JPS6345199A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS6345199A
JPS6345199A JP18722086A JP18722086A JPS6345199A JP S6345199 A JPS6345199 A JP S6345199A JP 18722086 A JP18722086 A JP 18722086A JP 18722086 A JP18722086 A JP 18722086A JP S6345199 A JPS6345199 A JP S6345199A
Authority
JP
Japan
Prior art keywords
gas
substrate
bases
outer peripheral
bell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18722086A
Other languages
Japanese (ja)
Inventor
Tsugio Ishikawa
石川 二男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENSHI KINZOKU KK
Original Assignee
KYUSHU DENSHI KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENSHI KINZOKU KK filed Critical KYUSHU DENSHI KINZOKU KK
Priority to JP18722086A priority Critical patent/JPS6345199A/en
Publication of JPS6345199A publication Critical patent/JPS6345199A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To contrive to make film thickness of crystal growth layer uniform and to improve product yield, by arranging an approximately pyramidal susceptor in a bell-jar having outer peripheral length lessening from the top toward the bottom and setting a light reflecting structure of spherical surface of polygon at the outer peripheral part. CONSTITUTION:An approximately pyramidal susceptor 10 having the top part opposing to the side of a gas inlet 14 is set in a bell-jar 12 equipped with the gas inlet 14 and a gas outlet 16 in the vertical direction, bases 1 are supported and a reaction gas is introduced to a reaction chamber 15. The gas is heated by a high-frequency coil 7 set at the outer peripheral part and a crystal layer is grown in vapor by chemical reaction on the bases 1. In the vapor growth device of a barrel type having the constitution, the reaction chamber 15 consists of the bell-jar 12 in the form wherein the outer peripheral length is gradually lessened from the top toward the bottom, and the reaction gas is made uniform. Further, a light reflecting structure 31 having a reflecting face made of spherical surface of polygon is set at the position opposing to the bases 1 at the outer peripheral part of the bell-jar and radiation heat is efficiently sent to the surface of the bases 1. Temperature gradient of the bases 1 at both sides is corrected and bending and crystallographic slippage are prevented.

Description

【発明の詳細な説明】 利用産業分野 この発明は、化学反応により、基板上に所要の半導体薄
膜を気相成長させる気相成長装置の改良に係り、最適の
原オニ1ガス流を確1呆し、かつ岐1°11熱体からの
輻射熱を有効利用することにより、基板の温度分布の均
一化を図り、膜厚の均一性を向上させ、基板の結晶学的
なすべりを防止して、製品歩留を向上させることができ
る気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application This invention relates to the improvement of a vapor phase growth apparatus for vapor phase growth of a desired semiconductor thin film on a substrate through a chemical reaction, and to the improvement of a vapor phase growth apparatus for vapor phase growth of a desired semiconductor thin film on a substrate through a chemical reaction. In addition, by effectively utilizing the radiant heat from the heating element, the temperature distribution of the substrate is made uniform, the uniformity of the film thickness is improved, and crystallographic slippage of the substrate is prevented. The present invention relates to a vapor phase growth apparatus that can improve product yield.

背景技術 今日、集積回路の量産には、高温に加熱された基板を収
納したベルジャー内に、一方より原料ガスを導入し、該
基板上に特定組成の薄膜を気相化学反応により形成し、
ベルジャーの他方より排ガスを排出する構成からなる気
相成長装置が用いられている。
BACKGROUND ART Today, in the mass production of integrated circuits, raw material gas is introduced from one side into a bell jar containing a substrate heated to high temperature, and a thin film of a specific composition is formed on the substrate by a vapor phase chemical reaction.
A vapor phase growth apparatus is used in which exhaust gas is discharged from the other end of a bell jar.

一般に、気相成長装置において、基板上に薄、膜を所要
厚みに均一に形成するには、温度、圧力、ガス濃度、基
板表面などの各種要素を最適に選択、1呆持する必要が
あるとされている。
Generally, in a vapor phase growth apparatus, in order to uniformly form a thin film to the required thickness on a substrate, it is necessary to optimally select and maintain various factors such as temperature, pressure, gas concentration, and substrate surface. It is said that

ベルジャー内の原料ガスの流体力学的な検討や、基板の
加熱方法などにより、横型、縦型、バレル型等の各種型
式の気相成長装置が開発され、原料ガスの流れ状態が、
薄膜厚みの均一性に悪影響を与えることが知られており
、特に、複数基板間の温度差や、各基板の表裏面の温度
勾配の発生により、基板への熱応力や結晶学的すベリ等
が生し、歩留の低下を招来することが指摘(特開昭59
−50095号)されている。
Various types of vapor phase growth equipment, such as horizontal, vertical, and barrel types, have been developed based on the fluid dynamics of the raw material gas in the bell jar and the heating method of the substrate.
It is known that the uniformity of thin film thickness is adversely affected, and in particular, temperature differences between multiple substrates and temperature gradients between the front and back surfaces of each substrate can cause thermal stress on the substrates, crystallographic smearing, etc. It has been pointed out that this can lead to the production of
-50095).

第3図に示すバレル型気相成長装置は、横型と縦型の利
点を有するものとされ、基板(1)を保持し回転駆動さ
れるサセプター(2)は複数の傾斜面からなる略角錐状
から構成され、ドーム状あるいは図示するチューリップ
状のベルジャー(3)の上部の開口を閉塞する部材に設
けたガス導入口(4)より原料ガスが円筒状の反応室(
5)へ導入され、下部の閉塞底部の中央に設けたガス排
出口(6)より排出され、ベルジャー(3)の外周部に
高周波コイル(7)が配置される構成である。また、第
4図の如く、前記のドーム型のベルジャーを用いたバレ
ル型の場合は、サセプター(2)の傾斜方向が同一方向
である以外、全てが上下逆配置となる。
The barrel-type vapor phase growth apparatus shown in FIG. 3 has the advantages of horizontal and vertical types, and the susceptor (2) that holds the substrate (1) and is rotationally driven has a substantially pyramidal shape consisting of a plurality of inclined surfaces. The raw material gas is introduced into the cylindrical reaction chamber (
5) and is discharged from a gas outlet (6) provided at the center of the lower closed bottom, and a high-frequency coil (7) is arranged around the outer periphery of the bell jar (3). Further, as shown in FIG. 4, in the case of the barrel type using the dome-shaped bell jar, all the bell jars are arranged upside down except that the susceptors (2) are tilted in the same direction.

かかる気相成長装置において、1バツチにおける基板処
理枚数をふやす傾向にあるが、ガスの流の不均一やガス
濃度分布の不均一が問題となるため、被カロ熱体である
基板及びサセプターの均一な加熱を目的に、加熱源の高
周波コイル(7)とサセプター(2)との間隔調整や、
高層;皮コイル(7)の配置方法を考慮したりして、被
加熱体への熱全を制御し、基板(1)上の温度分布を一
矛、ηにし、さらに、減圧するなどの手段により、ガス
流速を増して原料ガスの供給量を増大させ、ガス流方向
の各基板上膜!7の不均一を改善する方法が取られてい
た。
In such a vapor phase growth apparatus, there is a tendency to increase the number of substrates processed in one batch, but uneven gas flow and uneven gas concentration distribution pose problems, so it is necessary to increase the uniformity of the substrates and susceptor, which are the heated bodies. For the purpose of heating, the distance between the high frequency coil (7) of the heating source and the susceptor (2) is adjusted,
High-rise: Measures such as controlling the total heat to the heated object by considering the arrangement method of the leather coil (7), making the temperature distribution on the substrate (1) uniform, and reducing the pressure. By increasing the gas flow rate and increasing the supply amount of raw material gas, the film on each substrate in the gas flow direction is increased! A method was taken to improve the non-uniformity of 7.

しかし、上記方法でもガス濃度分布の不均一が解消され
ず、成長する薄膜厚みが不均一となるため、サセプター
をガス流れに略平行に配置し、基板上垂直方向のガス濃
度を、1IIJ定し、その結果に基づき補充原料ガスを
供給する方法が(特開昭55−75999号)が提案さ
れているが、かかるガス濃度ぷす定、自II充をリアル
タイムに行なうには、高度な演算l!、’J御が必要と
なり、操業上程々の問題を派生させていた。
However, even with the above method, the non-uniformity of the gas concentration distribution cannot be resolved and the thickness of the grown thin film becomes non-uniform. Therefore, the susceptor is placed approximately parallel to the gas flow, and the gas concentration in the vertical direction on the substrate is fixed at 1IIJ. A method has been proposed (Japanese Unexamined Patent Application Publication No. 75999/1989) to supply supplementary raw material gas based on the results, but in order to perform such gas concentration pressure determination and automatic II charging in real time, sophisticated calculations are required. , 'J control was required, which caused some operational problems.

また、基板(1)表面を常に流れる原料ガスにより、あ
るいは基板厚みによって、基板(1)の表裏面の温度勾
配が発生して熱応力により基板が湾曲し、基板中央部と
周辺部での温度差を生じ、基板の結晶学的すべりに基づ
く製品歩留の低下があった。
In addition, due to the raw material gas constantly flowing on the surface of the substrate (1) or depending on the thickness of the substrate, a temperature gradient occurs between the front and back surfaces of the substrate (1), causing the substrate to curve due to thermal stress, and the temperature at the center and periphery of the substrate to increase. There was a difference in product yield due to crystallographic slippage of the substrate.

このため、サセプターにおける基板の保持方法を工夫す
るなど対策(特開昭59−50095号)が取られるが
、基板の表裏面の温度勾配を根本的に解決するものでは
なかった。
For this reason, countermeasures have been taken, such as devising a method for holding the substrate in a susceptor (Japanese Patent Application Laid-Open No. 59-50095), but this did not fundamentally solve the temperature gradient between the front and back surfaces of the substrate.

発明の目的 この発明は、基板表面温度の均一化を図り、膜厚の均一
性を向上させ、基板の結晶学的なすべりを防止して、製
品歩留を向上させることができる気相成長装置を目的と
している。
Purpose of the Invention The present invention provides a vapor phase growth apparatus that can uniformize the substrate surface temperature, improve the uniformity of film thickness, prevent crystallographic slippage of the substrate, and improve product yield. It is an object.

発明の構成と効果 この発明は、気相成長装置における基板の均一加熱を目
的に種々検討した結果、反応室内のガス流の最適化を図
り、かつこれを確保した上で、被加熱体(基板及びサセ
プター)からの輻射熱を積極的に利用することにより、
基板の表裏面の温度勾配を解消し、基板上での温度分布
の均一精度が大きく向上し、成形薄膜厚みの均一性が向
上し、また、基板の結晶学的なすべりが防止され、製品
歩留が向上することを知見したものである。
Structure and Effects of the Invention As a result of various studies aimed at uniformly heating a substrate in a vapor phase growth apparatus, the present invention optimizes and secures the gas flow in the reaction chamber, and then heats the heated object (substrate). By actively utilizing the radiant heat from (and susceptor),
This eliminates the temperature gradient between the front and back surfaces of the substrate, greatly improving the uniformity of temperature distribution on the substrate, improving the uniformity of the formed thin film thickness, and preventing crystallographic slippage of the substrate, resulting in improved product quality. It was discovered that the retention rate was improved.

すなわち、この発明は、 上下方向にガスの導入、排出口を設けたベルジャー内に
、ガス導入口側に頂部を対向させた略角錐状サセプター
を配置し、水素還元、熱分解法等の化学的反応により、
基板上に結晶層を気相成長させるバレル型気相成長装置
において、ガス導入口側より下側のガス排出口に向って
、外周長が暫時減少する形状からなるベルジャーで反応
室を構成し、さらに、反射面を多球面で構成した光反射
構造体を、前記ベルジャー外周部に配置したことを特徴
とする気相成長装置である。
That is, this invention provides a bell jar with gas introduction and discharge ports provided in the vertical direction, and a substantially pyramid-shaped susceptor with its top facing the gas introduction port side, which allows chemical methods such as hydrogen reduction and thermal decomposition to be carried out. Due to the reaction,
In a barrel-type vapor phase growth apparatus for vapor phase growth of a crystal layer on a substrate, a reaction chamber is configured with a bell jar having a shape whose outer circumference gradually decreases from the gas inlet side toward the lower gas outlet, Furthermore, the vapor phase growth apparatus is characterized in that a light reflecting structure having a polyspherical reflecting surface is disposed on the outer periphery of the bell jar.

この発明において、ガス導入口側より下側のガス排出口
に向って、外周長が暫時減少する形状からなるベルジャ
ーで・反応室を構成することにより、反応室内のガス流
並びに濃度の最適化が図られ、成形薄膜厚みの均一性が
向上し、製品歩留が向上する効果が得られるが、サセプ
ターの傾斜、角度と上記のベルジャーの絞り傾斜角度と
の関係:峠ベルジャー寸法やサセプター形状2寸法及び
ガス流等の諸条件を考「・トして適宜選定する必要があ
る。
In this invention, the gas flow and concentration within the reaction chamber can be optimized by configuring the reaction chamber with a bell jar whose outer circumference gradually decreases from the gas inlet side toward the lower gas outlet. However, the relationship between the inclination and angle of the susceptor and the drawing inclination angle of the bell jar described above: Toge bell jar dimensions and susceptor shape 2 dimensions It is necessary to consider various conditions such as gas flow and gas flow, etc., and select appropriately.

この発明の特徴である光反射構造体は、かかる気相成長
装置において、サセプターを介して高周波コイルにて所
要温度まで基板を加熱するが、この會の基板及びサセプ
ターの被加熱体からの輻射熱を、乱反射させることなく
所要方向に反射させ、基板表面に戻す機能を有し、これ
により、従来装置で生じていた基板の表裏面の温度勾配
を補償できるため、基板が湾曲して表面温度分布が不均
一となり、結晶学的すべりが発生するのが防止される。
The light reflecting structure, which is a feature of the present invention, heats the substrate to a required temperature with a high-frequency coil via a susceptor in such a vapor phase growth apparatus, and absorbs radiant heat from the substrate and the heated body of the susceptor. , it has the function of reflecting it in the desired direction without causing diffuse reflection and returning it to the substrate surface.This allows it to compensate for the temperature gradient on the front and back surfaces of the substrate that occurs in conventional equipment, so the substrate is curved and the surface temperature distribution is changed. Non-uniformity and crystallographic slippage are prevented from occurring.

この光反射構造体の形状5寸法や反射面の構成は、適用
する気相成長装置の型式構成2寸法等により、適宜選定
されるが、反応室を形成するベルジャーの外周部の少な
くとも被加熱体に対向する位置に配置すると前述の効果
が得られ、さらに、該光反射構造体の被加熱体に対向す
る位置あるいは上部反射面を、多球面で構成することに
より、最も効率よく輻射熱を基板表面に帰着させること
かて゛きる。
The shape and dimensions of this light reflecting structure and the structure of the reflecting surface are appropriately selected depending on the type and configuration of the vapor phase growth apparatus to which it is applied. The above-mentioned effect can be obtained by arranging the light reflecting structure at a position facing the heated object, and by configuring the upper reflecting surface or the position facing the heated object of the light reflecting structure to be a polyspherical surface, the radiant heat is most efficiently transferred to the substrate surface. It is impossible to reduce it to .

また、光反射rIW造体のti”質は、高周波を誘導し
ない材質が好ましく、例えば、アルミナ等の耐熱セラミ
ックスが利用でき、反射面は表面を鏡面仕上げにより形
成したり、さらに、金、銀、ロジウム等の反射膜を被着
形成するなどの手段が採用できる。
In addition, the Ti'' quality of the light-reflecting rIW structure is preferably a material that does not induce high frequencies; for example, heat-resistant ceramics such as alumina can be used, and the reflective surface can be formed with a mirror finish, or gold, silver, Means such as depositing and forming a reflective film of rhodium or the like can be adopted.

発明の図面に基づく開示 第1図はこの発明によるバレル型気相成長装置の樅1折
説明図である。第2図はこの発明の池の気相成長装置の
縦断説明図て゛ある。
DISCLOSURE OF THE INVENTION BASED ON DRAWINGS FIG. 1 is an explanatory diagram of a barrel-type vapor phase growth apparatus according to the present invention. FIG. 2 is a longitudinal sectional view of the pond vapor phase growth apparatus of the present invention.

第1図に示す気(目成長装置は、基板(1)を保持する
サセプター(10)は複数の1頃斜面からなるlll:
’r角椎状から構成され、基台に垂直に垂架された回転
軸(11)に装着されて回転可能に保持され、チューリ
ップ状のベルジャー(12)内に装入されており、該ベ
ルジャー(12)の上部の開口を閉塞する部材(13)
に設けたガス導入口(14)より原料ガスが反応室(1
5)へ導入され、ベルジャー(12)下部の閉塞底部の
中央に設けたガス排出口(16)より排出される。
In the air growth apparatus shown in FIG. 1, the susceptor (10) that holds the substrate (1) is composed of a plurality of slopes:
It is composed of a rectangular vertebrae, is rotatably held by being attached to a rotating shaft (11) suspended perpendicularly to a base, and is placed in a tulip-shaped bell jar (12). A member (13) that closes the upper opening of (12)
The raw material gas flows into the reaction chamber (1) from the gas inlet (14) provided in the
5) and is discharged from the gas outlet (16) provided at the center of the closed bottom of the bell jar (12).

上記のベルジャー(12)は、ガス導入口(14)側よ
り下側のガス排出口(16)に向って、外周長が暫時減
少する形状からなり、サセプター(10)の基板(1)
を貼着した面の対向位置に、内側反射面を多球面より構
成したセラミックス製の光反射構造体(31)が層配置
しである。高周波コイル(17)はこの光反射溝造(+
(31)の外周部に配置される構成である。
The bell jar (12) has a shape in which the outer circumference gradually decreases from the gas inlet (14) side toward the lower gas outlet (16), and
A ceramic light-reflecting structure (31) whose inner reflective surface is a polyspherical surface is arranged in a layer opposite to the surface to which the light-reflecting structure (31) is attached. The high frequency coil (17) has this light reflecting groove structure (+
(31) is arranged on the outer periphery.

第2図に示すバレル型気相成長装置は、基板(1)を1
呆持するサセプター(20)は同様形状の略多角錐状か
らなり、また、基台に垂直に軸支された回転軸(21)
に装着されて回転可能に保持され、これを覆うように配
置されるベルジャー(22)は、頭部中央にガス導入口
(24)を開孔し、下側開口部に向って水平方向の外周
長が暫時減少する形状からなり、原料ガスは上部のガス
導入口(24)より、ベルジャー(22)内の反応室(
25)内を下降して、ベルジャー(22)下部の開口を
閉塞する部材あるいは基台に設けたガス排出口(26)
より排出される。
The barrel type vapor phase growth apparatus shown in FIG.
The holding susceptor (20) has the same substantially polygonal pyramid shape, and also has a rotating shaft (21) vertically supported on the base.
The bell jar (22), which is rotatably held and arranged to cover the bell jar, has a gas inlet (24) in the center of the head, and a horizontal outer circumference toward the lower opening. It has a shape in which the length decreases temporarily, and the raw material gas enters the reaction chamber (in the bell jar (22)) from the upper gas inlet (24).
25) A gas outlet (26) provided in a member or base that descends inside and closes the opening at the bottom of the bell jar (22).
more excreted.

さらに、前記ベルジャー(22)全体を被包する如く、
セラミックス袈の多球面で構成される光反q=を構造体
(32)が配置され、その外周部に加8j5源の高周波
コイル(27)が巻回配置されている。
Furthermore, so as to cover the entire bell jar (22),
A light reflection structure (32) made of a polyspherical surface of a ceramic shank is arranged, and a high frequency coil (27) of 8j5 sources is wound around the outer periphery of the structure (32).

上述の如く、ベルジャー(12X22)の形状を、サセ
プター(10X20)の(頃斜・角度等に応じて、この
発明による持味な形状とすることにより、次のような利
点がある。
As mentioned above, by making the shape of the bell jar (12x22) into a unique shape according to the present invention according to the slope, angle, etc. of the susceptor (10x20), there are the following advantages.

すなわち、一般に、原料ガスは、従来の円筒状の反応室
(5)(第3図参照)内を下方へ行くほど加熱されて膨
張するため、浮力を生じて下流側はどその流速が乱れ、
上流側で原料ガスの濃度が高く、下流側で低くなり、下
流側基板に形成される膜厚が不均一になる傾向があった
が、この発明による外周長さが暫時減少する所謂尻窄み
形状の反応室(15X25)とすることにより、下流側
はど通過断面積が少なくなるため、流速が速くなり、浮
力の影響少なく、均一な膜厚を」・ることができる。
That is, in general, the raw material gas is heated and expands as it goes downward in the conventional cylindrical reaction chamber (5) (see Figure 3), which creates buoyancy and disrupts the flow velocity on the downstream side.
There was a tendency for the concentration of the raw material gas to be high on the upstream side and low on the downstream side, resulting in uneven film thickness formed on the downstream substrate. By making the shape of the reaction chamber (15 x 25) smaller, the cross-sectional area of the passage on the downstream side becomes smaller, so the flow rate becomes faster, the influence of buoyancy is reduced, and a uniform film thickness can be achieved.

なお、ベルジャーを円筒状とし、サセプターの傾き角度
を緩くすると、相対的に上記の場合と同様と考えられる
が、サセプター形状が変り、基板の保持面積が変化し、
ガス濃度も変化するなど種ノ、・の問題を1d末するた
め好ましくない。
Note that if the bell jar is made cylindrical and the inclination angle of the susceptor is made gentler, the situation is considered to be relatively similar to the above case, but the shape of the susceptor changes, the holding area of the substrate changes,
This is not preferable because the gas concentration also changes, which eliminates the problems mentioned above.

また、光反射構造体r 3 l 、1はその反射面全体
が、光反Qj’ t:Yi構造体32)は頭1代及び底
部の内側反射面が、それぞ゛れ多球面から(′I¥成さ
れ、サセプター<10M20)及び基板(1)からの輻
射熱を有効に基板(1))へ帰着させることかて゛き、
凸阪の表裏面の温度勾配を補償することができるため、
基板が湾曲して表面温度分布が不均一となり、結晶学的
すべりが発生するのを防止することができる。
In addition, the light reflection structure r 3 l, 1 has its entire reflection surface, and the light reflection structure Qj' t:Yi structure 32) has its head 1 and bottom inner reflection surfaces, respectively, from the polyspherical surface (' In order to effectively return the radiant heat from the susceptor <10M20) and the substrate (1) to the substrate (1),
Since it is possible to compensate for the temperature gradient on the front and back surfaces of the convex slope,
It is possible to prevent crystallographic slippage from occurring due to the substrate being curved and the surface temperature distribution becoming non-uniform.

実施例 第1図に示したバレル型気相成長装置を用いて、 サセプター;6角錘形状 対角線長さ上側250mm、 下側280mm、 回転数6/min ベルジャー;上側直径335mm、下側直径310mm
光反射IIW造体;直径435mm、 高周波コイルと光反射i、l、l;造体間距離;20〜
35mm加熱時間;1時間 加熱温度; 1200°C1 反応時間;30分 半導f+ガス; 5iC14 なる条1′1・の気1目成長を行なったところ、光反n
・14.“パ;造体による液加熱体からの輻射熱の帰着
:+=:七1Xノ25%であり、光反射構造体を有しな
い従来の気(・目成長装置と比較して、使用?よりは1
5%削1成でき、さらに、基板表面での均%:jl、度
がよくなり、結晶学的すべりが大幅に戚少し、製品ル留
が8%向上した。
Example Using the barrel type vapor phase growth apparatus shown in Fig. 1, susceptor: hexagonal pyramid diagonal length upper side 250 mm, lower side 280 mm, rotation speed 6/min Bell jar: upper diameter 335 mm, lower diameter 310 mm
Light reflection IIW structure; diameter 435mm, high frequency coil and light reflection i, l, l; distance between structures: 20~
35mm Heating time: 1 hour Heating temperature: 1200°C1 Reaction time: 30 minutes Semiconductor f + gas;
・14. The return of radiant heat from the liquid heating body by the structure: +=: 25% of 71 1
A 5% reduction was achieved, and the average percentage on the substrate surface was improved, the crystallographic slippage was significantly reduced, and the product retention was improved by 8%.

また、ベルジャーが直径335mmの円筒状膨軟の従来
装置に比・咬して、形成薄膜厚みが均一となり、膜厚ば
らつきが10%減少した、
In addition, compared to the conventional device with a cylindrical inflatable bell jar with a diameter of 335 mm, the formed thin film thickness was more uniform and the film thickness variation was reduced by 10%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるバレル型鉄(・目成長装置の縦
断説明図である。第2図:;この発明の池の気相成長装
置の縦断説明図である。第3図と第4図は従来のバレル
型気相成長装置の縦断説明図であ1・・・基板、10.
20・・・サセプター、12.22・・・石英ベルジャ
ー、14,24・・・ガス導入口、15.25・・・反
応室、16.26・・・ガス排出口、17.27・・・
高周波コイル、31.32・・光反射構造体。
FIG. 1 is a vertical cross-sectional view of a barrel-type iron mesh growth apparatus according to the present invention. FIG. 2 is a vertical cross-sectional view of a pond vapor phase growth apparatus according to the present invention. 1 is a vertical cross-sectional view of a conventional barrel-type vapor phase growth apparatus; 1...substrate; 10.
20...Susceptor, 12.22...Quartz bell jar, 14,24...Gas inlet, 15.25...Reaction chamber, 16.26...Gas outlet, 17.27...
High frequency coil, 31.32...Light reflecting structure.

Claims (1)

【特許請求の範囲】[Claims] 上下方向にガスの導入、排出口を設けたベルジャー内に
、ガス導入口側に頂部を対向させた略角錐状サセプター
を配置し、水素還元、熱分解法等の化学的反応により、
基板上に結晶層を気相成長させるバレル型気相成長装置
において、ガス導入口側より下側のガス排出口に向って
、外周長が暫時減少する形状からなるベルジャーで反応
室を構成し、さらに、反射面を多球面で構成した光反射
構造体を、前記ベルジャー外周部に配置したことを特徴
とする気相成長装置。
A substantially pyramid-shaped susceptor with the top facing the gas inlet is placed inside a bell jar with gas inlet and outlet ports in the vertical direction, and chemical reactions such as hydrogen reduction and pyrolysis are used to
In a barrel-type vapor phase growth apparatus for vapor phase growth of a crystal layer on a substrate, a reaction chamber is configured with a bell jar having a shape whose outer circumference gradually decreases from the gas inlet side toward the lower gas outlet, Furthermore, a vapor phase growth apparatus characterized in that a light reflecting structure having a polyspherical reflecting surface is disposed on the outer periphery of the bell jar.
JP18722086A 1986-08-08 1986-08-08 Vapor growth device Pending JPS6345199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18722086A JPS6345199A (en) 1986-08-08 1986-08-08 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18722086A JPS6345199A (en) 1986-08-08 1986-08-08 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS6345199A true JPS6345199A (en) 1988-02-26

Family

ID=16202172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18722086A Pending JPS6345199A (en) 1986-08-08 1986-08-08 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS6345199A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081788A3 (en) * 2001-04-06 2003-10-16 Wafermasters Inc Method for h2 recycling in semiconductor processing system
US20120083100A1 (en) * 2010-09-30 2012-04-05 S.O.I.Tec Silicon On Insulator Technologies Thermalizing gas injectors for generating increased precursor gas, material deposition systems including such injectors, and related methods
US8486193B2 (en) 2010-09-30 2013-07-16 Soitec Systems for forming semiconductor materials by atomic layer deposition
US20140287599A1 (en) * 2013-03-22 2014-09-25 Hitachi Kokusai Electric Inc. Substrate processing apparatus, process container, and method of manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147686A (en) * 1977-05-30 1978-12-22 Fujitsu Ltd Apparatus for gas phase growth on thin embrane
JPS599082B2 (en) * 1976-12-08 1984-02-29 有限会社ア−ル アンド ディ− オフィス マコト Connection structure between tone arm and cartridge shell
JPS6120035B2 (en) * 1982-05-19 1986-05-20 Tokyo Shibaura Electric Co

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599082B2 (en) * 1976-12-08 1984-02-29 有限会社ア−ル アンド ディ− オフィス マコト Connection structure between tone arm and cartridge shell
JPS53147686A (en) * 1977-05-30 1978-12-22 Fujitsu Ltd Apparatus for gas phase growth on thin embrane
JPS6120035B2 (en) * 1982-05-19 1986-05-20 Tokyo Shibaura Electric Co

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081788A3 (en) * 2001-04-06 2003-10-16 Wafermasters Inc Method for h2 recycling in semiconductor processing system
US6737361B2 (en) 2001-04-06 2004-05-18 Wafermaster, Inc Method for H2 Recycling in semiconductor processing system
US20120083100A1 (en) * 2010-09-30 2012-04-05 S.O.I.Tec Silicon On Insulator Technologies Thermalizing gas injectors for generating increased precursor gas, material deposition systems including such injectors, and related methods
US8486192B2 (en) * 2010-09-30 2013-07-16 Soitec Thermalizing gas injectors for generating increased precursor gas, material deposition systems including such injectors, and related methods
US8486193B2 (en) 2010-09-30 2013-07-16 Soitec Systems for forming semiconductor materials by atomic layer deposition
US8785316B2 (en) 2010-09-30 2014-07-22 Soitec Methods for forming semiconductor materials by atomic layer deposition using halide precursors
US20140287599A1 (en) * 2013-03-22 2014-09-25 Hitachi Kokusai Electric Inc. Substrate processing apparatus, process container, and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP4108748B2 (en) Cold wall vapor deposition
KR910008793B1 (en) Chemical vapor deposition apparatus having an ejecting head for ejecting a laminated reaction gas flow
JP4048329B2 (en) Process chamber with internal support member
JP4171074B2 (en) Barrel reactor for rapid thermal processing for processing substrates
JP4751371B2 (en) Process chamber with internal support member
US6099650A (en) Structure and method for reducing slip in semiconductor wafers
CN109385625A (en) A kind of MPCVD equipment temperature regulating device and method
JPS6345199A (en) Vapor growth device
JP2005183834A (en) Barrel type susceptor
JPS63144513A (en) Barrel type epitaxial growth device
JP3215498B2 (en) Film forming equipment
JPH0864544A (en) Vapor growing method
JPS6340796A (en) Vapor growth device
JPS594434A (en) Vapor phase reactor
JPS6342375A (en) Vapor growth device
JPS6340795A (en) Vapor growth device
JP3113478B2 (en) Semiconductor manufacturing equipment
JPH0268922A (en) Susceptor for vapor growth
JPS5932123A (en) Vapor growth method
JPH01256118A (en) Vapor phase reaction equipment
JPH02279589A (en) Vapor growth device
JPH06326038A (en) Vapor growth device
JPS62243769A (en) Method for growing polysilicon in vapor phase under reduced pressure
JPH02152224A (en) Vapor growth apparatus
JPS59207899A (en) Gaseous phase reactor