JPH06326038A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPH06326038A
JPH06326038A JP13511693A JP13511693A JPH06326038A JP H06326038 A JPH06326038 A JP H06326038A JP 13511693 A JP13511693 A JP 13511693A JP 13511693 A JP13511693 A JP 13511693A JP H06326038 A JPH06326038 A JP H06326038A
Authority
JP
Japan
Prior art keywords
wafer
gas
vapor phase
phase growth
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13511693A
Other languages
Japanese (ja)
Inventor
Kazuo Kuniyone
和夫 國米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13511693A priority Critical patent/JPH06326038A/en
Publication of JPH06326038A publication Critical patent/JPH06326038A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a small-sized vapor growth device with no variability of the thickness of film deposited on the surface of wafer and among wafers, simultaneously treating a plurality of semiconductor wafers. CONSTITUTION:In a vapor growth device, in which a plurality of semiconductor wafers are treated simultaneously, a wafer susceptor 2, to which wafer pockets 3, on which a plurality of the semiconductor wafers 1 are placed horizontally, are formed at a plurality of steps, a reaction pipe 5, into which the wafer susceptor 2 is charged and in which a vapor growth reaction is conducted, a means rotating the wafer susceptor 2 in the reaction pipe 5, a gas blow-off port 7 for vapor growth formed at every step of the wafer pickets 3 and a means controlling a gas flow rate are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体ウエハの作製等に
用いられる気相成長装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus used for manufacturing semiconductor wafers and the like.

【0002】[0002]

【従来の技術】化学気相反応を利用した膜形成法(CV
D)は、他の膜形成法に比べ、(1)膜形成時に不純物
を容易に添加できること、(2)高純度ガスを用いるこ
とができるので高品質膜が形成できること、(3)反応
ソースの選択で各種絶縁膜、半導体膜、金属膜が形成で
きること、(4)ステップカバレージがよいこと、など
数多くの利点がある。このため、現在LSI製造プロセ
スにおいては、Si系薄膜形成法としてゲート配線材
料、層間絶縁膜パッシベーション膜などの形成に利用さ
れ、重要なプロセス技術となっている。近年、LSIの
高精度化、高集積化が進むにつれ、電気的特性、膜厚の
より均一な薄膜を形成することが必要となってきてお
り、CVDによる膜形成法についても同様に、均一な薄
膜を形成することが要求されている。
2. Description of the Related Art A film forming method (CV) utilizing a chemical vapor reaction
Compared to other film forming methods, D) is (1) that impurities can be easily added at the time of film formation, (2) that a high-purity gas can be used to form a high-quality film, and (3) that a reaction source is used. There are many advantages such as the ability to form various insulating films, semiconductor films, and metal films by selection, and (4) good step coverage. Therefore, in the LSI manufacturing process, it is currently used as a Si-based thin film forming method for forming a gate wiring material, an interlayer insulating film passivation film, and the like, and is an important process technology. In recent years, with the progress of higher precision and higher integration of LSI, it has become necessary to form a thin film having more uniform electrical characteristics and film thickness. It is required to form a thin film.

【0003】このCVDを行う代表的な装置の断面図を
図4および図5に示す。ここで1はウエハ、2はウエハ
支持台(図4ではウエハボート、図5ではサセプタ)、
3はウエハポケット、4はハッチ、5は反応管、6は反
応管5内へ供給されるガスで矢印でその流れの方向を示
す。7はガス供給口、8はガス排出口、9は加熱用ヒー
タである。数字は図4、図5共通である。
Cross-sectional views of a typical apparatus for performing this CVD are shown in FIGS. 4 and 5. 1 is a wafer, 2 is a wafer support (wafer boat in FIG. 4, susceptor in FIG. 5),
3 is a wafer pocket, 4 is a hatch, 5 is a reaction tube, 6 is a gas supplied into the reaction tube 5, and the direction of the flow is shown by an arrow. Reference numeral 7 is a gas supply port, 8 is a gas discharge port, and 9 is a heater for heating. The numbers are common to FIGS. 4 and 5.

【0004】図4は拡散炉型CVD装置で上記構成にお
いて、ウエハ1はウエハボート2に垂直に立て掛けて載
せ、ハッチ4を開いて反応管5内へ挿入する。供給ガス
6はガス供給口7から反応管5内へ供給され、ガス排出
口8から排気される。供給ガス6供給時に反応管5内の
温度を均一化するために、加熱用ヒータ9を反応管5の
周囲に配置する。このCVD装置は他の装置と比べ、構
造が簡単で、温度均一性が良く1回あたりの処理枚数が
多いことなどが特徴である。
FIG. 4 shows a diffusion furnace type CVD apparatus in which the wafer 1 is vertically laid on a wafer boat 2 and placed on the wafer boat 2, and the hatch 4 is opened and inserted into the reaction tube 5. The supply gas 6 is supplied into the reaction tube 5 through the gas supply port 7 and exhausted through the gas discharge port 8. A heater 9 for heating is arranged around the reaction tube 5 in order to make the temperature in the reaction tube 5 uniform when the supply gas 6 is supplied. This CVD apparatus is characterized by a simpler structure, better temperature uniformity, and a larger number of processed sheets per time than other apparatuses.

【0005】図5は縦型(ディスク型)CVD装置で、
上記構成においてウエハ1はサセプタ2に水平に載せ
る。ウエハ1の出し入れは反応管5を昇降して行う。供
給ガス6はサセプタ2の中心に設けられたガス供給口7
から反応管5内へ供給されガス排出口8から排気され
る。供給ガス6供給時サセプタ2は回転させる。また加
熱用ヒータ9は高周波コイルで、サセプタ2を通してウ
エハ1に熱を伝導する。このCVD装置は、他の装置と
比べ供給ガスの流れの均一性が良いことなどが特徴であ
る。
FIG. 5 shows a vertical (disk type) CVD apparatus,
In the above structure, the wafer 1 is placed horizontally on the susceptor 2. The loading and unloading of the wafer 1 is performed by raising and lowering the reaction tube 5. The supply gas 6 is a gas supply port 7 provided at the center of the susceptor 2.
Is supplied to the inside of the reaction tube 5 from the gas exhaust port 8. When supplying the supply gas 6, the susceptor 2 is rotated. The heating heater 9 is a high-frequency coil that conducts heat to the wafer 1 through the susceptor 2. This CVD apparatus is characterized in that the flow of the supply gas is more uniform than other apparatuses.

【0006】[0006]

【発明が解決しようとしている課題】しかしながら、上
記従来例では前述した構成、動作により次のような欠点
があった。
However, the above-described conventional example has the following drawbacks due to the above-described configuration and operation.

【0007】図4に示した拡散炉型CVD装置の場合、
供給ガス6が矢印で示したように流れるため、形成する
薄膜の種類によっては(例えば単結晶シリコン薄膜な
ど)反応ガス流の上流ほどガスが反応してしまい、下流
へ行くほど反応ガス流量は実質的に減少する。このこと
から、ウエハ面内において、上端から下端へ行くにつれ
て形成膜厚は薄くなる。また同時に処理したウエハ間に
ついても、ウエハボートの奥へ立て掛けたウエハほど形
成膜厚が薄くなる。すなわちウエハ面内、ウエハ間での
膜厚ばらつきが生じてしまう欠点があった。
In the case of the diffusion furnace type CVD apparatus shown in FIG.
Since the supply gas 6 flows as shown by the arrow, depending on the type of thin film to be formed (for example, a single crystal silicon thin film), the gas reacts further upstream in the reaction gas flow, and the reaction gas flow rate becomes substantially lower downstream. Decrease. From this, the formed film thickness becomes thinner from the upper end to the lower end within the wafer surface. Further, between the wafers processed at the same time, the formed film thickness becomes smaller as the wafer leans toward the back of the wafer boat. That is, there is a drawback that the film thickness varies between the wafer surfaces and between the wafers.

【0008】また図5に示した縦型CVD装置の場合、
ガスの対流を利用することでウエハ面内、ウエハ間での
膜厚ばらつきを改善することができるが、このため反応
管の容積を大きくとらなければならない。またサセプタ
が円板状であることから処理枚数を多くする場合、サセ
プタの径を大きくしなければならないことから、装置が
極端に大型化してしまう欠点があった。
In the case of the vertical CVD apparatus shown in FIG. 5,
By utilizing the gas convection, it is possible to improve the film thickness variation within the wafer surface and between the wafers, but for this reason, the volume of the reaction tube must be large. Further, since the susceptor has a disc shape, the diameter of the susceptor has to be increased when the number of processed sheets is increased, which causes a problem that the device becomes extremely large.

【0009】[発明の目的]本発明の目的は、複数の半
導体ウエハを同時に処理する気相成長装置において、ウ
エハ面内、及び各ウエハ間において、膜厚のバラツキが
なく、かつ小型の装置を実現することにある。
[Object of the Invention] It is an object of the present invention to provide a vapor phase growth apparatus for simultaneously processing a plurality of semiconductor wafers, in which there is no variation in film thickness within a wafer surface and between wafers, and a small apparatus is provided. It is to be realized.

【0010】[0010]

【課題を解決するための手段】本発明は、反応管内に複
数枚のウエハを水平に載せるウエハポケットを複数段設
けたウエハ支持台を挿入し、気相成長を行う気相成長装
置において、前記ウエハ支持台を前記反応管内で回転さ
せる手段と、前記ウエハポケット各段ごとにガス吹出口
を設け、そのガス流量を制御する手段を有することで、
ウエハ面内、ウエハ間でばらつきのない均一な薄膜を形
成でき、量産性にすぐれ、かつ小型でガス消費量の少な
い気相成長装置を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a vapor phase growth apparatus for performing vapor phase growth by inserting a wafer supporter having a plurality of wafer pockets for horizontally mounting a plurality of wafers horizontally into a reaction tube. By providing a means for rotating the wafer support in the reaction tube, and a means for providing a gas outlet for each stage of the wafer pocket and controlling the gas flow rate thereof,
(EN) A vapor phase growth apparatus capable of forming a uniform thin film in a plane of a wafer without variation between wafers, excellent in mass productivity, small in size, and consuming less gas.

【0011】[0011]

【作用】本発明によれば、反応管内において、ウエハポ
ケット各段ごとに配置したガス供給口から供給ガスを供
給することで、供給ガスの流れ方向に対する減少分を補
うことができ、同時に処理したウエハ間での形成膜厚ば
らつきを小さく抑えることができる。
According to the present invention, by supplying the supply gas from the gas supply port arranged in each stage of the wafer pocket in the reaction tube, it is possible to compensate for the decrease in the flow direction of the supply gas, and to process at the same time. It is possible to suppress variations in the formed film thickness between the wafers.

【0012】また、ウエハ支持台を回転することで、ウ
エハ面内の熱分布およびガス流量を均一にすることがで
き、均一な薄膜を形成することができる。
By rotating the wafer support, the heat distribution and the gas flow rate on the wafer surface can be made uniform, and a uniform thin film can be formed.

【0013】さらに処理枚数に比べ装置が小容量小型化
でき、ガス消費量を少なくすることができる。
Further, the apparatus can be made smaller in capacity and smaller than the number of processed sheets, and the gas consumption can be reduced.

【0014】またウエハを水平に載せる方式としたこと
で、ロボット搬送などの自動化が容易であり、同時に多
くの枚数のウエハを処理できるので量産性を向上するこ
とができる。
Further, by adopting the method of horizontally mounting the wafers, automation such as robot transfer is easy, and since a large number of wafers can be processed at the same time, mass productivity can be improved.

【0015】また、ウエハ支持台のウエハと対向する面
に円錐状凸面を設けることで、ウエハの外周部で消費さ
れた供給ガスの減少分を補うように供給ガスが流れるよ
うになり、ウエハの面内における形成膜厚の均一性は向
上する。
Further, by providing the conical convex surface on the surface of the wafer support table facing the wafer, the supply gas flows so as to make up for the decrease in the supply gas consumed at the outer peripheral portion of the wafer, and The uniformity of the formed film thickness in the plane is improved.

【0016】また更に、円錐状凸面のウエハ最外周部に
あたる場所にリング状凸部を設けることにより、ウエハ
の最外周部でウエハの膜厚が薄くなる「ふちダレ」を改
善することができ、ウエハ全面にわたり均一な厚さの膜
が形成できる。
Furthermore, by providing a ring-shaped convex portion at a location corresponding to the outermost peripheral portion of the wafer having a conical convex surface, it is possible to improve the "edge sagging" in which the film thickness of the wafer becomes thin at the outermost peripheral portion of the wafer, A film having a uniform thickness can be formed on the entire surface of the wafer.

【0017】なおこのような凸凹面は、ガス流の解析な
どによりさまざまな形を設計することが考えられる。
It is possible to design various shapes for such an uneven surface by analyzing the gas flow.

【0018】また、ウエハ支持台を透明石英製とし、そ
の内部に加熱用赤外線ランプと反射手段を設けたことに
より、赤外線ランプを反応管の周囲に配置した場合に比
べ、より少ないランプでウエハをより効率良く加熱する
ことができる。
Further, the wafer support is made of transparent quartz, and the infrared lamp for heating and the reflecting means are provided therein, so that the number of lamps required for the wafer is smaller than that in the case where the infrared lamp is arranged around the reaction tube. It can be heated more efficiently.

【0019】また、赤外線ランプにより、ウエハ両面を
加熱することができるため、ウエハに加わる熱の不均一
や、ウエハの反りを防止できる。
Further, since both surfaces of the wafer can be heated by the infrared lamp, it is possible to prevent uneven heat applied to the wafer and warp of the wafer.

【0020】[0020]

【実施例】[第1の実施例]本発明の第1の実施例を図
1に示す。ここで1はウエハ、2はウエハを載せるサセ
プタ(ウエハ支持台)、3はサセプタ2上に設けられた
ウエハポケット、4はウエハの出し入れを行うハッチ、
5は反応管、6は反応管5内に供給されるガスで矢印で
流れの方向を示す。7はガス供給口、8はガス排出口、
9は加熱用赤外線ランプである。
[First Embodiment] FIG. 1 shows the first embodiment of the present invention. Here, 1 is a wafer, 2 is a susceptor for mounting a wafer (wafer support base), 3 is a wafer pocket provided on the susceptor 2, 4 is a hatch for loading and unloading the wafer,
Reference numeral 5 denotes a reaction tube, 6 denotes a gas supplied into the reaction tube 5, and the flow direction is indicated by an arrow. 7 is a gas supply port, 8 is a gas discharge port,
Reference numeral 9 is an infrared lamp for heating.

【0021】上記構成において、ハッチ4を開けウエハ
1をサセプタ2に複数段設けられたウエハポケット3上
に水平に載せ、ハッチ4を閉じてサセプタ2を反応管5
内へ挿入する。薄膜形成時には、供給ガス6をガス供給
口7から反応管5内へ送り、ガス排出口8から排気す
る。このとき、赤外線ランプ9を点灯して反応管内を加
熱し、サセプタ2を回転する。
In the above structure, the hatch 4 is opened, the wafer 1 is horizontally placed on the wafer pockets 3 provided in the susceptor 2 in a plurality of stages, the hatch 4 is closed, and the susceptor 2 is attached to the reaction tube 5.
Insert inside. At the time of forming a thin film, the supply gas 6 is sent from the gas supply port 7 into the reaction tube 5 and exhausted from the gas discharge port 8. At this time, the infrared lamp 9 is turned on to heat the inside of the reaction tube and rotate the susceptor 2.

【0022】上記構成および動作をとることで、反応管
5内において、ウエハポケット3の各段ごとに並べたウ
エハ1について、供給ガス6の流れ方向に対する減少分
を補うように、ウエハポケット3各段ごとに配置したガ
ス供給口7から供給ガス6を供給することで、同時に処
理したウエハ1間での形成膜厚ばらつきを小さく抑える
ことができる。
By adopting the above-mentioned configuration and operation, in the reaction tube 5, with respect to the wafers 1 arranged in each stage of the wafer pockets 3, each of the wafer pockets 3 is compensated for by the decrease in the flow direction of the supply gas 6. By supplying the supply gas 6 from the gas supply port 7 arranged in each step, it is possible to suppress the variation in the formed film thickness between the simultaneously processed wafers 1.

【0023】また、サセプタ2を回転することで、ウエ
ハ面内の熱分布およびガス流量を均一にすることがで
き、均一な薄膜を形成することができる。
Further, by rotating the susceptor 2, it is possible to make the heat distribution and the gas flow rate in the wafer surface uniform, and to form a uniform thin film.

【0024】さらに処理枚数に比べ装置が小容量小型化
でき、ガス消費量を少なくすることができる。
Further, the apparatus can be made smaller in capacity and smaller than the number of processed sheets, and the gas consumption can be reduced.

【0025】またウエハを水平に載せる方式としたこと
で、ロボット搬送などの自動化が容易であり、同時に多
くの枚数のウエハを処理できるので量産性を向上するこ
とができる。
Further, by adopting a method of horizontally mounting the wafers, automation of robot transfer and the like is easy, and a large number of wafers can be processed at the same time, so that mass productivity can be improved.

【0026】[第2の実施例〕本発明の第2の実施例を
図2に示す。図2の構成および動作は図1の場合と同様
である。
[Second Embodiment] A second embodiment of the present invention is shown in FIG. The configuration and operation of FIG. 2 are similar to those of FIG.

【0027】図2において、ウエハと対向する面が平面
でなく凹凸を持っていることが特徴である。供給ガス6
が矢印で示すようにウエハ1に供給された場合、供給ガ
ス6がウエハ1の縁で多く消費され、形成膜厚はウエハ
1の外周部で厚く、中心部で薄いものとなる。この問題
を改善し均一な膜を形成するために、反応するガス6の
流量をウエハ面内で異なるよう、サセプタ2のウエハ1
と対向する面に凹凸を設けた。
In FIG. 2, the surface facing the wafer is not flat but has irregularities. Supply gas 6
Is supplied to the wafer 1 as shown by the arrow, the supply gas 6 is consumed much at the edge of the wafer 1, and the formed film thickness is thicker at the outer peripheral portion of the wafer 1 and thinner at the central portion. In order to improve this problem and form a uniform film, the flow rate of the reacting gas 6 is made different in the wafer plane so that the wafer 1 of the susceptor 2 can be made different.
Roughness was provided on the surface opposite to.

【0028】図2において、サセプタ2のウエハ1と対
向する面に円錐状凸面を設けることで、ウエハ1の外周
部で消費された供給ガスの減少分を補うように供給ガス
が流れるようになり、ウエハ1の面内における形成膜厚
の均一性は向上する。さらに、ウエハ1の最外周部でウ
エハ1の膜厚が薄くなる「ふちダレ」を改善するため、
円錐状凸面のウエハ最外周部にあたる場所にリング状凸
部を設けた。以上のことから、ウエハ全面にわたり均一
な厚さの膜が形成できる。
In FIG. 2, by providing a conical convex surface on the surface of the susceptor 2 facing the wafer 1, the supply gas flows so as to compensate for the decrease in the supply gas consumed on the outer peripheral portion of the wafer 1. The uniformity of the formed film thickness within the surface of the wafer 1 is improved. Furthermore, in order to improve the "edge sagging" in which the film thickness of the wafer 1 becomes thin at the outermost peripheral portion of the wafer 1,
A ring-shaped convex portion was provided at a location corresponding to the outermost peripheral portion of the conical convex surface of the wafer. From the above, a film having a uniform thickness can be formed over the entire surface of the wafer.

【0029】なお図2に示した凸凹面は、一例でありガ
ス流の解析などによりさまざまな形を設計することが考
えられ、図2の形のみに限定されることはない。
The uneven surface shown in FIG. 2 is an example, and various shapes may be designed by analyzing the gas flow, and the shape is not limited to that shown in FIG.

【0030】本実施例により、5インチウエハ上にSi
2 Cl2 を用いて2.6μmのシリコン単結晶膜を形
成した場合、その膜厚分布、比抵抗分布はウエハ面内で
±3%以下、バッチ内(同時に処理するウエハ間)で±
3%以下となり、例えば図5に示す従来例における、同
一条件での膜厚、比抵抗分布がそれぞれウエハ面内で4
%および7%、バッチ内で5%および8%のばらつきを
示すことと比べ、すぐれていることがわかる。
According to this embodiment, Si is formed on a 5-inch wafer.
When a 2.6 μm silicon single crystal film is formed using H 2 Cl 2 , the film thickness distribution and the specific resistance distribution are ± 3% or less within the wafer surface and ± within a batch (between simultaneously processed wafers).
3% or less, and for example, in the conventional example shown in FIG.
% And 7% and within the batch 5% and 8%, showing superiority.

【0031】[第3の実施例]本発明の第3の実施例を
図3に示す。ここで1〜9は図1、図2の場合と同一で
あり、10は反射鏡、11は反射膜である。上記構成に
おける動作は図1、図2の場合と同様である。
[Third Embodiment] FIG. 3 shows a third embodiment of the present invention. Here, 1 to 9 are the same as those in FIGS. 1 and 2, 10 is a reflecting mirror, and 11 is a reflecting film. The operation in the above configuration is the same as in the case of FIGS.

【0032】図3においてサセプタ2を透明石英製と
し、その内部に加熱用赤外線ランプ9と反射鏡10を設
けたことが特徴である。これにより、赤外線ランプ9を
反応管5の周囲に配置した場合に比べ、ウエハ1をより
効率良く加熱することでができる。また反応管5の周囲
に加熱ランプ9を配置した場合に比べ、加熱ランプ9の
数を少なくすることができる。さらに、図5に示した縦
型CVD装置の場合、ウエハ裏面からの伝導加熱方式を
とるため、ウエハ1に加わる熱の不均一が生じ、ウエハ
1が反ってしまうなどの問題点があったが、本実施例は
赤外線ランプ9による両面加熱方式であるので、このよ
うな問題を改善することができる。
In FIG. 3, the susceptor 2 is made of transparent quartz, and a heating infrared lamp 9 and a reflecting mirror 10 are provided inside the susceptor 2. This allows the wafer 1 to be heated more efficiently than in the case where the infrared lamp 9 is arranged around the reaction tube 5. Further, the number of heating lamps 9 can be reduced as compared with the case where the heating lamps 9 are arranged around the reaction tube 5. Further, in the case of the vertical CVD apparatus shown in FIG. 5, since the conduction heating method from the back surface of the wafer is used, there is a problem that the heat applied to the wafer 1 becomes nonuniform and the wafer 1 is warped. Since the present embodiment is a double-sided heating system using the infrared lamp 9, such a problem can be solved.

【0033】なお、反射鏡10の形状、加熱用ランプ9
の数、およびそれらの配置については本実施例以外にも
さまざまなものが考えられ、図3に示す場合のみに限定
されることはない。
The shape of the reflecting mirror 10 and the heating lamp 9
The number and the arrangement thereof may be various other than the present embodiment, and are not limited to the case shown in FIG.

【0034】[0034]

【発明の効果】以上説明したように、反応管内に複数枚
のウエハを水平に載せるウエハポケットを複数段設けた
ウエハ支持台を挿入し、気相成長を行う気相成長装置に
おいて前記ウエハ支持台を前記反応管内で回転させる手
段と、前記ウエハポケット各段ごとにガス吹出口を設け
そのガス流量を制御する手段を有することで、ウエハ面
内、ウエハ間でばらつきのない均一な薄膜を形成するこ
とができる。
As described above, in the vapor phase growth apparatus for performing the vapor phase growth by inserting the wafer support table having a plurality of wafer pockets for horizontally mounting a plurality of wafers into the reaction tube, the wafer support table is used. By means of rotating the wafer in the reaction tube and means for controlling the gas flow rate by providing a gas outlet for each stage of the wafer pocket, thereby forming a uniform thin film within the wafer surface and between wafers. be able to.

【0035】また同時にウエハを水平に載せる方式とし
たことで、ロボット搬送などの自動化が容易であり、同
時に多くの枚数のウエハを処理できることから、すぐれ
た量産性を得ることができる。
Moreover, since the wafers are placed horizontally at the same time, automation such as robot transfer is easy, and since a large number of wafers can be processed at the same time, excellent mass productivity can be obtained.

【0036】また処理枚数に比べ、反応管内の容積を小
さくすることができるので、ガス消費量を少なくするこ
とができ、さらに装置の小型化、省スペース化について
も有効である。
Further, since the volume inside the reaction tube can be made smaller than the number of processed sheets, the gas consumption can be reduced, and it is also effective for downsizing the apparatus and saving space.

【0037】なおこの気相成長装置は、一般的な気相成
長装置(CVD装置)の他に気相エピタキシャル成長装
置にも用いることができる。
The vapor phase growth apparatus can be used not only in a general vapor phase growth apparatus (CVD apparatus) but also in a vapor phase epitaxial growth apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す気相成長装置の断
面模式図。
FIG. 1 is a schematic sectional view of a vapor phase growth apparatus showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す気相成長装置の断
面模式図。
FIG. 2 is a schematic sectional view of a vapor phase growth apparatus showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す気相成長装置の断
面模式図。
FIG. 3 is a schematic sectional view of a vapor phase growth apparatus showing a third embodiment of the present invention.

【図4】第1の従来例を示す気相成長装置の断面模式
図。
FIG. 4 is a schematic cross-sectional view of a vapor phase growth apparatus showing a first conventional example.

【図5】第2の従来例を示す気相成長装置の断面模式図
である。
FIG. 5 is a schematic sectional view of a vapor phase growth apparatus showing a second conventional example.

【符号の説明】[Explanation of symbols]

1 ウエハ 2 ウエハ支持台(サセプタ) 3 ウエハポケット 4 ハッチ 5 反応管 6 供給ガス 7 ガス供給口 8 ガス排出口 9 加熱手段 10 反射鏡 11 反射膜 DESCRIPTION OF SYMBOLS 1 Wafer 2 Wafer support (susceptor) 3 Wafer pocket 4 Hatch 5 Reaction tube 6 Supply gas 7 Gas supply port 8 Gas discharge port 9 Heating means 10 Reflector 11 Reflective film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数枚の半導体ウエハを同時に処理する
気相成長装置において、 前記複数枚の半導体ウエハを水平に載せるウエハポケッ
トを複数段設けたウエハ支持台と、 前記ウエハ支持台を挿入して気相成長反応を行なう反応
管と、 前記ウエハ支持台を前記反応管内で回転させる手段と、 前記ウエハポケット各段ごとに設けられた気相成長用の
ガス吹出口と、 前記ガス流量を制御する手段とを有することを特徴とす
る気相成長装置。
1. A vapor phase growth apparatus for simultaneously processing a plurality of semiconductor wafers, comprising: a wafer support base having a plurality of wafer pockets for horizontally mounting the plurality of semiconductor wafers; and inserting the wafer support base. A reaction tube for performing a vapor phase growth reaction, a means for rotating the wafer support within the reaction tube, a gas outlet for vapor phase growth provided in each stage of the wafer pocket, and controlling the gas flow rate. A vapor phase growth apparatus comprising:
【請求項2】 前記ウエハ支持台において、該ウエハと
対向する面に凹凸面を設けたことを特徴とする請求項1
記載の気相成長装置。
2. The wafer support base is provided with an uneven surface on a surface facing the wafer.
The vapor phase growth apparatus described.
【請求項3】 前記ウエハ支持台は、透明石英を材料と
し、その内部にランプ式加熱手段および反射手段を設け
たことを特徴とする請求項1又は2記載の気相成長装
置。
3. The vapor phase growth apparatus according to claim 1, wherein the wafer support base is made of transparent quartz, and a lamp type heating means and a reflection means are provided therein.
JP13511693A 1993-05-14 1993-05-14 Vapor growth device Pending JPH06326038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13511693A JPH06326038A (en) 1993-05-14 1993-05-14 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13511693A JPH06326038A (en) 1993-05-14 1993-05-14 Vapor growth device

Publications (1)

Publication Number Publication Date
JPH06326038A true JPH06326038A (en) 1994-11-25

Family

ID=15144206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13511693A Pending JPH06326038A (en) 1993-05-14 1993-05-14 Vapor growth device

Country Status (1)

Country Link
JP (1) JPH06326038A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324801A (en) * 2001-04-26 2002-11-08 Shin Etsu Handotai Co Ltd Method for gas flow pattern recognition in furnace
US8394201B2 (en) 2008-01-24 2013-03-12 Samsung Electronics Co., Ltd. Atomic layer deposition apparatus
JP2018514084A (en) * 2015-04-14 2018-05-31 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324801A (en) * 2001-04-26 2002-11-08 Shin Etsu Handotai Co Ltd Method for gas flow pattern recognition in furnace
US8394201B2 (en) 2008-01-24 2013-03-12 Samsung Electronics Co., Ltd. Atomic layer deposition apparatus
JP2018514084A (en) * 2015-04-14 2018-05-31 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing equipment
US10741396B2 (en) 2015-04-14 2020-08-11 Eugene Technology Co., Ltd. Substrate processing apparatus

Similar Documents

Publication Publication Date Title
JP4312204B2 (en) Substrate processing apparatus, substrate holder, and semiconductor device manufacturing method
TWI736687B (en) Processing device and cover member
TW201734252A (en) Non-metallic thermal CVD/ALD gas injector and purge system
US6204194B1 (en) Method and apparatus for producing a semiconductor device
JPH05166741A (en) Substrate supporting tool for heat treating apparatus
EP1535314A2 (en) High rate deposition at low pressures in a small batch reactor
JPH09330884A (en) Epitaxial growth device
JP2009513027A (en) Semiconductor processing chamber
JP2003531489A (en) Method and apparatus for heat treating a wafer
JP2009071210A (en) Susceptor and epitaxial growth system
JP2002155366A (en) Method and device of leaf type heat treatment
JPH06326038A (en) Vapor growth device
JP3215498B2 (en) Film forming equipment
JP2019521255A (en) Device to increase deposition uniformity in a spatial ALD process chamber
JPH0864544A (en) Vapor growing method
JPH09237763A (en) Single wafer processing heat treatment apparatus
JP4218360B2 (en) Heat treatment apparatus and heat treatment method
KR101436059B1 (en) Apparatus and method for manufacturing semiconductor
JP2000349030A (en) Gas-phase reactor
JP2001044125A (en) Device and method for epitaxial growth
JPH0794435A (en) Diffusion device
JP2002141290A (en) System for producing semiconductor
JP2006294779A (en) Heat processing furnace
JPS5934627A (en) Heat treatment device for semiconductor
JPH03228320A (en) Thin film forming device