JP2003021144A - Resin composite sliding member and manufacturing method of the same - Google Patents

Resin composite sliding member and manufacturing method of the same

Info

Publication number
JP2003021144A
JP2003021144A JP2001209188A JP2001209188A JP2003021144A JP 2003021144 A JP2003021144 A JP 2003021144A JP 2001209188 A JP2001209188 A JP 2001209188A JP 2001209188 A JP2001209188 A JP 2001209188A JP 2003021144 A JP2003021144 A JP 2003021144A
Authority
JP
Japan
Prior art keywords
resin
sliding member
filler
based composite
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001209188A
Other languages
Japanese (ja)
Inventor
Atsushi Kimoto
淳志 木本
Toronron Tan
トロンロン タン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001209188A priority Critical patent/JP2003021144A/en
Publication of JP2003021144A publication Critical patent/JP2003021144A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problems in a resin composite sliding member compositely combining a glass fiber excelling in mechanical strength in a tetrafluoroethylene resin excelling in sliding performance, which has an excellent sliding characteristic and abrasion resistance, in using as a sliding member such as a bearing and a shaft seal in oil because of its lubricant function to form an oil film over a sliding surface, and synergizes with the excellent sliding performance of the tetrafluoroethylene resin itself where as in an underwater use, a liquid film of water is hard to form and a lubricating action is lowered to deteriorate a sliding characteristic, and the glass fiber, which is generally harder than a mating member in sliding contact, lowers abrasion resistance as a resin system composite material. SOLUTION: A tetrafluoroethylene resin matrix includes a fibrous filler or particulate filler with self-lubricity, and the hardness of the filler is set at most equivalent to the strength of a mating member in sliding contact with the resin system composite sliding member. The resin composite sliding member can thus have an excellent sliding characteristic and excel in abrasion resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水中で回転または
往復運動する部材と摺動接触する軸受や軸シール等に用
いられる樹脂系複合摺動部材およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-based composite sliding member used for bearings, shaft seals, etc., which are in sliding contact with a member that rotates or reciprocates in water, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、工業技術の発展に伴って単体材料
では実現が困難な複数の機能を兼備した材料、例えば特
性の異なる2種の材料を複合化した複合材料の要求が高
まっている。このような2種の材料を複合化するには、
ブレンド法等を適用して複合材料を製造することができ
る。
2. Description of the Related Art In recent years, along with the development of industrial technology, there has been an increasing demand for a material having a plurality of functions which is difficult to realize with a single material, for example, a composite material obtained by compositing two kinds of materials having different characteristics. To combine these two materials,
A composite material can be manufactured by applying a blending method or the like.

【0003】ところで、複合材料に対する要求特性はよ
り複雑化しており、摺動性能の優れた四ふっ化エチレン
樹脂と、機械的強度の優れたガラス繊維とを複合化する
ようなことも求められている。このガラス繊維で強化し
た四ふっ化エチレン樹脂系複合材料を油中の軸受や軸シ
ール等の摺動部材に用いる場合、油が潤滑剤となり摺動
面に油膜を形成し、さらに四ふっ化エチレン樹脂自身の
優れた摺動性能との相乗効果で優れた摺動特性が得ら
れ、耐摩耗性も大幅に向上する。
By the way, the properties required for composite materials are becoming more complex, and it is also required to combine tetrafluoroethylene resin, which has excellent sliding performance, with glass fiber, which has excellent mechanical strength. There is. When this glass fiber reinforced tetrafluoroethylene resin-based composite material is used for sliding members such as bearings and shaft seals in oil, oil acts as a lubricant to form an oil film on the sliding surface. Excellent sliding characteristics are obtained by the synergistic effect with the excellent sliding performance of the resin itself, and wear resistance is also greatly improved.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記ガラス繊
維強化四ふっ化エチレン樹脂系複合材料を水中の軸受や
軸シール等の摺動部材に用いた場合、油に比べ水の液膜
は形成されにくく潤滑作用も小さい。さらに、ガラス繊
維は一般的に軸受や軸シールなどの摺動部材と接する相
手形部材の材質よりも硬いために、四ふっ化エチレン樹
脂系複合材料の耐摩耗性が低下する場合がある。
However, when the glass fiber reinforced tetrafluoroethylene resin-based composite material is used as a sliding member such as an underwater bearing or shaft seal, a liquid film of water is formed as compared with oil. Difficult to lubricate. Furthermore, since glass fibers are generally harder than the material of the mating member that contacts sliding members such as bearings and shaft seals, the wear resistance of the tetrafluoroethylene resin-based composite material may decrease.

【0005】本発明は以上の欠点を除去して、水中の軸
受や軸シール等に用いられる樹脂系複合摺動部材におい
て、高強度で、低摩擦係数で、優れた摺動性能を有し、
さらに耐摩耗性に優れた樹脂系複合摺動部材を提供する
ことを目的とする。
The present invention eliminates the above drawbacks and provides a resin-based composite sliding member used for underwater bearings, shaft seals, etc., with high strength, low friction coefficient, and excellent sliding performance.
Another object is to provide a resin-based composite sliding member having excellent wear resistance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の樹脂系複合摺動部材において、請求項1に記
載された発明では、水中で回転または往復運動する部材
と摺動接触する樹脂系複合摺動部材において、四ふっ化
エチレン樹脂マトリックス中に自己潤滑性を有した充填
材を含有する複合材料を用いることを特徴とする。この
ようにすると、自己潤滑性を有する充填材により優れた
摺動特性が得られる。
In order to achieve the above object, in the resin-based composite sliding member of the present invention, in the invention described in claim 1, sliding contact is made with a member that rotates or reciprocates in water. The resin-based composite sliding member is characterized by using a composite material containing a self-lubricating filler in an ethylene tetrafluoride resin matrix. By doing so, excellent sliding characteristics can be obtained by the self-lubricating filler.

【0007】また、請求項2に記載された発明では、水
中で回転または往復運動する部材と摺動接触する樹脂系
複合摺動部材において、四ふっ化エチレン樹脂マトリッ
クス中に自己潤滑性を有する充填材を含有し、充填材の
硬さが、前記摺動部材の摺動面に対向して摺動接触する
相手部材の硬さと同等またはそれ以下であることを特徴
とする。このようにすると、充填材の硬さが相手部材の
硬さより同等以下であるので樹脂系複合部材の耐摩耗性
が向上する。
According to the second aspect of the present invention, in the resin-based composite sliding member that is in sliding contact with a member that rotates or reciprocates in water, the tetrafluoroethylene resin matrix is filled with self-lubricating properties. The hardness of the filler containing the material is equal to or less than the hardness of the mating member that is in sliding contact with the sliding surface of the sliding member. In this case, the hardness of the filler is equal to or less than the hardness of the mating member, so that the wear resistance of the resin-based composite member is improved.

【0008】また、請求項3に記載された発明では、水
中で回転または往復運動する部材と摺動接触する樹脂系
複合摺動部材において、四ふっ化エチレン樹脂マトリッ
クス中に、炭素繊維、グラファイト粒子、窒化ボロン粒
子、二硫化モリブデン粒子、二硫化タングステン粒子か
ら選ばれた少なくとも1種類の充填材を含有した複合材
料を用いることを特徴とする。このようにすると、繊維
状充填材、または粒子状充填材の作用によっ高強度で、
低摩擦係数で、優れた摺動特性が得られる。
According to the third aspect of the present invention, in a resin-based composite sliding member that makes sliding contact with a member that rotates or reciprocates in water, carbon fiber and graphite particles are contained in a tetrafluoroethylene resin matrix. A composite material containing at least one kind of filler selected from boron nitride particles, molybdenum disulfide particles, and tungsten disulfide particles. By doing so, high strength is achieved by the action of the fibrous filler or the particulate filler,
Excellent friction characteristics with low coefficient of friction.

【0009】また、請求項4に記載された発明では、請
求項1から3に記載された樹脂系複合摺動部材における
充填材の体積率が、2.5%〜30%の範囲であること
を特徴とする。
Further, in the invention described in claim 4, the volume ratio of the filler in the resin composite sliding member described in claims 1 to 3 is in the range of 2.5% to 30%. Is characterized by.

【0010】このような構成の樹脂系複合摺動部材では
充填材の体積率は2.5%〜30%の範囲であり、摺動
部材の要求特性に応じて適宜に設定されるものである。
上記体積率が2.5%未満では充填材の効果を十分に得
ることはできず、また体積率が30%を超えると複合材
料中の四ふっ化エチレン樹脂マトリックスの優れた摺動
性能が発揮できず、複合材料全体の耐摩耗性が悪くな
る。上記体積率のさらに好ましい範囲は10%〜20%
の範囲である。
In the resin-based composite sliding member having such a structure, the volume ratio of the filler is in the range of 2.5% to 30%, which is appropriately set according to the required characteristics of the sliding member. .
If the volume ratio is less than 2.5%, the effect of the filler cannot be sufficiently obtained, and if the volume ratio exceeds 30%, the excellent sliding performance of the tetrafluoroethylene resin matrix in the composite material is exhibited. This is not possible, and the wear resistance of the entire composite material deteriorates. The more preferable range of the volume ratio is 10% to 20%.
Is the range.

【0011】また、請求項5に記載された発明では、請
求項1〜3記載の樹脂系複合摺動部材における充填材は
平均断面直径が、0.1μm〜500μmの繊維状充填
材、あるいは平均粒子径が、0.1μm〜500μmの
範囲の粒子状充填材であることを特徴とする。
Further, in the invention described in claim 5, the filler in the resin-based composite sliding member according to claims 1 to 3 has an average cross-sectional diameter of 0.1 μm to 500 μm, or a fibrous filler. It is characterized by being a particulate filler having a particle diameter in the range of 0.1 μm to 500 μm.

【0012】このような構成の樹脂系複合摺動部材では
繊維状充填材の平均断面直径は0.1μm〜500μm
の範囲であり、摺動部材の要求特性に応じて適宜に設定
されるものである。上記平均断面直径が0.1μm未満
では実用上繊維の製造が困難であり、また平均断面直径
が500μmを超えると前記四ふっ化エチレン樹脂マト
リックス中の繊維分散効果が十分に得られず、複合材料
の特性を十分に確保できない恐れがある。平均断面直径
がさらに好ましい範囲は、1μm〜50μmの範囲であ
る。
In the resin-based composite sliding member having such a structure, the average cross-sectional diameter of the fibrous filler is 0.1 μm to 500 μm.
And is set appropriately according to the required characteristics of the sliding member. When the average cross-sectional diameter is less than 0.1 μm, it is practically difficult to produce fibers. When the average cross-sectional diameter exceeds 500 μm, the effect of dispersing the fibers in the tetrafluoroethylene resin matrix cannot be sufficiently obtained, and the composite material is obtained. May not be able to secure the characteristics of. A more preferable range of the average cross-sectional diameter is in the range of 1 μm to 50 μm.

【0013】また、前記粒子状充填材の平均粒子径は
0.1μm〜500μmの範囲であり、摺動部材の要求
特性に応じて適宜に設定されるものである。上記平均粒
子径が0.1μm未満では実用上粒子の製造が困難であ
り、また平均粒子径が500μmを超えると前記四ふっ
化エチレン樹脂マトリックス中の粒子分散効果が十分に
得られず、複合材料の特性を十分に確保できない恐れが
ある。平均粒子径がさらに好ましい範囲は、1μm〜5
0μmの範囲である。
The average particle diameter of the particulate filler is in the range of 0.1 μm to 500 μm, and is appropriately set according to the required characteristics of the sliding member. If the average particle diameter is less than 0.1 μm, it is difficult to practically produce particles, and if the average particle diameter exceeds 500 μm, the effect of dispersing particles in the tetrafluoroethylene resin matrix cannot be sufficiently obtained, and the composite material is obtained. May not be able to secure the characteristics of. The more preferable range of the average particle diameter is 1 μm to 5
It is in the range of 0 μm.

【0014】また、請求項6に記載された発明では、請
求項1または2記載の樹脂系複合摺動部材において、四
ふっ化エチレン樹脂マトリックス中に炭素繊維およびグ
ラファイト粒子、窒化ボロン粒子、二硫化モリブデン粒
子、二硫化タングステン粒子、の中から選ばれるいずれ
か一つの粒子状充填材を含有させ、それら充填材の体積
率の合計が5%〜30%の範囲であることを特徴とす
る。
Further, in the invention described in claim 6, in the resin-based composite sliding member according to claim 1 or 2, carbon fiber and graphite particles, boron nitride particles, and disulfide are contained in an ethylene tetrafluoride resin matrix. One of the particulate fillers selected from molybdenum particles and tungsten disulfide particles is contained, and the total volume ratio of these fillers is in the range of 5% to 30%.

【0015】このような構成の樹脂系複合摺動部材であ
ると、繊維状充填材と粒子状充填材の体積率の合計が、
5%〜30%の範囲であり、摺動部材の要求特性に応じ
て適宜に設定されるものである。上記体積率の合計が5
%未満では充填材の効果を十分に得ることはできず、ま
た体積率が30%を超えると複合材料中の四ふっ化エチ
レン樹脂マトリックスの優れた摺動特性が発揮できず、
複合材料全体の耐摩耗性が悪くなる。上記体積率の合計
のさらに好ましい範囲は10%〜20%の範囲である。
In the resin-based composite sliding member having such a structure, the total volume ratio of the fibrous filler and the particulate filler is
It is in the range of 5% to 30%, and is appropriately set according to the required characteristics of the sliding member. The total volume ratio is 5
%, The effect of the filler cannot be sufficiently obtained, and when the volume ratio exceeds 30%, the excellent sliding property of the tetrafluoroethylene resin matrix in the composite material cannot be exhibited.
The wear resistance of the entire composite material deteriorates. A more preferable range of the total volume ratio is 10% to 20%.

【0016】また、請求項7に記載された発明では、マ
トリックスとなる四ふっ化エチレン樹脂粉末と充填材と
を混合し、前記混合物を加圧成形した後に、加熱して前
記四ふっ化エチレン樹脂粉末を融着処理して樹脂系複合
摺動部材を製造することを特徴とする。
Further, in the invention described in claim 7, the tetrafluoroethylene resin powder serving as a matrix and the filler are mixed, the mixture is pressure-molded, and then heated to heat the tetrafluoroethylene resin. The resin-based composite sliding member is manufactured by fusion-bonding the powder.

【0017】また、請求項8に記載された発明では、マ
トリックスとなる四ふっ化エチレン樹脂粉末と前記充填
材とを混合し、前記混合物を加圧して台金に形成した多
孔質中間層の空隙部に含浸させ、前記混合物を加圧成形
して多孔質中間層の上部に摺動層を設けた後に、加熱し
て前記四ふっ化エチレン樹脂粉末を融着処理して樹脂系
複合摺動部材を製造することを特徴とする。
In the invention described in claim 8, the tetrafluoroethylene resin powder serving as a matrix is mixed with the filler, and the mixture is pressurized to form voids in the porous intermediate layer formed on the base metal. Part, and the mixture is pressure-molded to form a sliding layer on the upper part of the porous intermediate layer, followed by heating to fusion-bond the tetrafluoroethylene resin powder to the resin-based composite sliding member. Is manufactured.

【0018】また、請求項9に記載された発明では、マ
トリックスとなる四ふっ化エチレン樹脂粉末と充填材と
を混合し、前記混合物を加圧成形した後に加熱して前記
四ふっ化エチレン樹脂粉末を融着処理し、融着処理した
後の充填材体積率の合計が、2.5%〜30%の範囲に
成るようにしたことを特徴とする。
In the invention described in claim 9, the tetrafluoroethylene resin powder serving as a matrix and the filler are mixed, the mixture is pressure-molded and then heated to heat the tetrafluoroethylene resin powder. Is subjected to a fusion treatment, and the total volume ratio of the fillers after the fusion treatment is set to fall within the range of 2.5% to 30%.

【0019】このような構成の樹脂系複合摺動部材であ
ると、加熱し融着処理した後の充填材体積率の合計が、
2.5%〜30%の範囲であり、摺動部材の要求特性に
応じて適宜に設定されるものである。上記体積率の合計
が2.5%未満では充填材の効果を十分に得ることはで
きず、また体積率が30%を超えると複合材料中の四ふ
っ化エチレン樹脂マトリックスの優れた摺動特性が発揮
できず、複合材料全体の耐摩耗性が悪くなる。上記体積
率の合計のさらに好ましい範囲は10%〜20%の範囲
である。
In the resin-based composite sliding member having such a constitution, the total volume ratio of the fillers after heating and fusion treatment is
The range is 2.5% to 30%, and is appropriately set according to the required characteristics of the sliding member. If the total volume ratio is less than 2.5%, the effect of the filler cannot be sufficiently obtained, and if the total volume ratio exceeds 30%, the sliding property of the tetrafluoroethylene resin matrix in the composite material is excellent. Cannot be exhibited, and the wear resistance of the entire composite material deteriorates. A more preferable range of the total volume ratio is 10% to 20%.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は本発明の第1の実施の形態による樹
脂系複合摺動部材を模式的に示す断面図である。同図に
おいて、1は樹脂系複合摺動部材のマトリックスを構成
する四ふっ化エチレン樹脂であり、2は自己潤滑性を有
する繊維状の充填材である。繊維状の充填材2は、その
硬さが樹脂系複合摺動部材の摺動面に対向して摺動接触
する相手部材の硬さと同等、またはそれ以下であり、さ
らに樹脂系複合摺動部材の強化成分となるものから選択
される。例えば炭素繊維が適している。前記樹脂系複合
摺動部材を製造するには、まずマトリックスとなる四ふ
っ化エチレン樹脂1の粉末と前記繊維状の充填材2を混
合し、所定形状に加圧成形する。その後、前記成形体を
所定温度に加熱して前記四ふっ化エチレン樹脂1の粉末
を融着処理することにより、要求された特性を有する樹
脂系複合摺動部材を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a sectional view schematically showing a resin-based composite sliding member according to the first embodiment of the present invention. In the figure, 1 is an ethylene tetrafluoride resin forming a matrix of the resin-based composite sliding member, and 2 is a fibrous filler having self-lubricating property. The fibrous filler 2 has a hardness that is equal to or less than the hardness of a mating member that is in sliding contact with the sliding surface of the resin-based composite sliding member. It is selected from those that will be the strengthening component of. For example, carbon fiber is suitable. To manufacture the resin-based composite sliding member, first, the powder of the tetrafluoroethylene resin 1 serving as a matrix and the fibrous filler 2 are mixed and pressure-molded into a predetermined shape. Then, the molded body is heated to a predetermined temperature and the powder of the tetrafluoroethylene resin 1 is fusion-bonded to obtain a resin-based composite sliding member having required characteristics.

【0021】図2は本発明の第2の実施の形態を示す図
で、図1に示した樹脂系複合摺動部材に、さらに自己潤
滑性を有する粒子状の充填材3を四ふっ化エチレン樹脂
に含有させた例を示す。粒子状の充填材3は、その硬さ
が樹脂系複合摺動部材の摺動面に対向して摺動接触する
相手部材の硬さと同等、またはそれ以下であるものから
選択される。例えばグラファイト、窒化ボロン、二硫化
モリブデン、二硫化タングステン等が適している。この
樹脂系複合摺動部材を製造するには、まずマトリックス
となる四ふっ化エチレン樹脂1の粉末と前記繊維状の充
填材2および前記粒子状の充填材3を混合し、所定形状
に加圧成形する。その後、前記成形体を所定温度に加熱
して前記四ふっ化エチレン樹脂1の粉末を融着処理する
ことにより、要求された特性を有する樹脂系複合摺動部
材を得ることができる。
FIG. 2 is a view showing a second embodiment of the present invention. In addition to the resin-based composite sliding member shown in FIG. 1, a particulate filler 3 having self-lubricating property is further added to ethylene tetrafluoride. An example in which the resin is contained is shown. The particulate filler 3 is selected from those whose hardness is equal to or less than the hardness of the mating member that is in sliding contact with the sliding surface of the resin-based composite sliding member. For example, graphite, boron nitride, molybdenum disulfide, tungsten disulfide, etc. are suitable. In order to manufacture this resin-based composite sliding member, first, a powder of a tetrafluoroethylene resin 1 serving as a matrix, the fibrous filler 2 and the particulate filler 3 are mixed and pressed into a predetermined shape. Mold. Then, the molded body is heated to a predetermined temperature and the powder of the tetrafluoroethylene resin 1 is fusion-bonded to obtain a resin-based composite sliding member having required characteristics.

【0022】図3は本発明の第3の実施の形態を示す図
で、四ふっ化エチレン樹脂1のマトリックス中に繊維状
の充填材2と粒子状の充填材3とを含有した樹脂系複合
摺動部材を台金4に接合する場合を示す。この樹脂系複
合摺動部材を製造するには、まずマトリックスとなる四
ふっ化エチレン樹脂1の粉末と前記繊維状の充填材2お
よび前記粒子状の充填材3を混合する。前記混合物を加
圧して予め台金4に形成した多孔質中間層5の空隙部に
含浸させると同時に、前記混合物を加圧成形して前記多
孔質中間層5の上部に所定形状の摺動層6を設ける。そ
の後、所定温度に加熱して前記四ふっ化エチレン樹脂粉
末を融着処理して複合化を行う。上記の方法により製造
することで、要求された特性を有する樹脂系複合摺動部
材を得ることができる。
FIG. 3 is a view showing a third embodiment of the present invention, which is a resin composite in which a fibrous filler 2 and a particulate filler 3 are contained in a matrix of tetrafluoroethylene resin 1. The case where the sliding member is joined to the base metal 4 is shown. In order to manufacture this resin-based composite sliding member, first, the powder of the tetrafluoroethylene resin 1 serving as a matrix is mixed with the fibrous filler 2 and the particulate filler 3. The mixture is pressed to impregnate the voids of the porous intermediate layer 5 formed on the base metal 4 in advance, and at the same time, the mixture is pressure-molded to form a sliding layer having a predetermined shape on the upper portion of the porous intermediate layer 5. 6 is provided. Then, it is heated to a predetermined temperature to perform fusion treatment on the tetrafluoroethylene resin powder to form a composite. The resin-based composite sliding member having the required characteristics can be obtained by manufacturing by the above method.

【0023】次に、本発明の具体的な実施例について説
明する。 実施例1 平均断面直径10μmの炭素繊維10体積%と四ふっ化
エチレン樹脂粉末90体積%を混合し、前記混合体を金
型に充填し、40MPaの圧力で10mm×120mm
×120mmの形状に加圧成形した。次に、前記加圧成
形体を380℃の温度で2時間加熱し、前記四ふっ化エ
チレン樹脂粉末同士を融着結合させ、図1に示すよう
な、10体積%の炭素繊維と90体積%の四ふっ化エチ
レン樹脂との樹脂系複合摺動部材を得た。
Next, specific examples of the present invention will be described. Example 1 10% by volume of carbon fiber having an average cross-sectional diameter of 10 μm and 90% by volume of ethylene tetrafluoride resin powder were mixed, the mixture was filled in a mold, and 10 mm × 120 mm at a pressure of 40 MPa.
It was pressed into a shape of × 120 mm. Next, the pressure-molded body is heated at a temperature of 380 ° C. for 2 hours to fuse and bond the tetrafluoroethylene resin powders together, and as shown in FIG. 1, 10 vol% carbon fiber and 90 vol% A resin-based composite sliding member with the tetrafluoroethylene resin was obtained.

【0024】得られた樹脂系複合摺動部材の機械的特性
を評価した結果、引張強さは約25MPaであり、10
体積%のガラス繊維を含有した四ふっ化エチレン樹脂系
複合材料と同等であった。また、水中での摺動特性を評
価した結果、動摩擦係数は0.1以下であり、充填材を
含有しない四ふっ化エチレン樹脂単体と同等であった。
また、摩耗量も非常に少なく、前記四ふっ化エチレン樹
脂単体とほぼ同等であり、前記10体積%ガラス繊維強
化四ふっ化エチレン樹脂系複合材料に比べ約1/10で
あった。
As a result of evaluating the mechanical characteristics of the obtained resin-based composite sliding member, the tensile strength was about 25 MPa and 10
It was equivalent to an ethylene tetrafluoride resin-based composite material containing a volume% of glass fiber. As a result of evaluating the sliding characteristics in water, the coefficient of dynamic friction was 0.1 or less, which was equivalent to that of the tetrafluoroethylene resin alone containing no filler.
In addition, the amount of wear was very small, almost equal to that of the above-mentioned tetrafluoroethylene resin alone, and about 1/10 of that of the above 10% by volume glass fiber reinforced tetrafluoroethylene resin-based composite material.

【0025】実施例2 平均断面直径10μmの炭素繊維10体積%と平均粒子
径30μmのグラファイト粒子10体積%および四ふっ
化エチレン樹脂粉末80体積%を混合し、前記混合体を
金型に充填し、45MPaの圧力で10mm×120m
m×120mmの形状に加圧成形した。次に、前記加圧
成形体を380℃の温度で2時間加熱し、前記四ふっ化
エチレン樹脂粉末同士を融着結合させ、図2に示すよう
な、10体積%の炭素繊維と10体積%のグラファイト
粒子および80体積%の四ふっ化エチレン樹脂との樹脂
系複合摺動部材を得た。
Example 2 10% by volume of carbon fiber having an average cross-sectional diameter of 10 μm, 10% by volume of graphite particles having an average particle size of 30 μm, and 80% by volume of tetrafluoroethylene resin powder were mixed, and the mixture was filled in a mold. 10 mm x 120 m at a pressure of 45 MPa
It was pressure molded into a shape of m × 120 mm. Next, the pressure-molded body was heated at a temperature of 380 ° C. for 2 hours to fuse and bond the tetrafluoroethylene resin powders together, and as shown in FIG. 2, 10 vol% carbon fiber and 10 vol% To obtain a resin-based composite sliding member containing the graphite particles of Example 1 and 80% by volume of an ethylene tetrafluoride resin.

【0026】得られた樹脂系複合摺動部材の機械的特性
を評価した結果、引張強さは約22MPaであり、20
体積%のガラス繊維を含有した四ふっ化エチレン樹脂系
複合材料と同等であった。また、水中での摺動特性を評
価した結果、動摩擦係数は0.1以下であり、充填材を
含有しない四ふっ化エチレン樹脂単体と同等であった。
また、摩耗量も非常に少なく、前記四ふっ化エチレン樹
脂単体とほぼ同等であり、前記20体積%ガラス繊維強
化四ふっ化エチレン樹脂系複合材料に比べ約1/15で
あった。
As a result of evaluating the mechanical properties of the obtained resin-based composite sliding member, the tensile strength was about 22 MPa, and 20
It was equivalent to an ethylene tetrafluoride resin-based composite material containing a volume% of glass fiber. As a result of evaluating the sliding characteristics in water, the coefficient of dynamic friction was 0.1 or less, which was equivalent to that of the tetrafluoroethylene resin alone containing no filler.
Further, the amount of abrasion was very small, almost the same as that of the above tetrafluoroethylene resin alone, and about 1/15 of that of the 20% by volume glass fiber reinforced tetrafluoroethylene resin composite material.

【0027】実施例3 平均断面直径10μmの炭素繊維20体積%と平均粒子
径10μmの窒化ボロン粒子10体積%および四ふっ化
エチレン樹脂粉末70体積%を混合し、前記混合体を金
型に充填し、40MPaの圧力で10mm×120mm
×120mmの形状に加圧成形した。次に、前記加圧成
形体を400℃の温度で2時間加熱し、前記四ふっ化エ
チレン樹脂粉末同士を融着結合させ、図2に示すよう
な、20体積%の炭素繊維と10体積%の窒化ボロン粒
子および70体積%の四ふっ化エチレン樹脂との樹脂系
複合摺動部材を得た。
Example 3 20% by volume of carbon fiber having an average cross-sectional diameter of 10 μm, 10% by volume of boron nitride particles having an average particle size of 10 μm and 70% by volume of ethylene tetrafluoride resin powder were mixed, and the mixture was filled in a mold. 10 mm x 120 mm at a pressure of 40 MPa
It was pressed into a shape of × 120 mm. Next, the pressure-molded body is heated at a temperature of 400 ° C. for 2 hours to fusion bond the tetrafluoroethylene resin powders to each other, and as shown in FIG. To obtain a resin-based composite sliding member containing the boron nitride particles in Example 1 and 70% by volume of an ethylene tetrafluoride resin.

【0028】得られた樹脂系複合摺動部材の機械的特性
を評価した結果、引張強さは約20MPaであり、30
体積%のガラス繊維を含有した四ふっ化エチレン樹脂系
複合材料と同等であった。また、水中での摺動特性を評
価した結果、動摩擦係数は0.1以下であり、充填材を
含有しない四ふっ化エチレン樹脂単体と同等であり、前
記30体積%ガラス繊維強化四ふっ化エチレン樹脂系複
合材料に比べ約1/20であった。
As a result of evaluating the mechanical properties of the obtained resin-based composite sliding member, the tensile strength was about 20 MPa, and
It was equivalent to an ethylene tetrafluoride resin-based composite material containing a volume% of glass fiber. As a result of evaluating the sliding characteristics in water, the coefficient of kinetic friction was 0.1 or less, which was equivalent to a simple substance of tetrafluoroethylene resin containing no filler, and the above-mentioned 30% by volume glass fiber reinforced ethylene tetrafluoride was used. It was about 1/20 as compared with the resin-based composite material.

【0029】実施例4 平均断面直径10μmの炭素繊維15体積%と平均粒子
径20μmの二硫化モリブデン粒子5体積%および四ふ
っ化エチレン樹脂粉末80体積%を混合し、前記混合体
を金型に充填し、40MPaの圧力で10mm×120
mm×120mmの形状に加圧成形した。次に、前記加
圧成形体を400℃の温度で2時間加熱し、前記四ふっ
化エチレン樹脂粉末同士を融着結合させ、図2に示すよ
うな、15体積%の炭素繊維と5体積%の二硫化モリブ
デン粒子と80体積%の四ふっ化エチレン樹脂との樹脂
系複合摺動部材を得た。
Example 4 15% by volume of carbon fiber having an average cross-sectional diameter of 10 μm, 5% by volume of molybdenum disulfide particles having an average particle size of 20 μm, and 80% by volume of tetrafluoroethylene resin powder were mixed, and the mixture was used as a mold. Fill, 10mm x 120 at 40MPa pressure
It was pressure molded into a shape of mm × 120 mm. Next, the pressure molded body is heated at a temperature of 400 ° C. for 2 hours to fusion bond the tetrafluoroethylene resin powders to each other, and as shown in FIG. A resin-based composite sliding member comprising the above molybdenum disulfide particles and 80% by volume of an ethylene tetrafluoride resin was obtained.

【0030】得られた樹脂系複合摺動部材の機械的特性
を評価した結果、引張強さは約22MPaであり、20
体積%のガラス繊維を含有した四ふっ化エチレン樹脂系
複合材料と同等であった。また、水中での摺動特性を評
価した結果、動摩擦係数は0.1以下であり、充填材を
含有しない四ふっ化エチレン樹脂単体と同等であり、前
記20体積%ガラス繊維強化四ふっ化エチレン樹脂系複
合材料に比べ約1/15であった。
As a result of evaluating the mechanical properties of the obtained resin-based composite sliding member, the tensile strength was about 22 MPa, and 20
It was equivalent to an ethylene tetrafluoride resin-based composite material containing a volume% of glass fiber. As a result of evaluating the sliding characteristics in water, the coefficient of kinetic friction was 0.1 or less, which was equivalent to the tetrafluoroethylene resin alone containing no filler, and the 20 volume% glass fiber reinforced tetrafluoroethylene was used. It was about 1/15 of that of the resin-based composite material.

【0031】実施例5 平均断面直径10μmの炭素繊維15体積%と平均粒子
径20μmの二硫化タングステン粒子5体積%および四
ふっ化エチレン樹脂粉末80体積%を混合し、前記混合
体を金型に充填し、45MPaの圧力で10mm×12
0mm×120mmの形状に加圧成形した。次に、前記
加圧成形体を400℃の温度で2時間加熱し、前記四ふ
っ化エチレン樹脂粉末同士を融着結合させ、図2に示す
ような、15体積%の炭素繊維と5体積%の二硫化タン
グステン粒子と80体積%の四ふっ化エチレン樹脂との
樹脂系複合摺動部材を得た。
Example 5 15% by volume of carbon fiber having an average cross-sectional diameter of 10 μm, 5% by volume of tungsten disulfide particles having an average particle size of 20 μm and 80% by volume of tetrafluoroethylene resin powder were mixed, and the mixture was used as a mold. Fill and 10mm × 12 at 45MPa pressure
It was pressure molded into a shape of 0 mm × 120 mm. Next, the pressure molded body is heated at a temperature of 400 ° C. for 2 hours to fusion bond the tetrafluoroethylene resin powders to each other, and as shown in FIG. A resin-based composite sliding member comprising the above tungsten disulfide particles and 80% by volume of an ethylene tetrafluoride resin was obtained.

【0032】得られた樹脂系複合摺動部材の機械的特性
を評価した結果、引張強さは約20MPaであり、20
体積%のガラス繊維を含有した四ふっ化エチレン樹脂系
複合材料と同等であった。また、水中での摺動特性を評
価した結果、動摩擦係数は0.1以下であり、充填材を
含有しない四ふっ化エチレン樹脂単体と同等であり、前
記20体積%ガラス繊維強化四ふっ化エチレン樹脂系複
合材料に比べ約1/15であった。
As a result of evaluating the mechanical properties of the obtained resin-based composite sliding member, the tensile strength was about 20 MPa.
It was equivalent to an ethylene tetrafluoride resin-based composite material containing a volume% of glass fiber. As a result of evaluating the sliding characteristics in water, the coefficient of kinetic friction was 0.1 or less, which was equivalent to the tetrafluoroethylene resin alone containing no filler, and the 20 volume% glass fiber reinforced tetrafluoroethylene was used. It was about 1/15 of that of the resin-based composite material.

【0033】実施例6 平均断面直径10μmの炭素繊維15体積%と平均粒子
径20μmのグラファイト粒子5体積%および四ふっ化
エチレン樹脂粉末80体積%を混合する。厚さ5mmの
台金4に、予め厚さ2mmの多孔質中間層5を形成す
る。多孔質中間層5を形成した前記台金4を金型内に設
置し、前記混合体を前記金型に充填し、40MPaの圧
力で加圧成形して、摺動層6と多孔質中間層5および台
金4の全体の形状が10mm×120mm×120mm
の積層体を得た。次に、前記積層体を380℃の温度で
2時間加熱し、前記四ふっ化エチレン樹脂粉末同士を融
着結合させ、図3に示すような、15体積%の炭素繊維
と5体積%の二硫化タングステン粒子と80体積%の四
ふっ化エチレン樹脂との摺動層を有する樹脂系複合摺動
部材を得た。
Example 6 15% by volume of carbon fiber having an average cross-sectional diameter of 10 μm, 5% by volume of graphite particles having an average particle size of 20 μm, and 80% by volume of ethylene tetrafluoride resin powder were mixed. A porous intermediate layer 5 having a thickness of 2 mm is previously formed on a base metal 4 having a thickness of 5 mm. The base metal 4 on which the porous intermediate layer 5 is formed is placed in a mold, the mixture is filled in the mold, and pressure molding is performed at a pressure of 40 MPa to form the sliding layer 6 and the porous intermediate layer. 5 and base metal 4 have an overall shape of 10 mm x 120 mm x 120 mm
A laminated body of was obtained. Next, the laminated body is heated at a temperature of 380 ° C. for 2 hours to fusion bond the tetrafluoroethylene resin powders to each other, and as shown in FIG. A resin-based composite sliding member having a sliding layer of tungsten sulfide particles and 80% by volume of an ethylene tetrafluoride resin was obtained.

【0034】得られた樹脂系複合摺動部材の水中での摺
動特性を評価した結果、動摩擦係数は0.1以下であ
り、充填材を含有しない四ふっ化エチレン樹脂単体と同
等であり、20体積%ガラス繊維強化四ふっ化エチレン
樹脂系複合材料に比べ約1/15であった。
As a result of evaluating the sliding characteristics of the obtained resin-based composite sliding member in water, the coefficient of kinetic friction was 0.1 or less, which was equivalent to a tetrafluoroethylene resin alone containing no filler, It was about 1/15 as compared with the 20 volume% glass fiber reinforced tetrafluoroethylene resin-based composite material.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、水
中で回転または往復運動する部材と摺動接触する樹脂系
複合摺動部材において、四ふっ化エチレン樹脂マトリッ
クス中に自己潤滑性を有する繊維状充填材あるいは粒子
上充填材を含有した複合材料を用いるようにしたので、
高強度で、低摩擦係数で、優れた摺動性能を有し、更に
耐摩耗性に優れた樹脂系複合摺動部材を得ることができ
る。
As described above, according to the present invention, a resin-based composite sliding member that is in sliding contact with a member that rotates or reciprocates in water has self-lubricating properties in a tetrafluoroethylene resin matrix. Since a composite material containing a fibrous filler or a filler on particles is used,
It is possible to obtain a resin-based composite sliding member having high strength, low friction coefficient, excellent sliding performance, and further excellent wear resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態による樹脂系複合摺
動部材の構成を模式的に示す断面図ある。
FIG. 1 is a sectional view schematically showing a configuration of a resin-based composite sliding member according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態による樹脂系複合摺
動部材の構成を模式的に示す断面図である。
FIG. 2 is a sectional view schematically showing a configuration of a resin-based composite sliding member according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態による樹脂系複合摺
動部材の構成を模式的に示す断面図である。
FIG. 3 is a sectional view schematically showing a configuration of a resin-based composite sliding member according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…四ふっ化エチレン樹脂、2…繊維状充填材、3…粒
子状充填材、4…台金、5…多孔質中間層、6…摺動
層。
1 ... Tetrafluoride ethylene resin, 2 ... Fibrous filler, 3 ... Particulate filler, 4 ... Base metal, 5 ... Porous intermediate layer, 6 ... Sliding layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 27/18 C08L 27/18 F16C 17/14 F16C 17/14 // B29K 27:18 B29K 27:18 105:16 105:16 B29L 31:16 B29L 31:16 Fターム(参考) 3J011 DA01 DA02 QA04 QA05 SA05 SC05 SE04 SE05 SE06 SE07 4F071 AA27 AB03 AB23 AB27 AD01 AD02 AE11 AE17 AF27 AG28 AG36 AH18 BB03 BC10 BC17 4F204 AA17 AB11 AB16 AB18 AB25 AH05 AH17 4F213 AA17 AB11 AB16 AB18 AB25 AC04 WA04 WA34 WA55 WB01 WB11 WB21 WE02 WE16 WF06 WF21 WK01 WK03 WW06 WW15 WW21 4J002 BD151 DA016 DA026 DG026 DK006 FA046 FA096 GM05─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08L 27/18 C08L 27/18 F16C 17/14 F16C 17/14 // B29K 27:18 B29K 27:18 105 : 16 105: 16 B29L 31:16 B29L 31:16 F-term (reference) 3J011 DA01 DA02 QA04 QA05 SA05 SC05 SE04 SE05 SE06 SE07 4F071 AA27 AB03 AB23 AB27 AD01 AD02 AE11 AE17 AF27 AG28 AG36 AH18 BB03 BC10 BC17 4F16 AB17 AB18 AB16 AB18 AB25 AH05 AH17 4F213 AA17 AB11 AB16 AB18 AB25 AC04 WA04 WA34 WA55 WB01 WB11 WB21 WE02 WE16 WF06 WF21 WK01 WK03 WW06 WW15 WW21 4J002 BD151 DA016 DA026 DG026 DK006 FA046 FA096 GM05

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 水中で回転または往復運動する部材と摺
動接触する樹脂系複合摺動部材において、四ふっ化エチ
レン樹脂マトリックス中に自己潤滑性を有する充填材を
含有した複合材料を用いることを特徴とする樹脂系複合
摺動部材。
1. In a resin-based composite sliding member that makes sliding contact with a member that rotates or reciprocates in water, it is preferable to use a composite material containing a self-lubricating filler in a tetrafluoroethylene resin matrix. Characteristic resin-based composite sliding member.
【請求項2】 水中で回転または往復運動する部材と摺
動接触する樹脂系複合摺動部材において、四ふっ化エチ
レン樹脂マトリックス中に自己潤滑性を有する充填材を
含有し、充填材の硬さが、前記摺動部材の摺動面に対向
して接する相手部材の硬さと同等またはそれ以下である
ことを特徴とする樹脂系複合摺動部材。
2. A resin-based composite sliding member, which is in sliding contact with a member that rotates or reciprocates in water, contains a self-lubricating filler in a tetrafluoroethylene resin matrix, and has a hardness of the filler. Is equal to or less than the hardness of the mating member facing and in contact with the sliding surface of the sliding member.
【請求項3】 水中で回転または往復運動する部材と摺
動接触する樹脂系複合摺動部材において、四ふっ化エチ
レン樹脂マトリックス中に、炭素繊維、グラファイト、
窒化ボロン、二硫化モリブデン、二硫化タングステンか
ら選ばれた少なくとも1種類の充填材を含有した複合材
料を用いることを特徴とする樹脂系複合摺動部材。
3. A resin-based composite sliding member that is in sliding contact with a member that rotates or reciprocates in water, wherein carbon fiber, graphite,
A resin-based composite sliding member comprising a composite material containing at least one kind of filler selected from boron nitride, molybdenum disulfide, and tungsten disulfide.
【請求項4】 樹脂系複合摺動部材における充填材の体
積率が、2.5%〜30%の範囲であることを特徴とす
る請求項1〜3記載の樹脂系複合摺動部材。
4. The resin-based composite sliding member according to claim 1, wherein the volume ratio of the filler in the resin-based composite sliding member is in the range of 2.5% to 30%.
【請求項5】 充填材は平均断面直径が、0.1μm〜
500μmの繊維状充填材、あるいは平均粒子径が、
0.1μm〜500μmの範囲の粒子状充填材であるこ
とを特徴とする請求項1〜3記載の樹脂系複合摺動部
材。
5. The filler has an average cross-sectional diameter of 0.1 μm to
500 μm fibrous filler, or average particle size
The resin-based composite sliding member according to claim 1, wherein the resin-based composite sliding member is a particulate filler in the range of 0.1 μm to 500 μm.
【請求項6】 四ふっ化エチレン樹脂マトリックス中に
炭素繊維およびグラファイト粒子、窒化ボロン粒子、二
硫化モリブデン粒子、二硫化タングステン粒子、の中か
ら選ばれるいずれか一つの粒子状充填材を含有させ、そ
れら充填材の体積率の合計が5%〜30%の範囲で有る
ことを特徴とする請求項1または2記載の樹脂系複合摺
動部材。
6. A tetrafluoroethylene resin matrix containing any one of particulate fillers selected from carbon fibers, graphite particles, boron nitride particles, molybdenum disulfide particles, and tungsten disulfide particles, The resin-based composite sliding member according to claim 1 or 2, wherein the total volume ratio of the fillers is in the range of 5% to 30%.
【請求項7】 マトリックスとなる四ふっ化エチレン樹
脂粉末と充填材とを混合し、前記混合物を加圧成形した
後に、加熱して前記四ふっ化エチレン樹脂粉末を融着処
理して複合化することを特徴とする樹脂系複合摺動部材
の製造方法。
7. A tetrafluoroethylene resin powder serving as a matrix and a filler are mixed, the mixture is pressure-molded, and then heated to form a composite by fusion treatment of the tetrafluoroethylene resin powder. A method of manufacturing a resin-based composite sliding member, comprising:
【請求項8】 マトリックスとなる四ふっ化エチレン樹
脂粉末と前記充填材とを混合し、前記混合物を加圧して
台金に形成した多孔質中間層の空隙部に含浸させ、前記
混合物を加圧成形して前記多孔質中間層の上部に摺動層
を設けた後に、加熱して前記四ふっ化エチレン樹脂粉末
を融着処理して複合化することを特徴とする樹脂系複合
摺動部材の製造方法。
8. A tetrafluoroethylene resin powder serving as a matrix is mixed with the filler, and the mixture is pressed to impregnate the voids of the porous intermediate layer formed on the base metal, and the mixture is pressed. After molding and providing a sliding layer on the upper part of the porous intermediate layer, heating is performed to perform fusion treatment of the tetrafluoroethylene resin powder to form a composite, which is a resin-based composite sliding member. Production method.
【請求項9】 マトリックスとなる四ふっ化エチレン樹
脂粉末と充填材とを混合し、前記混合物を加圧成形した
後に加熱して前記四ふっ化エチレン樹脂粉末を融着処理
し、充填材体積率の合計が、2.5%〜30%の範囲に
成るようにしたことを特徴とする樹脂系複合摺動部材の
製造方法。
9. A tetrafluoroethylene resin powder serving as a matrix is mixed with a filler, the mixture is pressure-molded and then heated to subject the tetrafluoroethylene resin powder to a fusion treatment to obtain a filler volume ratio. Of the resin composite sliding member is made to be in the range of 2.5% to 30%.
JP2001209188A 2001-07-10 2001-07-10 Resin composite sliding member and manufacturing method of the same Pending JP2003021144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209188A JP2003021144A (en) 2001-07-10 2001-07-10 Resin composite sliding member and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209188A JP2003021144A (en) 2001-07-10 2001-07-10 Resin composite sliding member and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2003021144A true JP2003021144A (en) 2003-01-24

Family

ID=19044878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209188A Pending JP2003021144A (en) 2001-07-10 2001-07-10 Resin composite sliding member and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2003021144A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100832A (en) * 2005-10-04 2007-04-19 Ntn Corp Reverse input-preventing clutch
JP2008267572A (en) * 2007-04-24 2008-11-06 Idemitsu Kosan Co Ltd Sealing device and sealing method
DE202009013211U1 (en) * 2009-09-02 2011-01-13 Becker Marine Systems Gmbh & Co. Kg Upper Rudertraglager
WO2013021584A1 (en) * 2011-08-08 2013-02-14 株式会社 東芝 Underwater sliding member, method for producing same and hydraulic machine
US8703675B2 (en) 2008-04-09 2014-04-22 Saint-Gobain Performance Plastics Corporation Bearing grease composition
AU2013205222B2 (en) * 2009-12-31 2014-09-11 Saint-Gobain Performance Plastics Pampus Gmbh Renewable energy source including an energy conversion structure and a bearing component
US8984817B2 (en) 2009-12-31 2015-03-24 Saint-Gobain Performance Plastics Pampus Gmbh Renewable energy source including an energy conversion structure and a bearing component
CN108440879A (en) * 2018-03-06 2018-08-24 宁波联博斯密封材料有限公司 High temperature pressurised ptfe composite and products thereof manufacturing process and ring pads
WO2020195660A1 (en) 2019-03-28 2020-10-01 Ntn株式会社 Slide bearing for electric water pump

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100832A (en) * 2005-10-04 2007-04-19 Ntn Corp Reverse input-preventing clutch
JP2008267572A (en) * 2007-04-24 2008-11-06 Idemitsu Kosan Co Ltd Sealing device and sealing method
US9657776B2 (en) 2008-04-09 2017-05-23 Saint-Gobain Performance Plastics Corporation Bearings
US8703675B2 (en) 2008-04-09 2014-04-22 Saint-Gobain Performance Plastics Corporation Bearing grease composition
DE202009013211U1 (en) * 2009-09-02 2011-01-13 Becker Marine Systems Gmbh & Co. Kg Upper Rudertraglager
US8858085B2 (en) 2009-09-02 2014-10-14 Becker Marine Systems Gmbh & Co. Kg Upper rudder carrier bearing
US8984817B2 (en) 2009-12-31 2015-03-24 Saint-Gobain Performance Plastics Pampus Gmbh Renewable energy source including an energy conversion structure and a bearing component
AU2013205222B2 (en) * 2009-12-31 2014-09-11 Saint-Gobain Performance Plastics Pampus Gmbh Renewable energy source including an energy conversion structure and a bearing component
WO2013021584A1 (en) * 2011-08-08 2013-02-14 株式会社 東芝 Underwater sliding member, method for producing same and hydraulic machine
EP2743521A4 (en) * 2011-08-08 2015-06-03 Toshiba Kk Underwater sliding member, method for producing same and hydraulic machine
KR101536319B1 (en) * 2011-08-08 2015-07-13 가부시끼가이샤 도시바 Underwater sliding member, method for producing same and hydraulic machine
US9404536B2 (en) 2011-08-08 2016-08-02 Kabushiki Kaisha Toshiba Underwater sliding member, method for manufacturing underwater sliding member, and hydraulic machine
JP2013052675A (en) * 2011-08-08 2013-03-21 Toshiba Corp Underwater sliding member, method for manufacturing the same, and hydraulic machine
CN108440879A (en) * 2018-03-06 2018-08-24 宁波联博斯密封材料有限公司 High temperature pressurised ptfe composite and products thereof manufacturing process and ring pads
WO2020195660A1 (en) 2019-03-28 2020-10-01 Ntn株式会社 Slide bearing for electric water pump

Similar Documents

Publication Publication Date Title
JP5615293B2 (en) Sliding element and method for manufacturing the same
JP5635352B2 (en) Compound plain bearing
JP5330969B2 (en) Sliding layer material and multilayer material
US4123122A (en) Bearing element
US4997192A (en) Mechanical seal using pore-dispersed material, and pore-dispersed cemented carbide and method for manufacturing same
JP4675563B2 (en) Bearing and manufacturing method thereof
JP3045472B2 (en) Sliding member for thrust bearing
JP5342883B2 (en) Double layer bearing
CN105637244A (en) Plain bearing material and a plain bearing composite material, comprising zinc sulphide and barium sulphate
GB2349923A (en) Plain bearing
JP5925553B2 (en) Variable displacement axial piston pump cradle guide and variable displacement axial piston pump
US7056590B2 (en) Plain bearing composite material
JP2003021144A (en) Resin composite sliding member and manufacturing method of the same
US3464845A (en) Antifriction bearings
US6365556B1 (en) Self-lubricating liner using poly (p-phenylene-2,6-benzobisoxazole) fiber
KR101704853B1 (en) Laminate composite
KR20160133237A (en) Oilless bearing comprising sliding layer consisted of complex element
JP2004323789A (en) Composite material for sliding member and method for producing the same
JPS588605A (en) Porous sintered bearing made of synthetic resin and manufacture thereof
JP2856861B2 (en) Method of manufacturing sliding member embedded with solid lubricant
JP2014142070A (en) Compound slide bearing
JP5806363B2 (en) Manufacturing method of compound plain bearing
JP6377452B2 (en) Composite, its manufacturing method, and composite bearing member
JP2001090836A (en) Fluororesin sliding member
JPH1036523A (en) Multilayer sliding member impregnated and coated with resin and its production

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060818

A621 Written request for application examination

Effective date: 20060824

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070219

A977 Report on retrieval

Effective date: 20090213

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A02 Decision of refusal

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A02