JPS6345694B2 - - Google Patents

Info

Publication number
JPS6345694B2
JPS6345694B2 JP56105599A JP10559981A JPS6345694B2 JP S6345694 B2 JPS6345694 B2 JP S6345694B2 JP 56105599 A JP56105599 A JP 56105599A JP 10559981 A JP10559981 A JP 10559981A JP S6345694 B2 JPS6345694 B2 JP S6345694B2
Authority
JP
Japan
Prior art keywords
resin
weight
parts
molded product
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56105599A
Other languages
Japanese (ja)
Other versions
JPS588605A (en
Inventor
Kazuo Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP10559981A priority Critical patent/JPS588605A/en
Publication of JPS588605A publication Critical patent/JPS588605A/en
Publication of JPS6345694B2 publication Critical patent/JPS6345694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/205Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising surface fusion, and bonding of particles to form voids, e.g. sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、耐熱性ならびに高速性に優れた合成
樹脂多孔質焼結軸受の製造方法に関するものであ
る。 〔従来の技術〕 従来、合成樹脂多孔質焼結軸受としてはポリア
ミド樹脂と鉛を主体としたもの、あるいはポリア
セタール樹脂と熱硬化性樹脂を主体としたものが
知られている。 〔発明が解決しようとする問導点〕 しかしながら、これらは耐熱性および高速性に
おいて十分に満足し得るものではなく、また製造
が繁雑となるとともに軸受としての寸法精度が得
難いという欠点がある。さらに近年軸受の使用条
件が苛酷となり、とくに高速高温雰囲気下ではこ
れらの軸受を使用することができないという問題
がある。 本発明は上述した問題点に鑑み、耐熱性および
高速性に優れ、製造が容易でかつ寸法精度の良好
な合成樹脂多孔質焼結軸受を得ることを目的とす
るものである。 〔問題点を解決するための手段〕 上述した目的を達成するべく、本発明はつぎの
技術的手段、すなわち構成を採る。 すなわち、ポリフエニレンサルフアイド樹
脂、パラオキシベンゾイル樹脂、ポリサルホン樹
脂、ポリエーテルサルホン樹脂から選ばれた一種
もしくは二種以上の熱可塑性樹脂50〜95wt%と
熱硬化性樹脂5〜50wt%とを混じて基体樹脂、
あるいは該基体樹脂100重量部に対し固体潤滑
剤5〜30重量%を混じて形成した混合粉末、該
基体樹脂100重量部に対し補強材10〜50重量部を
混じて形成した混合粉末、該基体樹脂100重量
部に対し固体潤滑剤5〜30重量%および補強材10
〜50重量部を両者の合量が70重量部を超えない範
囲で混じて形成した混合粉末、 を金型中に充填し、成型圧力900〜1600Kg/cm2
成型して所望の成型物を形成したのち、該成型物
を炉内で該熱可塑性樹脂の融点を0〜50℃超える
温度まで1〜8℃/分の連続もしくは段階的な累
積昇温条件下で加熱焼結することを特徴とする合
成樹脂多孔質焼結軸受の製造方法である。 上述した構成において、基体樹脂の主体をなす
熱可塑性樹脂はポリフエニレンサルフアイド樹
脂、パラオキシベンゾイル樹脂、ポリサルホン樹
脂、ポリエーテルサルホン樹脂から選択され、こ
れら樹脂は耐熱性に優れるもので、それぞれ単独
であるいはこれら二種以上をブレンドして使用す
ることができ、該ブレンドしたものは樹脂自体の
耐熱性、機械的強度ならびに自己潤滑性を改良す
ることができる。 該熱可塑性樹脂と混合されて基体樹脂を構成す
る熱硬化性樹脂は結合材の役割を果たすもので、
該熱可塑性樹脂との混和性がよく、かつ熱可塑性
樹脂の融点(ここで、熱可塑性樹脂の融点とは結
晶性の樹脂においてはその軟化点を言うものであ
り、本発明で使用する熱可塑性樹脂の融点をを例
示すれば、ポリフエニレンサルフアイド樹脂:
290℃、オキシベンゾイル樹脂:320℃、ポリサル
ホン樹脂:200℃、ポリエーテルサルホン樹脂:
230℃である。)近傍の温度において軟化するもの
であればよい。本発明ではポリイミド樹脂、フエ
ノール樹脂、エポキシ樹脂、シリコン樹脂、メラ
ミン樹脂などを使用して好結果を得た。 そして、熱可塑性樹脂と熱硬化性樹脂の混合割
合は熱可塑性樹脂50〜95wt%に対し熱硬化性樹
脂5〜50wt%、好ましくは70〜90:10〜30(wt
%)が適当である。 熱可塑性樹脂が95wt%以上で熱硬化性樹脂が
5wt%以下の配合割合からなる基体樹脂は、焼結
時に流動変形が生じ易く、また熱可塑性樹脂が
50wt%以下で熱可塑性樹脂が50wt%以上の配合
割合からなる基体樹脂は、軸受としての機械的強
度が低下するため好ましくない。 上述した熱可塑性樹脂と熱硬化性樹脂の混合割
合はつぎの合成樹脂多孔質焼結軸受の圧環強度定
数について試験した結果から確認した。 すなわち、熱可塑性樹脂としてポリフエニレン
サルフアイド樹脂粉末、熱硬化性樹脂としてのポ
リイミド樹脂粉末を使用し、熱可塑性樹脂と熱硬
化性樹脂の混合割合(熱可塑性樹脂/熱硬化性樹
脂)を100:0(重量比)から5重量比ずつ45:55
まで変化させて基体樹脂を構成し、該基体樹脂を
金型中に充填するとともに成型圧力1300Kg/cm2
成型して円筒成型物を得たのち、該成型物を炉内
で後述する焼結条件で加熱、焼結して円筒状の合
成樹脂多孔質焼結軸受(ブツシユ)を得た。 このようにして得た焼結軸受をその径方向に圧
縮し、圧環強度定数を測定したもので、その結果
を第3図に示す。 一般に合成樹脂多孔質焼結軸受としては圧環強
度定数が4Kg/cm2以上であることが好ましく、こ
の実験結果からも熱可塑性樹脂/熱硬化性樹脂の
混合割合は95〜50:5〜50(重量比)、好ましくは
90〜70:10〜30(重量比)が適当である。 該基体樹脂に配合される固体潤滑剤は軸受性
能、とくに乾燥潤滑性の向上を計るために混じる
もので、フツ素樹脂、グラフアイト、二硫化モリ
ブデン、さらには鉛、インジウムなどの軟質金属
粉末などが使用される。 そして、これらの固体潤滑剤は一種もしくは二
種以上を選択して使用することができ、該固体潤
滑剤の混合割合は該基体樹脂100重量部に対し5
〜30重量部が適当である。 固体潤滑剤の混合割合が5重量部以下では軸受
性能の向上が認められず、また30重量部以上では
焼結品の機械的強度を低下させる。 該基体樹脂に配合される補強材は該基体樹脂の
熱変形性、熱伝導性、表面硬度および機械的性質
などの向上を目的として混じるもので、ガラス繊
維、炭素繊維、チタン酸カリフアイバーなどの繊
維状物質、銅、錫、亜鉛あるいはこれらの合金か
らなる金属粉末、酸化チタン、酸化亜鉛などの金
属酸化物、硫酸バリウム、炭酸カルシウム、シリ
カ、マイカ、タルク、クレーなどの無機材などが
使用される。そして、これら補強材はいずれか一
種もしくは二種以上を選択して使用することがで
き、該補強材の配合割合は該基体樹脂100重量部
に対し10〜50重量部が適当である。 補強材の配合割合が10重量部以下では補強効果
が認められず、また50重量部以上では強度を向上
させる反面、軸受性能の低下を来すことになる。 さらに、上述した固体潤滑剤と補強材の両者を
基体樹脂に配合させることができる。 この場合、該基体樹脂への配合割合は該基体樹
脂100重量部に対し両者の合量が15〜70重量部を
超えない範囲とすることが好ましい。 両者の合量が15重量部以下では軸受性能の向上
および補強効果が認められず、また70重量部以上
では軸受性能の低下および焼結品を脆くするとい
う欠点が現れる。 上述した基体樹脂に配合される固体潤滑剤およ
びあるいは補強材の適正な組成範囲についてはつ
ぎの試験により確認した。 (試料) 熱可塑性樹脂としてポリフエニレンサルフアイ
ド樹脂粉末90wt%、熱硬化性樹脂としてポリイ
ミド樹脂10wt%を使用して基体樹脂を形成し、
該基体樹脂100重量部に対し、固体潤滑剤として
フツ素樹脂粉末3〜35重量部およびあるいは補強
材として銅粉3〜35重量部混合して混合物を形成
した後、該混合物を金型中に充填し、成型圧力
1300Kg/cm2で成型して円筒状成型物(ブツシユ)
を得た。ついでこの円筒成型物を加熱、焼結して
合成樹脂多孔質焼結軸受を得た後、含油処理を施
した。このようにして得た合成樹脂多孔質焼結軸
受について耐荷重試験および圧環強度定数につい
て試験した。その結果を下表に示す。 耐荷重試験のの試験条件はつぎのとおりであ
る。 (試験条件) 速 度:10m/min 荷 重:10Kg/cm2を10分間毎に累積負荷 相手材 :機械構造用炭素鋼(S45C) 試験方法:スラスト試験 なお、表中、符号Aは基体樹脂100重量部に対
する固体潤滑剤の混合割合(重量部)、符号Bは
基体樹脂100重量部に対する補強材の混合割合
(重量部)である。
[Industrial Field of Application] The present invention relates to a method for manufacturing a porous sintered synthetic resin bearing with excellent heat resistance and high speed. [Prior Art] Conventionally, as synthetic resin porous sintered bearings, those mainly made of polyamide resin and lead, or those mainly made of polyacetal resin and thermosetting resin are known. [Problems to be Solved by the Invention] However, these materials are not fully satisfactory in terms of heat resistance and high speed performance, and also have the disadvantage that manufacturing is complicated and dimensional accuracy as a bearing is difficult to obtain. Furthermore, in recent years, the conditions under which bearings are used have become more severe, and there is a problem in that these bearings cannot be used particularly in high-speed, high-temperature environments. In view of the above-mentioned problems, the present invention aims to provide a synthetic resin porous sintered bearing that has excellent heat resistance and high speed performance, is easy to manufacture, and has good dimensional accuracy. [Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention adopts the following technical means, that is, the configuration. That is, 50 to 95 wt% of one or more thermoplastic resins selected from polyphenylene sulfide resin, paraoxybenzoyl resin, polysulfone resin, and polyethersulfone resin are mixed with 5 to 50 wt% of a thermosetting resin. base resin,
Alternatively, a mixed powder formed by mixing 5 to 30 parts by weight of a solid lubricant to 100 parts by weight of the base resin, a mixed powder formed by mixing 10 to 50 parts by weight of a reinforcing material to 100 parts by weight of the base resin, the base 5-30% by weight of solid lubricant and 10% by weight of reinforcing material per 100 parts by weight of resin
A mixed powder made by mixing ~50 parts by weight of both in a range where the total amount does not exceed 70 parts by weight is filled into a mold and molded at a molding pressure of 900 to 1600 kg/cm 2 to form the desired molded product. After forming, the molded article is heated and sintered in a furnace to a temperature exceeding the melting point of the thermoplastic resin by 0 to 50 degrees Celsius under conditions of continuous or stepwise cumulative temperature increase of 1 to 8 degrees Celsius. This is a method for manufacturing a porous sintered synthetic resin bearing. In the above configuration, the thermoplastic resin that is the main component of the base resin is selected from polyphenylene sulfide resin, paraoxybenzoyl resin, polysulfone resin, and polyether sulfone resin, and these resins have excellent heat resistance and can be used individually. These resins can be used alone or as a blend of two or more of these, and the blend can improve the heat resistance, mechanical strength, and self-lubricating properties of the resin itself. The thermosetting resin that is mixed with the thermoplastic resin to form the base resin plays the role of a binder,
The thermoplastic resin used in the present invention has good miscibility with the thermoplastic resin, and the melting point of the thermoplastic resin (here, the melting point of the thermoplastic resin refers to the softening point of a crystalline resin; An example of the melting point of a resin is polyphenylene sulfide resin:
290℃, oxybenzoyl resin: 320℃, polysulfone resin: 200℃, polyethersulfone resin:
The temperature is 230℃. ) Any material that softens at a temperature in the vicinity of ) may be used. In the present invention, good results have been obtained using polyimide resins, phenolic resins, epoxy resins, silicone resins, melamine resins, and the like. The mixing ratio of thermoplastic resin and thermosetting resin is 50 to 95 wt% of thermoplastic resin to 5 to 50 wt% of thermosetting resin, preferably 70 to 90:10 to 30 (wt%).
%) is appropriate. Thermoplastic resin is 95wt% or more and thermosetting resin is
Base resins with a blending ratio of 5wt% or less tend to undergo flow deformation during sintering, and thermoplastic resins
A base resin having a blending ratio of 50 wt% or less and a thermoplastic resin of 50 wt% or more is not preferable because the mechanical strength of the bearing decreases. The mixing ratio of the thermoplastic resin and thermosetting resin described above was confirmed from the results of the following test on the radial crushing strength constant of a porous sintered synthetic resin bearing. That is, polyphenylene sulfide resin powder is used as the thermoplastic resin, polyimide resin powder is used as the thermosetting resin, and the mixing ratio of the thermoplastic resin and the thermosetting resin (thermoplastic resin/thermosetting resin) is 100. :0 (weight ratio) to 5 weight ratios 45:55
After filling the base resin into a mold and molding at a molding pressure of 1300 kg/cm 2 to obtain a cylindrical molded product, the molded product is sintered in a furnace as described below. A cylindrical synthetic resin porous sintered bearing (bush) was obtained by heating and sintering under the following conditions. The sintered bearing thus obtained was compressed in the radial direction and the radial crushing strength constant was measured, and the results are shown in FIG. Generally, it is preferable for a synthetic resin porous sintered bearing to have a radial crushing strength constant of 4 Kg/ cm2 or more, and from this experimental result, the mixing ratio of thermoplastic resin/thermosetting resin is 95-50:5-50 ( weight ratio), preferably
A suitable weight ratio is 90-70:10-30. The solid lubricant blended into the base resin is mixed to improve bearing performance, especially dry lubricity, and includes fluororesin, graphite, molybdenum disulfide, and soft metal powders such as lead and indium. is used. One or more of these solid lubricants can be selected and used, and the mixing ratio of the solid lubricant is 5 parts by weight per 100 parts by weight of the base resin.
~30 parts by weight is suitable. If the mixing ratio of the solid lubricant is less than 5 parts by weight, no improvement in bearing performance will be observed, and if it is more than 30 parts by weight, the mechanical strength of the sintered product will be reduced. The reinforcing material blended into the base resin is mixed for the purpose of improving the heat deformability, thermal conductivity, surface hardness, mechanical properties, etc. of the base resin, and includes glass fiber, carbon fiber, titanate cauliver, etc. Fibrous substances, metal powders made of copper, tin, zinc or their alloys, metal oxides such as titanium oxide and zinc oxide, and inorganic materials such as barium sulfate, calcium carbonate, silica, mica, talc, and clay are used. Ru. One or more of these reinforcing materials can be selected and used, and the appropriate blending ratio of the reinforcing materials is 10 to 50 parts by weight per 100 parts by weight of the base resin. If the proportion of the reinforcing material is less than 10 parts by weight, no reinforcing effect will be observed, and if it is more than 50 parts by weight, the strength will be improved, but bearing performance will deteriorate. Furthermore, both the solid lubricant and reinforcing material described above can be blended into the base resin. In this case, the blending ratio in the base resin is preferably such that the total amount of the two does not exceed 15 to 70 parts by weight per 100 parts by weight of the base resin. If the total amount of both is less than 15 parts by weight, no improvement in bearing performance or reinforcing effect will be observed, and if it is more than 70 parts by weight, there will be problems such as deterioration of bearing performance and making the sintered product brittle. The appropriate composition range of the solid lubricant and/or reinforcing material blended into the above-mentioned base resin was confirmed by the following test. (Sample) A base resin was formed using 90 wt% polyphenylene sulfide resin powder as a thermoplastic resin and 10 wt% polyimide resin as a thermosetting resin.
After forming a mixture by mixing 3 to 35 parts by weight of fluororesin powder as a solid lubricant and 3 to 35 parts by weight of copper powder as a reinforcing material to 100 parts by weight of the base resin, the mixture is placed in a mold. Filling and molding pressure
Molded with 1300Kg/cm 2 to make a cylindrical molded product (butsu)
I got it. This cylindrical molded product was then heated and sintered to obtain a synthetic resin porous sintered bearing, which was then subjected to oil impregnation treatment. The synthetic resin porous sintered bearing thus obtained was tested for load resistance and radial crushing strength constant. The results are shown in the table below. The test conditions for the load-bearing test are as follows. (Test conditions) Speed: 10m/min Load: Cumulative load of 10Kg/ cm2 every 10 minutes Compatible material: Carbon steel for mechanical structure (S45C) Test method: Thrust test In the table, the symbol A refers to the base resin The mixing ratio (parts by weight) of the solid lubricant with respect to 100 parts by weight, and the symbol B represents the mixing ratio (parts by weight) of the reinforcing material with respect to 100 parts by weight of the base resin.

【表】【table】

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 <実施例 > 熱可塑性樹脂として100メツシユアンダーのポ
リフエニレンサルフアイド樹脂粉末(フイリツプ
ス社製、商品名:ライトンP−4)90wt%と熱
硬化性樹脂として350メツシユアンダーのポリイ
ミド樹脂粉末(ローヌプーラン社製、商品名:ケ
ルイミド601)10wt%を混合して基体樹脂(混合
粉末)を得た。この基体樹脂を金型中に充填し、
成型圧力700Kg/cm2、900Kg/cm2、1100Kg/cm2
1300Kg/cm2、1300Kg/cm2、1500Kg/cm2、1700Kg/
cm2で成型し、内径20mm、外径25.6mm、長さ20mmの
成型品を得た。このようにして得た成型品を加熱
炉内に入れ、常温(25℃)から3℃/分の昇温条
件で約16分間昇温せしめた後、該温度で約15分間
保持する操作の繰り返しで段階的に累積昇温せし
めて330℃まで加熱した後、炉内で常温まで冷却
し、炉内から取り出して合成樹脂多孔質焼結軸受
を得た。 ついで、該焼結軸受に潤滑剤としてSAE#30
エンジンオイルを真空含浸せしめた。 このようにして得た合成樹脂多孔質焼結軸受の
成型圧力に対する寸法変化(金型寸法を基準とし
た)、潤滑剤の含浸率および圧縮強度について測
定した結果を第1図に示す。 また、成型圧力1300Kg/cm2の圧力で成型し、焼
結して得た合成樹脂多孔質焼結軸受の軸受性能
(耐荷重性)について試験した結果を第2図に示
す。 なお、試験条件は前記条件と同一条件で行つ
た。 第2図中、符号×のグラフは従来のポリアミド
樹脂多孔質焼結軸受について同様の試験を行つた
結果を示すものである。 これらの試験結果からも明らかなように、寸法
変化、含浸率および圧縮強度の結果を総合する
と、成型圧力は900〜1600Kg/cm2が適当であり、
また軸受性能としての耐荷重性は、100Kg/cm2
上(試験機の容量上100Kg/cm2で試験を中止し
た。)を示した。 <実施例 > 実施例で使用した熱可塑性樹脂と熱硬化性樹
脂を基体樹脂とし、該基体樹脂100重量部に対し
固体潤滑材としてフツ素樹脂(三井フロロケミカ
ル社製、商品名:テフロン7AJ)10重量部を混合
して混合粉末を得た。該混合粉末を金型中に充填
するとともに成型圧力1300Kg/cm2で成型し成型品
を得た。ついで、この成型品を前記実施例と同
一の条件で焼結して合成樹脂多孔質焼結軸受を得
た後、実施例と同様含浸処理を施した。 この合成樹脂多孔質焼結軸受の潤滑剤の含浸率
は13vol%であつた。 該合成樹脂多孔質焼結軸受の軸受性能としての
耐荷重性について行つた。その試験結果を第2図
に示す。 試験結果から、実施例で得た合成樹脂多孔質
焼結軸受は実施例における合成樹脂多孔質焼結
軸受に比べ、摩擦係数が若干低下する傾向を示し
ている。これは該焼結軸受中のフツ素樹脂の効果
であると思われる。 <実施例 > 前記実施例で用いた基体樹脂と同一の成分組
成を有する基体樹脂を用意し、該基体樹脂100重
量部に対し補強材として銅粉(福田金属箔粉工業
社製、CE−15)20重量部および酸化亜鉛粉末
(関東化学薬品社製)15重量部を混合して混合粉
末を得た。この混合粉末を前記実施例と同一の
成型条件および焼結条件で成型、焼結して合成樹
脂多孔質焼結軸受を得た後、含浸処理を施した。 このものの潤滑剤の含浸率は12.4vol%であつ
た。 ついで、この合成樹脂多孔質焼結軸受について
耐荷重試験を行つた結果、耐荷重性は100Kg/cm2
以上、摩擦係数は0.09〜0.12の範囲で実施例の
合成樹脂多孔質焼結軸受とほぼ同様の性能を示し
たが、摩擦面は実施例の軸受よりも良好であつ
た。 <実施例 > 前記実施例で用いた基体樹脂と同一の成分組
成を有する基体樹脂を用意し、該基体樹脂100重
量部に対し、固体潤滑剤としてフツ素樹脂粉末
(前記実施例と同一品)15重量部、補強材とし
て銅粉(上記実施例と同一品)25重量部および
酸化亜鉛粉末(上記実施例と同一品)20重量部
を混合して混合粉末を得た。この混合粉末を前記
実施例と同一の成型条件および焼結条件で成
型、焼結して合成樹脂多孔質焼結軸受を得た後、
含浸処理を施した。このものの潤滑剤の含浸率は
12.5vol%であつた。 ついで、該合成樹脂多孔質焼結軸受について耐
荷重試験を行つた。その結果を第2図に示す。 試験結果から、この合成樹脂多孔質焼結軸受は
前記実施例乃至実施例の軸受と比較して摩擦
係数は低下し、かつ摩擦面も良好であつた。 <実施例 > 熱可塑性樹脂として100メツシユアンダーのパ
ラオキシベンゾイル樹脂粉末(日本エコノール社
製、商品名:エコノールE100)90wt%と熱硬化
製樹脂として350メツシユアンダーのポリイミド
樹脂粉末(前記実施例と同一品)10wt%を基
体樹脂とし、該基体樹脂100重量部に対し、固体
潤滑剤としてフツ素樹脂粉末(前記実施例と同
一品)15重量部、補強材として銅粉(上記実施例
と同一品)25重量部および酸化亜鉛粉末(上記
実施例と同一品)20重量部を混合して混合粉末
を得た。この混合粉末を前記実施例と同一の成
型条件および焼結条件で成型、焼結して合成樹脂
多孔質焼結軸受を得た後、含浸処理を施した。 このものの潤滑剤の含浸率は12.8vol%であつ
た。 ついで、該合成樹脂多孔質焼結軸受について耐
荷重試験を行つた。その結果、耐荷重性は100
Kg/cm2以上、摩擦係数0.06〜0.08の範囲で、前記
実施例の合成樹脂多孔質焼結軸受と同等の性能
を示した。 <実施例 > 熱可塑性樹脂として100メツシユアンダーのポ
リエーテルサルホン樹脂粉末(英国ICI社製、商
品名:VICTREX200P)90wt%と熱硬化製樹脂
として350メツシユアンダーのポリイミド樹脂粉
末(前記実施例と同一品)10wt%を基体樹脂
とし、該基体樹脂100重量部に対し、固体潤滑剤
としてフツ素樹脂粉末(前記実施例と同一品)
10重量部を混合して混合粉末を得た。この混合粉
末を金型に充填し、成型圧力1300Kg/cm2の圧力で
成型して成型品を得た後、前記実施例と同様、
常温より3℃/分の昇温条件で約16分間昇温した
後、該温度で約15分間保持する操作の繰り返しで
段階的に累積昇温せしめ、270℃まで加熱、焼結
して合成樹脂多孔質焼結軸受を得た。この焼結軸
受に前記実施例と同様含浸処理を施した。 このものの潤滑剤の含浸率は12.4vol%であつ
た。 ついで、この合成樹脂多孔質焼結軸受について
耐荷重試験を行つた結果、耐荷重性は100Kg/cm2
摩擦係数は0.05〜0.08の範囲を示した。 <実施例 > 熱可塑性樹脂として100メツシユアンダーのポ
リエーテルサルホン樹脂粉末(前記実施例と同
一品)45wt%と100メツシユアンダーのポリサル
フオン樹脂粉末(日産化学工業社製、商品名:ユ
ーデルポリサルフオンP−1700)45wt%と熱硬
化性樹脂として350メツシユアンダーのポリイミ
ド樹脂粉末(前記実施例と同一品)10wt%と
を基体樹脂とし、該基体樹脂100重量部に対し固
体潤滑剤としてフツ素樹脂粉末(前記実施例と
同一品)10重量部を混合して混合物を得た。この
混合物を金型中に充填し、成型圧力1300Kg/cm2
圧力で成型して成型品を得た後、実施例と同
様、常温より3℃/分の昇温条件で約16分間昇温
した後、該温度で約15分間保持する操作の繰り返
しで段階的に累積昇温せしめ、250℃まで加熱し、
焼結して合成樹脂多孔質焼結軸受を得た。 こようにして得た焼結軸受に実施例と同様の
含浸処理を施した。このものの潤滑剤の含浸率は
12.3vol%であつた。ついで、この合成樹脂多孔
質焼結軸受について耐荷重試験を行つた結果、耐
荷重性は100Kg/cm2以上、摩擦係数は0.07〜0.09
の範囲を示した。 〔効果〕 上述した構成からなる本発明はつぎの効果を有
する。 耐熱性に優れる熱可塑性樹脂と熱硬化性樹脂
からなる基体樹脂、あるいは該基体樹脂に対し
一定割合の固体潤滑剤およびあるいは補強材を
混合した混合物を成型、加熱焼結した合成樹脂
多孔質焼結軸受で、該軸受は多孔質体であるた
め潤滑剤の含浸率が高く優れた軸受性能、すな
わち高速性、耐荷重性、低摩擦性を有し、かつ
機械的強度ならびに耐熱性に優れるため、高温
雰囲気での使用が可能となる。 常温で成型した成型物を累積昇温条件で焼結
するため、製造が簡易である。 寸法変化の少ない合成樹脂多孔質焼結軸受を
得ることができる。
Examples of the present invention will be described below. <Example> 90 wt% polyphenylene sulfide resin powder (manufactured by Philips Corporation, product name: Ryton P-4) with a mesh under of 100 as a thermoplastic resin and polyimide resin powder with a mesh under of 350 as a thermosetting resin ( A base resin (mixed powder) was obtained by mixing 10 wt% of Kerimide 601 (manufactured by Rhone-Poulenc). This base resin is filled into the mold,
Molding pressure 700Kg/cm 2 , 900Kg/cm 2 , 1100Kg/cm 2 ,
1300Kg/cm 2 , 1300Kg/cm 2 , 1500Kg/cm 2 , 1700Kg/
cm 2 to obtain a molded product with an inner diameter of 20 mm, an outer diameter of 25.6 mm, and a length of 20 mm. The molded product obtained in this way is placed in a heating furnace, the temperature is raised from room temperature (25°C) at a rate of 3°C/min for about 16 minutes, and the operation is then held at that temperature for about 15 minutes, which is repeated. After increasing the temperature cumulatively in stages to 330°C, it was cooled to room temperature in the furnace and taken out from the furnace to obtain a synthetic resin porous sintered bearing. Then, apply SAE#30 as a lubricant to the sintered bearing.
Vacuum impregnated with engine oil. FIG. 1 shows the results of measuring the dimensional change (based on mold dimensions), lubricant impregnation rate, and compressive strength of the synthetic resin porous sintered bearing thus obtained with respect to molding pressure. Furthermore, FIG. 2 shows the results of testing the bearing performance (load resistance) of a synthetic resin porous sintered bearing obtained by molding and sintering at a molding pressure of 1300 kg/cm 2 . The test conditions were the same as those described above. In FIG. 2, the graph marked with x shows the results of a similar test conducted on a conventional porous sintered polyamide resin bearing. As is clear from these test results, when combining the results of dimensional change, impregnation rate, and compressive strength, the appropriate molding pressure is 900 to 1600 Kg/ cm2 .
In addition, the load capacity as a bearing performance was 100Kg/cm 2 or more (the test was stopped at 100Kg/cm 2 due to the capacity of the testing machine). <Example> The thermoplastic resin and thermosetting resin used in the example were used as the base resin, and fluororesin (manufactured by Mitsui Fluorochemical Co., Ltd., product name: Teflon 7AJ) was used as a solid lubricant for 100 parts by weight of the base resin. A mixed powder was obtained by mixing 10 parts by weight. The mixed powder was filled into a mold and molded at a molding pressure of 1300 kg/cm 2 to obtain a molded product. Next, this molded product was sintered under the same conditions as in the previous example to obtain a synthetic resin porous sintered bearing, and then impregnated in the same manner as in the example. The lubricant impregnation rate of this synthetic resin porous sintered bearing was 13 vol%. The load bearing performance of the porous sintered synthetic resin bearing was examined. The test results are shown in Figure 2. The test results show that the synthetic resin porous sintered bearings obtained in Examples tend to have a slightly lower coefficient of friction than the synthetic resin porous sintered bearings in Examples. This seems to be an effect of the fluororesin in the sintered bearing. <Example> A base resin having the same composition as the base resin used in the above example was prepared, and copper powder (manufactured by Fukuda Metal Foil & Powder Industries Co., Ltd., CE-15) was added as a reinforcing material to 100 parts by weight of the base resin. ) and 15 parts by weight of zinc oxide powder (manufactured by Kanto Chemical Co., Ltd.) were mixed to obtain a mixed powder. This mixed powder was molded and sintered under the same molding and sintering conditions as in the previous example to obtain a synthetic resin porous sintered bearing, which was then subjected to an impregnation treatment. The lubricant impregnation rate of this product was 12.4 vol%. Next, we conducted a load-bearing test on this synthetic resin porous sintered bearing and found that the load-bearing capacity was 100Kg/cm 2
As described above, the friction coefficient was in the range of 0.09 to 0.12, and the performance was almost the same as that of the synthetic resin porous sintered bearing of the example, but the friction surface was better than that of the bearing of the example. <Example> A base resin having the same component composition as the base resin used in the above example was prepared, and fluororesin powder (same product as in the above example) was added as a solid lubricant to 100 parts by weight of the base resin. A mixed powder was obtained by mixing 25 parts by weight of copper powder (same product as in the above example) and 20 parts by weight of zinc oxide powder (same product as in the above example) as a reinforcing material. This mixed powder was molded and sintered under the same molding and sintering conditions as in the previous example to obtain a synthetic resin porous sintered bearing.
Impregnation treatment was performed. The lubricant impregnation rate of this product is
It was 12.5vol%. Then, a load test was conducted on the porous sintered synthetic resin bearing. The results are shown in FIG. The test results showed that this synthetic resin porous sintered bearing had a lower coefficient of friction and a better friction surface than the bearings of the above examples. <Example> 90wt% of paraoxybenzoyl resin powder (manufactured by Nippon Econol Co., Ltd., trade name: ECONOL E100) with a mesh under 100 as a thermoplastic resin and polyimide resin powder with a mesh under 350 as a thermosetting resin (as in the above example) The same product) was used as a base resin, and for 100 parts by weight of the base resin, 15 parts by weight of fluororesin powder (same product as in the above example) was used as a solid lubricant, and copper powder (same as in the above example) was used as a reinforcing material. A mixed powder was obtained by mixing 25 parts by weight of zinc oxide powder (product) and 20 parts by weight of zinc oxide powder (same product as in the above example). This mixed powder was molded and sintered under the same molding and sintering conditions as in the previous example to obtain a synthetic resin porous sintered bearing, which was then subjected to an impregnation treatment. The lubricant impregnation rate of this product was 12.8 vol%. Then, a load test was conducted on the porous sintered synthetic resin bearing. As a result, the load capacity is 100
Kg/cm 2 or more and a friction coefficient in the range of 0.06 to 0.08, which showed performance equivalent to that of the synthetic resin porous sintered bearing of the above example. <Example> 90 wt% polyethersulfone resin powder (manufactured by ICI, UK, product name: VICTREX200P) with a mesh under of 100 as a thermoplastic resin and polyimide resin powder with a mesh under of 350 as a thermosetting resin (the above example) (same product as in the above example) 10 wt% as a base resin, and fluororesin powder as a solid lubricant (same product as in the above example) for 100 parts by weight of the base resin.
A mixed powder was obtained by mixing 10 parts by weight. This mixed powder was filled into a mold and molded at a molding pressure of 1300 kg/cm 2 to obtain a molded product.
After increasing the temperature from room temperature for about 16 minutes at a rate of 3℃/min, the temperature is held at that temperature for about 15 minutes, which is repeated to cumulatively increase the temperature step by step. The synthetic resin is heated to 270℃ and sintered. A porous sintered bearing was obtained. This sintered bearing was subjected to impregnation treatment in the same manner as in the previous example. The lubricant impregnation rate of this product was 12.4 vol%. Next, we conducted a load-bearing test on this synthetic resin porous sintered bearing, and found that the load-bearing capacity was 100Kg/cm 2 .
The friction coefficient showed a range of 0.05-0.08. <Example> As a thermoplastic resin, 100 mesh under polyether sulfone resin powder (same product as in the above example) 45 wt% and 100 mesh under polysulfone resin powder (manufactured by Nissan Chemical Industries, Ltd., product name: Udel) were used. The base resin is 45 wt% of polysulfon P-1700) and 10 wt% of 350 mesh under polyimide resin powder (same product as in the above example) as a thermosetting resin, and a solid lubricant is added to 100 parts by weight of the base resin. Then, 10 parts by weight of fluororesin powder (the same product as in the above example) was mixed to obtain a mixture. This mixture was filled into a mold and molded at a molding pressure of 1300 kg/cm 2 to obtain a molded product.Then, the temperature was raised from room temperature for about 16 minutes at a rate of 3°C/min as in the example. After that, the temperature was repeatedly held at the temperature for about 15 minutes, and the temperature was raised cumulatively to 250°C,
A synthetic resin porous sintered bearing was obtained by sintering. The sintered bearing thus obtained was subjected to the same impregnation treatment as in the example. The lubricant impregnation rate of this product is
It was 12.3vol%. Next, we conducted a load-bearing test on this synthetic resin porous sintered bearing, and the results showed that the load-bearing capacity was 100 kg/ cm2 or more, and the coefficient of friction was 0.07 to 0.09.
The range of [Effects] The present invention having the above-described configuration has the following effects. A porous sintered synthetic resin made by molding, heating and sintering a base resin consisting of a thermoplastic resin and a thermosetting resin with excellent heat resistance, or a mixture of the base resin and a certain proportion of a solid lubricant and/or reinforcing material. Since the bearing is a porous material, it has a high lubricant impregnation rate and has excellent bearing performance, that is, high speed, load capacity, and low friction, and has excellent mechanical strength and heat resistance. It can be used in high temperature atmosphere. Manufacturing is simple because a molded product molded at room temperature is sintered under conditions of cumulative temperature rise. A synthetic resin porous sintered bearing with little dimensional change can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法で得られた合成樹脂
多孔質焼結軸受の成型圧力と寸法変化、潤滑剤の
含浸率および圧縮強度の関係を示すグラフ、第2
図は本発明の製造方法で得られた合成樹脂多孔質
焼結軸受と従来品の耐荷重試験結果を示すグラ
フ、第3図は本発明の製造方法で得られた合成樹
脂多孔質焼結軸受の熱可塑性樹脂と熱硬化性樹脂
の配合割合を変化させた時の圧環強度定数を測定
した結果を示すグラフである。
Fig. 1 is a graph showing the relationship between molding pressure, dimensional change, lubricant impregnation rate, and compressive strength of a synthetic resin porous sintered bearing obtained by the manufacturing method of the present invention;
The figure is a graph showing the load resistance test results of a synthetic resin porous sintered bearing obtained by the manufacturing method of the present invention and a conventional product. Figure 3 is a graph showing the synthetic resin porous sintered bearing obtained by the manufacturing method of the present invention. 2 is a graph showing the results of measuring the radial crushing strength constant when the blending ratio of thermoplastic resin and thermosetting resin was changed.

Claims (1)

【特許請求の範囲】 1 ポリフエニレンサルフアイド樹脂、パラオキ
シベンゾイル樹脂、ポリサルホン樹脂、ポリエー
テルサルホン樹脂から選ばれた一種もしくは二種
以上の熱可塑性樹脂50〜95wt%と熱硬化性樹脂
5〜50wt%とを混じて基体樹脂を形成し、該基
体樹脂を金型中に充填した後、成型圧力900〜
1600Kg/cm2で成型して成型物を形成し、ついで該
成型物を炉内で該熱可塑性樹脂の融点を0〜50℃
超える温度まで1〜8℃/分の連続もしくは段階
的な累積昇温条件下で加熱焼結することを特徴と
する合成樹脂多孔質焼結軸受の製造方法。 2 ポリフエニレンサルフアイド樹脂、パラオキ
シベンゾイル樹脂、ポリサルホン樹脂、ポリエー
テルサルホン樹脂から選ばれた一種もしくは二重
以上の熱可塑性樹脂50〜95wt%と熱硬化性樹脂
5〜50wt%とを混じて基体樹脂を形成し、該基
体樹脂100重量部に対し固体潤滑剤5〜30重量部
を混じて混合粉末を得たのち、該混合粉末を金型
中に充填し、成型圧力900〜1600Kg/cm2の圧力で
成型して成型物を形成し、ついで該成型物を炉内
で該熱可塑性樹脂の融点を0〜50℃超える温度ま
で1〜8℃/分の連続もしくは段階的な累積昇温
条件下で加熱焼結することを特徴とする合成樹脂
多孔質焼結軸受の製造方法。 3 ポリフエニレンサルフアイド樹脂、パラオキ
シベンゾイル樹脂、ポリサルホン樹脂、ポリエー
テルサルホン樹脂から選ばれた一種もしくは二種
以上の熱可塑性樹脂50〜95wt%と熱硬化性樹脂
5〜50wt%とを混じて基体樹脂を形成し、該基
体樹脂100重量部に対し補強材10〜50重量部を混
じて混合粉末を得たのち、該混合粉末を金型中に
充填し、成型圧力900〜1600Kg/cm2で成型して成
型物を形成し、ついで該成型物を炉内で該熱可塑
性樹脂の融点を0〜50℃超える温度まで1〜8
℃/分の連続もしくは段階的な累積昇温条件下で
加熱焼結することを特徴とする合成樹脂多孔質焼
結軸受の製造方法。 4 ポリフエニレンサルフアイド樹脂、パラオキ
シベンゾイル樹脂、ポリサルホン樹脂、ポリエー
テルサルホン樹脂から選ばれた一種もしくは二種
以上の熱可塑性樹脂50〜95wt%と熱硬化性樹脂
5〜50wt%とを混じて基体樹脂を形成し、該基
体樹脂100重量部に対し固体潤滑剤5〜30重量部
と補強材10〜50重量部とを両者の合量が70重量部
を超えない範囲で混じて混合粉末を得たのち、該
混合粉末を金型中に充填し、成型圧力900〜1600
Kg/cm2で成型して成型物を形成し、ついで該成型
物を炉内で該熱可塑性樹脂の融点を0〜50℃超え
る温度まで1〜8℃/分の連続もしくは段階的な
累積昇温条件下で加熱焼結することを特徴とする
合成樹脂多孔質焼結軸受の製造方法。
[Claims] 1. 50 to 95 wt% of one or more thermoplastic resins selected from polyphenylene sulfide resin, paraoxybenzoyl resin, polysulfone resin, and polyethersulfone resin, and 5 to 95 wt% of thermosetting resin. 50wt% to form a base resin, and after filling the base resin into a mold, the molding pressure is 900 ~
A molded product is formed by molding at 1600Kg/cm 2 , and then the molded product is heated to a melting point of the thermoplastic resin of 0 to 50°C in a furnace.
1. A method for producing a porous sintered synthetic resin bearing, which comprises heating and sintering the bearing under conditions of continuous or stepwise cumulative temperature increase of 1 to 8° C./min to a temperature exceeding 1° C./min. 2 50 to 95 wt% of one or more thermoplastic resins selected from polyphenylene sulfide resin, paraoxybenzoyl resin, polysulfone resin, polyether sulfone resin and 5 to 50 wt% of thermosetting resin are mixed. After forming a base resin and mixing 100 parts by weight of the base resin with 5 to 30 parts by weight of a solid lubricant to obtain a mixed powder, the mixed powder was filled into a mold and the molding pressure was 900 to 1600 kg/cm. 2 to form a molded product, and then the molded product is continuously or stepwise cumulatively heated at 1 to 8°C/min to a temperature exceeding the melting point of the thermoplastic resin by 0 to 50°C in a furnace. A method for producing a porous sintered synthetic resin bearing characterized by heating and sintering it under certain conditions. 3 50 to 95 wt% of one or more thermoplastic resins selected from polyphenylene sulfide resin, paraoxybenzoyl resin, polysulfone resin, and polyethersulfone resin and 5 to 50 wt% of thermosetting resin are mixed. After forming a base resin and mixing 10 to 50 parts by weight of a reinforcing material to 100 parts by weight of the base resin to obtain a mixed powder, the mixed powder is filled into a mold and a molding pressure of 900 to 1600 Kg/cm 2 is obtained. to form a molded product, and then heat the molded product in a furnace to a temperature of 0 to 50°C higher than the melting point of the thermoplastic resin.
A method for producing a porous sintered synthetic resin bearing characterized by heating and sintering under conditions of continuous or stepwise cumulative temperature increase at ℃/min. 4 50 to 95 wt% of one or more thermoplastic resins selected from polyphenylene sulfide resin, paraoxybenzoyl resin, polysulfone resin, and polyethersulfone resin and 5 to 50 wt% of thermosetting resin are mixed. A base resin is formed, and 100 parts by weight of the base resin is mixed with 5 to 30 parts by weight of a solid lubricant and 10 to 50 parts by weight of a reinforcing material in such a range that the total amount of both does not exceed 70 parts by weight to form a mixed powder. After obtaining, the mixed powder is filled into a mold and the molding pressure is 900 to 1600.
Kg/cm 2 to form a molded product, and then the molded product is heated in a furnace to a temperature that exceeds the melting point of the thermoplastic resin by 0 to 50°C, with continuous or stepwise cumulative heating of 1 to 8°C/min. A method for producing a porous sintered synthetic resin bearing characterized by heating and sintering it under warm conditions.
JP10559981A 1981-07-08 1981-07-08 Porous sintered bearing made of synthetic resin and manufacture thereof Granted JPS588605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10559981A JPS588605A (en) 1981-07-08 1981-07-08 Porous sintered bearing made of synthetic resin and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10559981A JPS588605A (en) 1981-07-08 1981-07-08 Porous sintered bearing made of synthetic resin and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS588605A JPS588605A (en) 1983-01-18
JPS6345694B2 true JPS6345694B2 (en) 1988-09-12

Family

ID=14411954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10559981A Granted JPS588605A (en) 1981-07-08 1981-07-08 Porous sintered bearing made of synthetic resin and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS588605A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182853A (en) * 1983-03-31 1984-10-17 Sumitomo Chem Co Ltd Polyether sulfone resin composition
JPS59182854A (en) * 1983-03-31 1984-10-17 Sumitomo Chem Co Ltd Aromatic polysulfone resin composition
JPS60206873A (en) * 1984-03-30 1985-10-18 Dainippon Ink & Chem Inc Polyphenylene sulfide composition for paint
JPS61203172A (en) * 1985-03-04 1986-09-09 Sumitomo Chem Co Ltd Aromatic polysulfone resin composition
JPS61138659A (en) * 1984-12-11 1986-06-26 Sumitomo Chem Co Ltd Aromatic polysulfon resin composition
DE3601569A1 (en) * 1986-01-21 1987-07-23 Kolbenschmidt Ag COMPOSITE SLIDING BEARING MATERIAL
US5041335A (en) * 1988-05-02 1991-08-20 Sekisui Kagaku Kogyo Kabushiki Kaisha Undercoat composition and a metal substrate coated with a resin composition
JP3715512B2 (en) * 2000-06-01 2005-11-09 大同メタル工業株式会社 Multi-layer sliding material
JP5095115B2 (en) * 2006-03-27 2012-12-12 Ntn株式会社 Hydrodynamic bearing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069449A (en) * 1973-07-04 1975-06-10
JPS5273275A (en) * 1975-12-12 1977-06-18 Phillips Petroleum Co Selfflubricating composion or molded product of the like
JPS549263A (en) * 1977-06-22 1979-01-24 Grelan Pharmaceut Co Ltd 3-methyl-3-(4-(1-oxo-2-isoindolynyl)phneyl) pyruvic acid ester and process for its preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5069449A (en) * 1973-07-04 1975-06-10
JPS5273275A (en) * 1975-12-12 1977-06-18 Phillips Petroleum Co Selfflubricating composion or molded product of the like
JPS549263A (en) * 1977-06-22 1979-01-24 Grelan Pharmaceut Co Ltd 3-methyl-3-(4-(1-oxo-2-isoindolynyl)phneyl) pyruvic acid ester and process for its preparation

Also Published As

Publication number Publication date
JPS588605A (en) 1983-01-18

Similar Documents

Publication Publication Date Title
US5236784A (en) Bearing material and plastic bearing
US5433870A (en) Multilayered sliding member
EP2087250B1 (en) Bearing having improved consume resistivity and manufacturing method thereof
US20020015839A1 (en) Composite sliding material
US4425247A (en) Composite self-lubricating material
JPS62184225A (en) Composite material for sliding bearing and manufacture thereof
JP4749260B2 (en) Sintered oil-impregnated bearing
CN109692951B (en) Method for manufacturing powder metallurgy self-lubricating bearing
JPS6345694B2 (en)
JPS6313953B2 (en)
US20190226525A1 (en) Sliding member
JP2009079136A (en) Copper-based, oil-impregnated and sintered sliding member
JP3613569B2 (en) Composite metal powder for sintered bearing and sintered oil-impregnated bearing
KR20050106066A (en) Boreable plain bearing material
GB2358866A (en) PTFE sliding material for bearings
JP3026269B2 (en) Sliding material
JP2004323789A (en) Composite material for sliding member and method for producing the same
JP2003021144A (en) Resin composite sliding member and manufacturing method of the same
JPS62253702A (en) Production of two-layered oil-impregnated bearing made of sintered fe base material
GB2249811A (en) High temperature sliding bearing
JP3590415B2 (en) Resin composition for sliding member and multilayer sliding member
JP3254830B2 (en) Sintered sliding member
JPH11302487A (en) Sliding member resin composition and sliding member using the same
JP2008297361A (en) Copper-based oil-impregnated sintered sliding member
JP2587457B2 (en) Cage for rolling bearing