the product methacrylic imide ring structure component-containing polymer, such as benzene, methanol, a mixed solvent of tolumene/methanol, or a mixed solvent of xylene/methanol. Solvents etc. are used. The polymer () is usually 5000 ppm or less, preferably 5000 ppm or less, in order to prevent oxidative deterioration of the polymer.
Under an oxygen concentration atmosphere of 1000ppm or less, usually 150~
Produced at a temperature of 350°C, preferably 170-250°C. In addition, in order to prevent hydrolysis of the side chains of the polymer, it is usually 5000 ppm or less, preferably 1000 ppm or less.
Produced under anhydrous atmosphere: The composition of the present invention has a flow rate (FR) of 0.5 to 75 (according to ASTM D-1238 at 230°C, 10
It is particularly useful as a molding material using a 10 minute extrusion rate (g) under a load of Kg/ cm2 . The blending ratio of the methacrylic resin composition of the present invention is
In the composition, the amount of the copolymer () is usually 1 to 99% by weight, preferably 5 to 95% by weight. If this proportion is less than 1% by weight, heat resistance will be poor, and if it exceeds 99% by weight, no improvement in mechanical properties can be expected. There are no particular limitations on the method for producing the composition of the present invention, but for example, the copolymer () is produced by bulk polymerization, suspension polymerization, etc. in accordance with a conventional method, and the resulting copolymer () and polymer After mixing with coalescence (),
A method of producing a blended resin by melting, kneading, and extruding at a temperature of 200 to 300°C, and after dissolving the polymer in the monomer mixture used to produce the polymer, it contains a suspending and dispersing agent. Suspension polymerization or bulk polymerization in an aqueous medium can be employed. Additives such as ultraviolet absorbers, release agents, antioxidants, mold release agents, dyes and pigments may be added to the composition of the present invention, if necessary. EXAMPLES The present invention will be explained in more detail with reference to Examples and Comparative Examples below. [Examples of the Invention] Example 1, Comparative Examples 1 to 3 To 1000 g of a monomer mixture containing methyl methacrylate, α-methylstyrene, and maleic anhydride in the proportions shown in Table 1, t was added as a molecular weight regulator. - 2.5 g of dodecyl mercaptan were added and the mixture was placed in a separable flask of internal volume 2 equipped with a condenser, thermometer and stirring bar. Next, while stirring, nitrogen gas was blown in to drive out the air in the system, and then heated and when the temperature inside the flask reached 70°C, 0.2 g of 2,2'-azobis-(2,4-dimethylvaleronitrile) was added. and internal temperature 95
The mixture was kept at ℃ for 15 minutes and cooled to room temperature to obtain a syrup-like partial polymer. For 1000 g of this partial polymer, 4 g of lauroyl peroxide, 3.0 g of t-dodecyl mercaptan as a molecular weight regulator, and ``tinuvin'' as an ultraviolet absorber.
P” (trade name, manufactured by Ciba Geigy) 0.3g, “JP-504” (trade name, manufactured by Johoku Kagaku Co., Ltd.) as a release agent 0.2
g, 1 g of "MarK 329" (trade name, manufactured by Adeka Argus Co., Ltd.) as a stabilizer, and 1 g of stearic acid monoglyceride as a mold release agent were added, and the mixture was sufficiently stirred to dissolve. This partial polymer mixture was injected through a polyvinyl chloride gasket into a mold consisting of a thermocouple set in a cell formed by two tempered glass plates spaced 3 mm apart, and heated to 80°C water. It was polymerized and cured inside. After 30 minutes had elapsed from the time the mold was immersed in the hot water until the internal temperature reached its peak, the mold was taken out of the hot water and heat treated in an air heating furnace at 130°C for 2 hours. After cooling, the glass plate was removed to obtain a resin plate with a thickness of approximately 3 mm. This plate was cut and crushed into pellets of about 3 to 4 mm.
A copolymer () was thus obtained.

【衚】 のオヌクレヌブ䞭に、十分也燥した原料メ
タクリル暹脂重合䜓䞉菱レむペン(æ ª)補、商品
名アクリペツトVH1000及び也燥トル゚ン
1000を仕蟌んで攪拌溶解した。埗られた混合物
を、也燥メタノヌル䞭にメチルアミンガスを溶解
しお40重量濃床ずした溶液387.5に添加しお
加熱溶解攪拌埌、230℃、時間圧力50Kgcm2の
条件䞋でメタクリルむミド環圢成反応を行぀た。
埗られた透明のシロツプ溶液を熱颚也燥機内で
120℃䞀昌倜也燥しお溶媒を陀去しお切断粉砕し
た埌、〜mm皋床のペレツト状ずした。 −メチルメタクリルむミド環圢成は栞磁気共
鳎吞収スペクトル日本電子(æ ª)補 FX−90−、
−ゞメチルスルホキシド重量溶液、内郚
基準テトラメチルシラン、120℃で枬定を枬
定評䟡した結果は、2.95ppmΎ倀における吞
収により確認された。面積比より−メチルメタ
クリルむミド化率は、60であ぀た。これを加熱
成圢しお、詊隓片を䜜成するず透明な詊片ずな
り、実甚耐熱枩床熱倉圢枩床HDTは、
125℃であ぀た。かくしお、−メチルメタクリ
ルむミド環構造含有重合䜓が埗られた。 前蚘共重合䜓ず䞊蚘重合䜓ずを
6040の重合割合で混合した埌、抌出機を甚いお
200〜270℃で賊圢し、ペレツト化抌出枩床270
℃した。 このペレツトを䞋蚘の条件で射出成圢し、埗ら
れた詊隓片110mm×110mm×mm厚から衚の
評䟡結果を埗た。 射出成圢機(æ ª)日本補鋌所補、−17−65型スク
リナヌ匏自動射出成圢機 射出成圢条件シリンダヌ枩床250〜260℃、射出
圧700Kgcm2金型枩床50℃
[Table] 1000 g of sufficiently dried raw material methacrylic resin polymer (manufactured by Mitsubishi Rayon Co., Ltd., trade name: AcryPets VH) and dry toluene were placed in the oaklave in Step 5.
1000g was charged and dissolved with stirring. The resulting mixture was added to 387.5 g of a solution of 40% concentration by dissolving methylamine gas in dry methanol, heated, dissolved and stirred, and then dissolved in methacrylic acid at 230°C for 3 hours at a pressure of 50 kg/ cm2 . An imide ring formation reaction was performed.
The resulting clear syrup solution was placed in a hot air dryer.
After drying at 120° C. for one day and night to remove the solvent, the pellets were cut and ground into pellets of about 3 to 4 mm. N-methylmethacrylimide ring formation was determined by nuclear magnetic resonance absorption spectroscopy (FX-90-Q, manufactured by JEOL Ltd.,
The results were confirmed by the absorption at 2.95 ppm (ÎŽ value). Based on the area ratio, the N-methylmethacrylimidation rate was 60%. When this is heated and molded to create a test piece, it becomes a transparent test piece, and the practical heat resistance temperature (heat distortion temperature) (HDT) is
It was 125℃. In this way, an N-methylmethacrylimide ring structure-containing polymer () was obtained. The above copolymer () and the above polymer ()
After mixing at a polymerization ratio of 60/40, using an extruder
Shape at 200-270℃ and pelletize (extrusion temperature 270℃)
℃). This pellet was injection molded under the following conditions, and the evaluation results shown in Table 2 were obtained from the resulting test piece (110 mm x 110 mm x 2 mm thickness). Injection molding machine: V-17-65 screw type automatic injection molding machine manufactured by Japan Steel Works, Ltd. Injection molding conditions: Cylinder temperature 250-260℃, injection pressure 700Kg/cm 2 Mold temperature 50℃

【衚】 実斜䟋 メタクリル酞メチル、α−メチルスチレン及び
無氎マレむン酞の配合組成をMMAα−
MeStMAH750140110重量比ずしお
埗られた重合䜓ず、実斜䟋で䜿甚した
−メチルメタクリルむミド環構造含有重合䜓
ずを重量比8020の混合割合に倉曎した以
倖は、実斜䟋ず同様に実隓をくり返しお本発明
の暹脂組成物を調補した。埗られた結果を衚に
瀺す。
[Table] Example 2 The composition of methyl methacrylate, α-methylstyrene, and maleic anhydride was changed to MMA/α-
The polymer () obtained as MeSt/MAH=750/140/110 (weight ratio) and the N used in Example 1
A resin composition of the present invention was prepared by repeating the experiment in the same manner as in Example 1, except that the weight ratio of the methyl methacrylimide ring structure-containing polymer () was changed to 80/20. The results obtained are shown in Table 3.

【衚】【table】

【衚】 癜化の皋床を目芖刀定する。
比范䟋 〜 メタクリル酞メチル、α−メチルスチレン、無
氎マレむン酞の配合組成が衚に瀺すような割合
である単量䜓混合物1000を甚いお重合䜓
を実斜䟋ず同様に補造し、mm厚の板を埗た。
この板を切断、粉砕した埌抌出機で賊圢しペレツ
ト化した。−メチルメタクリルむミド環含有重
合䜓をブレンドせずにこのペレツトだけを
䜿甚しお実斜䟋ず同様に射出成圢し、埗られた
詊隓片に぀いおその物性を評䟡した。 結果を衚に瀺す。
[Table] Visually judge the degree of whitening.
Comparative Examples 4 to 6 Polymer () was prepared using 1000 g of a monomer mixture containing methyl methacrylate, α-methylstyrene, and maleic anhydride in the proportions shown in Table 4.
was produced in the same manner as in Example 1 to obtain a 6 mm thick plate.
This plate was cut and crushed, and then shaped into pellets using an extruder. The pellets alone were injection molded in the same manner as in Example 1 without blending the N-methylmethacrylimide ring-containing polymer (2), and the physical properties of the obtained test pieces were evaluated. The results are shown in Table 5.

【衚】【table】

【衚】【table】

【衚】 実斜䟋〜、比范䟋、 メタクリル酞メチル560、α−メチルスチレ
ン240及び無氎マレむン酞200からなる単量䜓
混合物を、実斜䟋ず同様に重合させお、厚さ
mmの板状共重合䜓を埗た。この共重合䜓を切断、
粉砕埌、実斜䟋のメチルメタクリルむミド環含
有重合䜓ず衚の割合で混合し、軞抌出機を甚
い回転数250rpm、枩床260℃で賊圢しペレツトず
した埌、このペレツトを実斜䟋ず同様に射出成
圢しお埗られた詊隓片を評䟡した。 結果を衚に瀺す。
[Table] Examples 3 to 5, Comparative Examples 7 and 8 A monomer mixture consisting of 560 g of methyl methacrylate, 240 g of α-methylstyrene, and 200 g of maleic anhydride was polymerized in the same manner as in Example 1, and a thickness of 3
A plate-like copolymer of mm was obtained. Cutting this copolymer,
After pulverization, the mixture was mixed with the methylmethacrylimide ring-containing polymer of Example 1 in the proportions shown in Table 6, and shaped into pellets using a twin-screw extruder at a rotation speed of 250 rpm and a temperature of 260°C. A test piece obtained by injection molding in the same manner as in Example 1 was evaluated. The results are shown in Table 7.

【衚】【table】

【衚】【table】

【衚】 実斜䟋〜、比范䟋〜14 実斜䟋ず同様にしお共重合䜓を補造し
た。メタクリルむミド含有重合䜓は、実斜
䟋ず同様の方法で補造したが、衚の劂く
メチルアミン仕蟌みを倉えお各皮メタクリルむミ
ド化率を倉化させお補造した。原料メタクリル暹
脂重合䜓はポリメチルメタクリレヌト䞉菱レむ
ペン(æ ª)補、商品名アクリペツトVH、メチル
メタクリレヌト−スチレン共重合䜓ダむセル(æ ª)
補、商品名セビアンMAS30及びメチルメタ
クリレヌト・メチルアクリレヌト共重合䜓䞉菱
レむペン(æ ª)補、アクリペツトMFを䜿甚した。
原料メタクリル暹脂重合䜓ずしおポリメチルメタ
クリレヌト暹脂重合䜓、メチルメタクリレヌト−
スチレン共重合䜓、メチルメタクリレヌト−メチ
ルアクリレヌト共重合䜓をそのたた圢成しお比范
評䟡した。結果を衚に瀺す。
[Table] Examples 6 to 9, Comparative Examples 9 to 14 Copolymers () were produced in the same manner as in Example 1. The methacrylimide-containing polymer (2) was produced in the same manner as in Example (2), but by changing the methylamine charge and varying the methacrylimidation rate as shown in Table 8. The raw material methacrylic resin polymers are polymethyl methacrylate (manufactured by Mitsubishi Rayon Co., Ltd., product name: Acrypet VH), methyl methacrylate-styrene copolymer (manufactured by Daicel Corporation)
(trade name: Sebian MAS30) and a methyl methacrylate/methyl acrylate copolymer (Acrypet MF, manufactured by Mitsubishi Rayon Co., Ltd.) were used.
Polymethyl methacrylate resin polymer, methyl methacrylate as raw material methacrylic resin polymer
A styrene copolymer and a methyl methacrylate-methyl acrylate copolymer were formed as they were and comparatively evaluated. The results are shown in Table 9.

【衚】【table】

【衚】 発明の効果 以䞊に詳述した通り、本発明のメタクリル暹脂
組成物は、メタクリル暹脂本来の優れた光孊的性
質、機械的性質、耐候性、成圢加工性、生産性な
どの諞特性を保持したたた良奜な透明性及び耐熱
性を有するものであり、その工業的䟡倀は極めお
倧である。
[Table] [Effects of the Invention] As detailed above, the methacrylic resin composition of the present invention has excellent optical properties, mechanical properties, weather resistance, moldability, productivity, etc. inherent to methacrylic resin. It has good transparency and heat resistance while retaining its properties, and its industrial value is extremely large.

Claims (1)

【特蚱請求の範囲】  (A) メタクリル酞メチル 50〜98重量 (B) α―メチルスチレン 〜25重量及び (C) 無氎マレむン酞 〜25重量 よりなる混合物を重合しお埗られる共重合䜓(I)
〜99重量 䞊びに 䞀般匏 匏䞭、は氎玠原子、炭玠原子数〜10の脂肪
族基、又は脂環族基もしくは芳銙族基を含む炭玠
数〜10の炭化氎玠基を衚わす で瀺されるメタクリルむミド環構造単䜍を重量
以䞊含有する重合䜓〜99重量から成
るこずを特城ずする耐熱性メタクリル暹脂組成
物。  共重合䜓を構成するα−メチルスチレ
ン由来の構造単䜍のモル数をα、無氎マむレン酞
由来の構造単䜍のモル数をβずするずきαβが
0.9〜1.7である特蚱請求の範囲第項蚘茉の耐熱
性メタクリル暹脂組成物。  重合䜓が、メタクリルむミド環構造単
䜍重量以䞊ずビニル単量䜓又はビニル単量䜓
の混合物に由来する構造単98重量未満ずからな
る特蚱請求の範囲第項蚘茉の耐熱性メタクリル
暹脂組成物。  ビニル単量䜓が、メタクリル酞誘導䜓、スチ
レン誘導䜓及びアクリル酞誘導䜓からなる矀より
遞ばれる少なくずも皮のものである特蚱請求の
範囲第項蚘茉の耐熱性メタクリル暹脂組成物。
[Claims] 1. Obtained by polymerizing a mixture consisting of (A) 50-98% by weight of methyl methacrylate, (B) 1-25% by weight of α-methylstyrene, and (C) 1-25% by weight of maleic anhydride. Copolymer (I) I
1-99% by weight and general formula: (In the formula, R represents a hydrogen atom, an aliphatic group having 1 to 10 carbon atoms, or a hydrocarbon group having 5 to 10 carbon atoms including an alicyclic group or an aromatic group) A heat-resistant methacrylic resin composition comprising 1 to 99% by weight of a polymer () containing 2% by weight or more of units. 2 When α is the number of moles of the structural unit derived from α-methylstyrene constituting the copolymer (I) and β is the number of moles of the structural unit derived from maleic anhydride, α/β is
The heat-resistant methacrylic resin composition according to claim 1, which has a molecular weight of 0.9 to 1.7. 3. The heat resistance according to claim 1, wherein the polymer () comprises 2% by weight or more of methacrylimide ring structural units and less than 98% by weight of structural units derived from vinyl monomers or mixtures of vinyl monomers. methacrylic resin composition. 4. The heat-resistant methacrylic resin composition according to claim 3, wherein the vinyl monomer is at least one selected from the group consisting of methacrylic acid derivatives, styrene derivatives, and acrylic acid derivatives.
JP27408984A 1984-12-27 1984-12-27 Heat-resistant methacrylic resin composition Granted JPS61152758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27408984A JPS61152758A (en) 1984-12-27 1984-12-27 Heat-resistant methacrylic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27408984A JPS61152758A (en) 1984-12-27 1984-12-27 Heat-resistant methacrylic resin composition

Publications (2)

Publication Number Publication Date
JPS61152758A JPS61152758A (en) 1986-07-11
JPH0510385B2 true JPH0510385B2 (en) 1993-02-09

Family

ID=17536824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27408984A Granted JPS61152758A (en) 1984-12-27 1984-12-27 Heat-resistant methacrylic resin composition

Country Status (1)

Country Link
JP (1) JPS61152758A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117121A (en) * 1986-11-05 1988-05-21 Honda Motor Co Ltd Controlling method for composite intake system of internal combustion engine
JP2001270905A (en) * 2000-01-21 2001-10-02 Mitsubishi Rayon Co Ltd Heat-resistant methacrylic copolymer, manufacturing method therefor and optical element therefrom
WO2021125292A1 (en) * 2019-12-20 2021-06-24 株匏䌚瀟クラレ Methacrylic copolymer, production method therefor, methacrylic copolymer composition, and molded body
CN115348979A (en) * 2020-03-24 2022-11-15 株匏䌚瀟可乐䞜 Methacrylic copolymer, composition, molded body, method for producing film or sheet, and laminate

Also Published As

Publication number Publication date
JPS61152758A (en) 1986-07-11

Similar Documents

Publication Publication Date Title
US3992485A (en) Process for preparation of weather resistant and impact resistant resins
JPH0510385B2 (en)
EP0208291B1 (en) Heat-resistant methacrylic resin composition
JPS61204255A (en) Polymer composition, formed composition and manufacture
JPH0129220B2 (en)
JP3215719B2 (en) Polymer composition
Zhang et al. Acrylonitrile-styrene-acrylate particles with different microstructure for improving the toughness of poly (styrene-co-acrylonitrile) resin
JPH0511141B2 (en)
JPS6020904A (en) Novel thermoplastic polymer
JPS6020905A (en) Novel thermoplastic polymer
JPS6390516A (en) Heat-resistant thermoplastic resin
JPH04173863A (en) Resin composition
JPH0517941B2 (en)
JPH03205407A (en) Transparent heat-resistant copolymer
JP2501561B2 (en) Optical disc material
JPH0813922B2 (en) Acrylic modified N-arylmaleimide copolymer moldable composition
JPH0150336B2 (en)
JPH0129219B2 (en)
JPS619459A (en) Thermoplastic resin composition
JPS6289756A (en) Methacrylate resin composition
JPH01289815A (en) Transparent thermoplastic molding material which is stable to thermal deformation, its production, and its use
JPS6220549A (en) Discoloration-resistant resin composition
JPS6343404B2 (en)
JP2987975B2 (en) Low gloss thermoplastic resin composition
JPS62179553A (en) Thermoplastic resin composition