JPS6344820B2 - - Google Patents

Info

Publication number
JPS6344820B2
JPS6344820B2 JP6763081A JP6763081A JPS6344820B2 JP S6344820 B2 JPS6344820 B2 JP S6344820B2 JP 6763081 A JP6763081 A JP 6763081A JP 6763081 A JP6763081 A JP 6763081A JP S6344820 B2 JPS6344820 B2 JP S6344820B2
Authority
JP
Japan
Prior art keywords
alloy
indium
backing plate
target
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6763081A
Other languages
Japanese (ja)
Other versions
JPS57185973A (en
Inventor
Satoru Ishihara
Shigeru Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP6763081A priority Critical patent/JPS57185973A/en
Publication of JPS57185973A publication Critical patent/JPS57185973A/en
Publication of JPS6344820B2 publication Critical patent/JPS6344820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は集積回路の素材として用いる薄膜をス
パツタリング法によつて形成する際、該スパツタ
リング法において用いられるターゲツトの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a target used in a sputtering method when a thin film used as a material for an integrated circuit is formed by the sputtering method.

スパツタリング法は低圧のガス雰囲気中の放電
において、陰極に置かれた材料がイオンの衝撃に
よつて飛び出し、これが陽極の近くに置かれた基
板上に堆積して薄膜を形成する技術である。
The sputtering method is a technique in which material placed on the cathode is ejected by ion bombardment during discharge in a low-pressure gas atmosphere, and is deposited on a substrate placed near the anode to form a thin film.

上記スパツタリング法には陰極にターゲツトと
して置く材料とまつたく同一組成の膜が生成され
る方法(物理スパツタリング)と雰囲気の活性イ
オンとの反応その他によつて陰極材料とは異なる
組成の膜が生成される反応スパツタリングとがあ
る。
In the above sputtering method, a film with the same composition as the material placed as a target on the cathode is produced (physical sputtering), and a film with a composition different from that of the cathode material is produced due to reactions with active ions in the atmosphere, etc. There is a reaction sputtering.

上記スパツタリング法に用いるターゲツトを製
造するため従前いくつかの製造方法がある。ここ
で酸化インジウム薄膜を製造するためのインジウ
ム又はインジウム合金のターゲツト製造方法につ
いて説明すると、従来の製造法はまず第1図に示
すように(i)鋳造法によつてインジウム鋳塊を造
り、(ii)インジウム鋳塊を所定の厚さ、大きさに圧
延し、切断したインジウム板を造る。(iii)これとは
別にバツキングプレート上にインジウムなどの低
融点金属を薄く塗り、(iv)このバツキングプレート
に上記インジウム板を熱圧着して一体に形成す
る。
There are several conventional methods for manufacturing targets used in the sputtering method. Now, to explain the method for manufacturing an indium or indium alloy target for manufacturing an indium oxide thin film, the conventional manufacturing method is as shown in Figure 1: (i) first, an indium ingot is made by a casting method; ii) An indium ingot is rolled to a predetermined thickness and size, and cut into indium plates. (iii) Separately, a low melting point metal such as indium is applied thinly onto the backing plate, and (iv) the indium plate is thermocompression bonded to the backing plate to form one piece.

ここでバツキングプレートとインジウム板とは
均一な隙間のないボンデイングが必要とされ、ボ
ンデイングの程度が悪いときにはスパツタリング
の際にターゲツトに熱的なムラが生じ、このため
基板に形成される酸化インジウム膜が不均一にな
る。
Here, uniform bonding with no gaps is required between the backing plate and the indium plate, and if the degree of bonding is poor, thermal unevenness will occur on the target during sputtering, resulting in the formation of an indium oxide film on the substrate. becomes uneven.

本発明は上記熱圧着によるターゲツトの製造方
法に代えて、バツキングプレートに所定金属を直
接鋳造することにより従来行なわれていた圧延、
切断、ボンデイングの各工程を不要ならしめ、し
かもバツキングプレートとの密着性のよいターゲ
ツトを製造しうるようにしたものであり、その構
成はバツキングプレートにインジウム、インジウ
ム合金、錫あるいは錫合金の薄膜を形成した後に
該薄膜の上にインジウム、インジウム合金、錫あ
るいは錫合金を流し込み鋳造することによつてバ
ツキングプレートと一体に形成することを特徴と
する。
In place of the above method of manufacturing targets by thermocompression bonding, the present invention provides rolling, which was conventionally performed, by directly casting a predetermined metal onto a backing plate.
This eliminates the need for cutting and bonding processes, and allows the production of targets with good adhesion to the backing plate.The backing plate is made of indium, indium alloy, tin, or tin alloy. It is characterized in that it is formed integrally with the backing plate by forming a thin film and then pouring indium, indium alloy, tin, or a tin alloy onto the thin film and casting.

以下に本発明を実施例と共に詳細に説明する。
ここでインジウムあるいはインジウム合金のター
ゲツトを造る場合を例にして本発明を詳細に説明
する。
The present invention will be explained in detail below along with examples.
The present invention will now be described in detail using an example of manufacturing a target of indium or an indium alloy.

本発明ではまず、第2図に示すようにバツキン
グプレート上に浸漬、電気メツキあるいは溶射法
等を用いて数μ程度のインジウム、インジウム合
金、錫あるいは錫合金の薄膜を付着させる。
In the present invention, first, as shown in FIG. 2, a thin film of indium, indium alloy, tin, or tin alloy of several micrometers is deposited on the backing plate by dipping, electroplating, thermal spraying, or the like.

このようにバツキングプレートにインジウム、
インジウム合金、錫あるいは錫合金薄膜を付着す
るのは次の工程でインジウム、インジウム合金を
流し込む際、バツキングプレートに対するこれら
インジウム、インジウム合金の濡れ性を良くし、
バツキングプレートとこれらインジウム、インジ
ウム合金の密着性を良くするためである。
Indium on the backing plate like this,
The reason why indium alloy, tin or tin alloy thin film is attached is to improve the wettability of these indium and indium alloy to the backing plate when pouring indium and indium alloy in the next step.
This is to improve the adhesion between the backing plate and these indium and indium alloys.

次に上記薄膜を施したバツキングプレート上に
ステンレス製あるいはカーボン製の金型をあてが
い、該金型にインジウムあるいはインジウム合金
を流し込んでこれを鋳造することによりバツキン
グプレートにインジウムあるいはインジウム合金
を一体成形する。
Next, a mold made of stainless steel or carbon is placed on the backing plate coated with the thin film, and indium or indium alloy is poured into the mold and cast, thereby integrating indium or indium alloy onto the backing plate. Shape.

このように上記製造方法においては、バツキン
グプレート上に直接所定の金属、合金を流し込む
ので、この金属、合金とバツキングプレートとの
間に空隙等が生じ難く又は、従来の熱圧着法に比
べてより一層均一なかつ強固なボンデイングを得
ることができる。
In this way, in the above manufacturing method, the specified metal or alloy is poured directly onto the backing plate, so it is difficult to form a gap between the metal or alloy and the backing plate, or compared to the conventional thermocompression bonding method. As a result, more uniform and stronger bonding can be obtained.

また必要に応じ、まず予めバツキングプレート
上に電解あるいは無電解法によるニツケル薄膜を
付着させ、その上に上記インジウム、錫あるいは
インジウム錫合金の薄膜を形成し、更にその上に
目的のインジウムまたはインジウム合金を鋳造す
る。この場合、ニツケル薄膜の形成によりバツキ
ングプレートの酸化等を防止することができ、更
にインジウムまたはインジウム合金中のバツキン
グプレート中の不純物が拡散するのを防止するこ
とができる。
If necessary, first deposit a nickel thin film on the backing plate by electrolytic or electroless method, then form the above-mentioned indium, tin or indium-tin alloy thin film on top of that, and then apply the desired indium or indium Cast the alloy. In this case, the formation of the nickel thin film can prevent the backing plate from oxidation, and can also prevent impurities in the backing plate made of indium or indium alloy from diffusing.

尚上記ニツケル薄膜は数μ程度の厚さでよい。 Incidentally, the thickness of the above-mentioned nickel thin film may be about several microns.

次に金型の形を任意に変えることにより矩形の
ターゲツトに限らず、円形あるいは円筒形、円錐
形のターゲツトを製造することができる。また更
に消耗の激しい個所にはインジウム、インジウム
合金の厚みを大きくしたターゲツトを造ることが
できる。とくにインジウム金属は柔らかく面切削
などの後加工が困難であることから、従来の熱圧
着法により圧延切断したものはこのような厚さの
調整が困難であり、この点からしても本発明の製
造方法は有利である。
Next, by arbitrarily changing the shape of the mold, not only rectangular targets but also circular, cylindrical, or conical targets can be manufactured. Furthermore, targets made of thicker indium or indium alloy can be made in areas where wear is more severe. In particular, indium metal is soft and difficult to perform post-processing such as surface cutting, so it is difficult to adjust the thickness of products rolled and cut using the conventional thermocompression bonding method. The manufacturing method is advantageous.

また本発明の製造方法においては、使用により
消耗したターゲツトに再び金型を装着し、消耗部
を補充して再び使用することも可能となる。
Furthermore, in the manufacturing method of the present invention, it is also possible to reinstall a mold on a target that has been consumed due to use, replenish the consumable parts, and use it again.

次に本発明の実施例を比較例と共に示す。 Next, examples of the present invention will be shown together with comparative examples.

実施例 1 第3図に示す無機酸素銅バツキングプレート1
(145mm×400mm×5mm)をオルト硅酸ソーダ液中
で電解脱脂(電流密度8A/dm2)した後、ワツ
ト浴(NiSO4)に浸漬して図中斜線部分2に部分
的にNiメツキ(電流密度1A/dm2)を約5μの厚
さで付着形成する。その後該Niメツキの上にIn2
(SO43溶中に浸漬してInメツキ(電流密度3A/
dm2)を約5μの厚さで施した。
Example 1 Inorganic oxygen copper backing plate 1 shown in Fig. 3
(145 mm x 400 mm x 5 mm) was electrolytically degreased in a sodium orthosilicate solution (current density 8 A/dm 2 ), then immersed in a Watts bath (NiSO 4 ), and the shaded area 2 in the figure was partially plated with Ni ( A current density of 1 A/dm 2 ) is applied to a thickness of approximately 5 μm. Then In 2 on top of the Ni plating
(SO 4 ) 3 In plating by immersing in molten liquid (current density 3A/
dm 2 ) was applied to a thickness of approximately 5μ.

次に第4図に示すステンレス製の金型3を上記
バツキングプレート1に装着し、溶解したIn90−
Sn10の合金を金型3とバツキングプレートとの
間に流し込み鋳造して、バツキングプレート1に
ボンデイングされたIn合金ターゲツトを作成し
た。尚、該In合金の大きさは127×380×6mmであ
る。このように作成したバツキングプレート1と
In合金とのボンデイングの程度をX線写真により
検査したところ、第7図に示すようにターゲツト
全体に亘つて不良箇所がみられず、非常に良好な
ボンデイングであることが判つた。更に上記In合
金ターゲツトとDCマグネトロン型スパツタリン
グ装置に実装して試験したところスパツタリング
において付着支障はなく、又得られた酸化Inの膜
質も良好であつた。
Next, a stainless steel mold 3 shown in FIG. 4 was attached to the bucking plate 1, and the melted In90-
An In alloy target bonded to the backing plate 1 was created by pouring an Sn10 alloy between the mold 3 and the backing plate and casting. The size of the In alloy is 127 x 380 x 6 mm. Batking plate 1 created in this way and
When the degree of bonding with the In alloy was examined by X-ray photography, no defective spots were observed throughout the target, as shown in FIG. 7, and it was found that the bonding was very good. Furthermore, when the above-mentioned In alloy target was mounted in a DC magnetron type sputtering device and tested, there was no adhesion problem during sputtering, and the film quality of the obtained In oxide was also good.

実施例 2 実施例1と同じ大きさのステンレス製バツキン
グプレートについて実施例1と同じ条件で電解脱
脂を行い、更に同様に約5μのNiメツキ、Inメツ
キ処理を施した後に、金型3を装着して溶解した
In95Sn5の合金を鋳造し、バツキングプレートに
厚さ6mmのIn合金を一体にボンデイングしたIn合
金ターゲツトを作成した。該ターゲツトについて
実施例1と同様のX線検査を行つたところ、In合
金の密着性は極めて良好であつた。
Example 2 A stainless steel backing plate of the same size as in Example 1 was electrolytically degreased under the same conditions as in Example 1, and then Ni-plated and Indium-plated to a thickness of approximately 5μ in the same manner, and then mold 3 was formed. installed and dissolved
An In alloy target was created by casting an In95Sn5 alloy and bonding a 6 mm thick In alloy to a backing plate. When the target was subjected to the same X-ray inspection as in Example 1, it was found that the adhesion of the In alloy was extremely good.

実施例 3 第5図に示す径160mmの円型銅バツキングプレ
ート4を用いて実施例1と同一条件で電解脱脂を
行い、更に約5μのNiメツキとInメツキ5を施し
た。第6図に示すカーボン製金型6を装着して溶
解したInメタルを流し込み、鋳造してバツキング
プレート4にボンデイインされた厚さ5mmのInメ
タルターゲツトを作成した。
Example 3 Electrolytic degreasing was performed under the same conditions as in Example 1 using a circular copper backing plate 4 with a diameter of 160 mm shown in FIG. 5, and Ni plating and In plating 5 of about 5 μm were further applied. A carbon mold 6 shown in FIG. 6 was installed, molten In metal was poured into it, and a 5 mm thick In metal target bonded to the backing plate 4 was produced by casting.

このターゲツトについても実施例1と同様のX
線検査を行つたところその密着性は極めて良好で
あることが確認された。更に作成したInメタルタ
ーゲツトをDCマグネトロン型スパツタリング装
置に実装して使用したところ何等支障がなく、又
良好な膜質のIn2O3膜が得られた。
Regarding this target, the same X
A line inspection confirmed that the adhesion was extremely good. Furthermore, when the prepared In metal target was mounted in a DC magnetron type sputtering device and used, there was no problem and an In 2 O 3 film with good film quality was obtained.

実施例 4 実施例1と同様に処理したバツキングプレート
1を用い、In90−Sn10の代りにIn90−Sb10を用
いた以外は実施例1と同様に製造し、バツキング
プレート1にボンデイングされたIn合金ターゲツ
トを作成した。尚、該In合金の大きさは127×380
×6mmである。このように作成したバツキングプ
レート1とIn合金とのボンデイングの程度をX線
写真により検査したところ、実施例1と同様に第
7図に示すようにターゲツト全体に亘つて不良箇
所がみられず、非常に良好なボンデイングである
ことが判つた。更に上記In合金ターゲツトをDC
マグネトロン型スパツタリング装置に実装して試
験したところスパツタリングにおいて付着支障は
なく、又、得られた酸化Inの膜質も良好であつ
た。
Example 4 A backing plate 1 treated in the same manner as in Example 1 was used, and In90-Sb10 was used instead of In90-Sn10. An alloy target was created. Furthermore, the size of the In alloy is 127×380
x6mm. When the degree of bonding between the backing plate 1 prepared in this way and the In alloy was inspected using an X-ray photograph, as in Example 1, as shown in FIG. 7, no defective areas were observed throughout the target. It was found that the bonding was very good. Furthermore, the above In alloy target is
When tested by mounting it on a magnetron type sputtering device, there was no adhesion problem during sputtering, and the quality of the obtained In oxide film was also good.

実施例 5 実施例1と同様にバツキングプレート1にNi
メツキを施し、これをSnのほうふつ化物溶中に
浸漬してSnメツキ(電流密度5A/dm2)を約5μ
の厚さで施した。このバツキングプレート1を用
い、In90−Sn10の代りにSnを用いた以外は同様
に鋳造し、バツキングプレート1にボンデイング
されたSnメタルターゲツトを作成した。尚、該
Snメタルターゲツトの大きさは127×380×6mm
である。このように作成したバツキングプレート
1とSnメタルとのボンデイングの程度をX線写
真により検査したところ、実施例1と同様に不良
箇所がみられず、非常に良好なボンデイングであ
ることが判つた。更に上記Snメタルターゲツト
をDCマグネトロン型スパツタリング装置に実装
して試験したところスパツタリングにおいて付着
支障がなく、又得られた酸化Snの膜質も良好で
あつた。
Example 5 Ni was applied to the backing plate 1 in the same way as in Example 1.
After applying plating, immerse it in a Sn oxide solution to apply Sn plating (current density 5A/dm 2 ) to approximately 5 μm.
It was applied to a thickness of . Using this backing plate 1, a Sn metal target bonded to the backing plate 1 was produced by casting in the same manner except that Sn was used instead of In90-Sn10. In addition, applicable
The size of the Sn metal target is 127 x 380 x 6 mm.
It is. When the degree of bonding between the bucking plate 1 thus prepared and the Sn metal was inspected using an X-ray photograph, it was found that, as in Example 1, no defective areas were observed, and the bonding was very good. . Furthermore, when the above Sn metal target was mounted in a DC magnetron type sputtering device and tested, there was no adhesion problem during sputtering, and the quality of the obtained Sn oxide film was also good.

実施例 6 実施例1と同様に処理したバツキングプレート
1を用い、In90−Sn10の代りにSn90−Sb10を用
いた以外は同様に鋳造し、バツキングプレート1
にボンデイングされたSn合金ターゲツトを作成
した。尚、該Sn合金の大きさは127×380×6mm
である。このように作成したバツキングプレート
1とSn合金とのボンデイングの程度をX線写真
により検査したところ、実施例1と同様にターゲ
ツト全体に亘つて不良箇所がみられず、非常に良
好なボンデイングであることが判つた。更に上記
Sn合金ターゲツトをDCマグネトロン型スパツタ
リング装置に実装して試験したところスパツタリ
ングにおいて付着支障はなく、又得られた酸化
Snの膜質も良好であつた。
Example 6 Using a backing plate 1 treated in the same manner as in Example 1, a backing plate 1 was cast in the same manner except that Sn90-Sb10 was used instead of In90-Sn10.
A Sn alloy target bonded to The size of the Sn alloy is 127 x 380 x 6 mm.
It is. When the degree of bonding between the backing plate 1 thus prepared and the Sn alloy was inspected using X-ray photographs, no defective areas were observed throughout the target, as in Example 1, and very good bonding was observed. I found out something. Further above
When a Sn alloy target was mounted on a DC magnetron sputtering device and tested, there was no adhesion problem during sputtering, and the resulting oxidation
The Sn film quality was also good.

比較例 1 溶解したIn(4 nine up)90%Sn(4 nine
up)10%の合金を平板状(寸法130×150×20mm)
に鋳造し、これを圧延機で6mm厚まで圧延を行な
つた後、切断機にて127×380mmの寸法に切り出し
た。
Comparative example 1 Dissolved In (4 nine up) 90% Sn (4 nine up)
up) 10% alloy in flat plate shape (dimensions 130 x 150 x 20 mm)
This was rolled to a thickness of 6 mm using a rolling mill, and then cut to a size of 127 x 380 mm using a cutting machine.

次に第3図に示す無酸素銅バツキングプレート
1のボンデイング面2にインジウムを薄く引き伸
ばして付着させ、その上に用意したIn合金板を乗
せ、加熱プレスを什い温度120℃、全圧力2tの条
件で熱圧着を行なつた。出来上がつたIn合金ター
ゲツトのバツキングプレートとIn合金のボンデイ
ングの程度をX線写真により検査したところ第8
図に示されるように稿状のボンデイング不良箇所
7が観察された。
Next, indium was thinly stretched and adhered to the bonding surface 2 of the oxygen-free copper backing plate 1 shown in Fig. 3, the prepared In alloy plate was placed on top of it, and a heated press was applied at a temperature of 120°C and a total pressure of 2 tons. Thermocompression bonding was carried out under the following conditions. The degree of bonding between the backing plate of the completed In alloy target and the In alloy was examined using X-ray photography.
As shown in the figure, defective bonding locations 7 on the manuscript were observed.

以上説明したように本発明の製造方法は従来の
製造のプロセスを簡略化すると共にボンデイング
効果を一層高め、更に従来の製造では製作の困難
であつた複雑な形状のターゲツトまで製作できる
など実用上の利点が大きい。
As explained above, the manufacturing method of the present invention simplifies the conventional manufacturing process, further enhances the bonding effect, and can also manufacture targets with complex shapes that are difficult to manufacture using conventional manufacturing methods. The benefits are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法のプロセスを示す説明図、第
2図は本発明の製造プロセスを示す説明図、第3
図はバツキングプレートの平面図、第4図は金型
の概略斜視図、第5図は円形のバツキングプレー
トの平面図、第6図は円形金型の概略斜視図、第
7図は本発明に係るターゲツトのX線写真模式
図、第8図は従来のターゲツトのX線写真模式図
である。 図面中 1,4はバツキングプレート、2,5
はメツキ部分、3,6は金型、7は不良箇所であ
る。
Fig. 1 is an explanatory diagram showing the process of the conventional method, Fig. 2 is an explanatory diagram showing the manufacturing process of the present invention, and Fig. 3 is an explanatory diagram showing the manufacturing process of the present invention.
The figure is a plan view of the backing plate, Figure 4 is a schematic perspective view of the mold, Figure 5 is a plan view of the circular backing plate, Figure 6 is a schematic perspective view of the circular mold, and Figure 7 is the main body. A schematic X-ray photograph of a target according to the invention, and FIG. 8 is a schematic X-ray photograph of a conventional target. In the drawing, 1 and 4 are bucking plates, 2 and 5
3 and 6 are the plating parts, 3 and 6 are the molds, and 7 is the defective part.

Claims (1)

【特許請求の範囲】 1 バツキングプレートにインジウム、インジウ
ム合金、錫あるいは錫合金の薄膜を形成した後に
該薄膜の上にインジウム、インジウム合金、錫あ
るいは錫合金を流し込み鋳造することによつてバ
ツキングプレートと一体に形成することを特徴と
するスパツタリング用ターゲツトの製造方法。 2 特許請求の範囲第1項において予め酸化防止
用の金属ないし合金の薄膜を施したバツキングプ
レートであることを特徴とするスパツタリング用
ターゲツトの製造方法。 3 特許請求の範囲第2項において、バツキング
プレートに予め施される金属ないし合金の薄膜が
ニツケルないしニツケル合金であることを特徴と
するスパツタリング用ターゲツトの製造方法。
[Claims] 1 Backing by forming a thin film of indium, indium alloy, tin or tin alloy on a backing plate and then pouring indium, indium alloy, tin or tin alloy onto the thin film and casting. A method for manufacturing a sputtering target, characterized in that it is formed integrally with a plate. 2. A method for producing a sputtering target according to claim 1, characterized in that the backing plate is coated with a thin film of a metal or alloy for preventing oxidation. 3. The method for manufacturing a sputtering target according to claim 2, characterized in that the metal or alloy thin film applied to the backing plate in advance is nickel or a nickel alloy.
JP6763081A 1981-05-07 1981-05-07 Production of target for sputtering Granted JPS57185973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6763081A JPS57185973A (en) 1981-05-07 1981-05-07 Production of target for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6763081A JPS57185973A (en) 1981-05-07 1981-05-07 Production of target for sputtering

Publications (2)

Publication Number Publication Date
JPS57185973A JPS57185973A (en) 1982-11-16
JPS6344820B2 true JPS6344820B2 (en) 1988-09-07

Family

ID=13350490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6763081A Granted JPS57185973A (en) 1981-05-07 1981-05-07 Production of target for sputtering

Country Status (1)

Country Link
JP (1) JPS57185973A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884561B1 (en) * 2011-04-19 2012-02-29 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
WO2012029364A1 (en) * 2010-09-01 2012-03-08 Jx日鉱日石金属株式会社 Indium target and production method for same
WO2012029356A1 (en) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Laminated structure and method for producing same
WO2012117579A1 (en) * 2011-03-01 2012-09-07 Jx日鉱日石金属株式会社 Indium target and method for manufacturing same
WO2012140928A1 (en) * 2011-04-15 2012-10-18 三井金属鉱業株式会社 Sputtering target for solar cell
WO2013042451A1 (en) * 2011-09-21 2013-03-28 Jx日鉱日石金属株式会社 Laminated structure body and fabrication method for same
WO2013088785A1 (en) * 2011-12-12 2013-06-20 Jx日鉱日石金属株式会社 Indium sputtering target member and method for producing same
WO2013103029A1 (en) 2012-01-05 2013-07-11 Jx日鉱日石金属株式会社 Indium sputtering target, and method for producing same
JP5281186B1 (en) * 2012-10-25 2013-09-04 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
WO2014030362A1 (en) 2012-08-22 2014-02-27 Jx日鉱日石金属株式会社 Cylindrical indium sputtering target and process for producing same
US9490108B2 (en) 2010-09-01 2016-11-08 Jx Nippon Mining & Metals Corporation Indium target and method for manufacturing same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060454U (en) * 1983-09-30 1985-04-26 鹿児島日本電気株式会社 Target for sputtering
JPS61136673A (en) * 1984-12-07 1986-06-24 Sumitomo Special Metals Co Ltd Target material for sputtering
DE19537765B4 (en) * 1995-10-11 2007-09-06 W.C. Heraeus Gmbh Fine-grained sputtering target with a predetermined width-to-thickness ratio and method for producing sputtering target plates
JP5254290B2 (en) * 2010-09-01 2013-08-07 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
JP2012184469A (en) * 2011-03-04 2012-09-27 Mitsubishi Materials Corp METHOD FOR PRODUCING In SPUTTERING TARGET
CN104919080B (en) 2013-07-08 2018-10-16 Jx日矿日石金属株式会社 Sputtering target and its manufacturing method
JP2015036431A (en) * 2013-08-12 2015-02-23 住友金属鉱山株式会社 Cylindrical sputtering target and manufacturing method of the same
JP6305083B2 (en) * 2014-02-04 2018-04-04 Jx金属株式会社 Sputtering target and manufacturing method thereof
CN108165936A (en) * 2017-12-21 2018-06-15 清远先导材料有限公司 The method for preparing indium target
CN110016576B (en) * 2019-04-12 2022-03-01 东莞市欧莱溅射靶材有限公司 Production process of tin-copper alloy target

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029356A1 (en) * 2010-08-31 2012-03-08 Jx日鉱日石金属株式会社 Laminated structure and method for producing same
JP2012052174A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Laminated structure and method for production thereof
WO2012029364A1 (en) * 2010-09-01 2012-03-08 Jx日鉱日石金属株式会社 Indium target and production method for same
JP2012052194A (en) * 2010-09-01 2012-03-15 Jx Nippon Mining & Metals Corp Indium target and method for production thereof
US9490108B2 (en) 2010-09-01 2016-11-08 Jx Nippon Mining & Metals Corporation Indium target and method for manufacturing same
CN102782180A (en) * 2011-03-01 2012-11-14 Jx日矿日石金属株式会社 Indium target and method for manufacturing same
WO2012117579A1 (en) * 2011-03-01 2012-09-07 Jx日鉱日石金属株式会社 Indium target and method for manufacturing same
JP2012180555A (en) * 2011-03-01 2012-09-20 Jx Nippon Mining & Metals Corp Indium target and method for producing the same
US9139900B2 (en) 2011-03-01 2015-09-22 JX Nippon Mining Metals Corporation Indium target and manufacturing method thereof
JP2012251174A (en) * 2011-04-15 2012-12-20 Mitsui Mining & Smelting Co Ltd Sputtering target for solar cell
CN103380230A (en) * 2011-04-15 2013-10-30 三井金属矿业株式会社 Sputtering target for solar cell
WO2012140928A1 (en) * 2011-04-15 2012-10-18 三井金属鉱業株式会社 Sputtering target for solar cell
JP4884561B1 (en) * 2011-04-19 2012-02-29 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof
WO2012144089A1 (en) * 2011-04-19 2012-10-26 Jx日鉱日石金属株式会社 Indium target and process for producing same
WO2013042451A1 (en) * 2011-09-21 2013-03-28 Jx日鉱日石金属株式会社 Laminated structure body and fabrication method for same
US9023487B2 (en) 2011-09-21 2015-05-05 Jx Nippon Mining & Metals Corporation Laminated structure and method for producing the same
WO2013088785A1 (en) * 2011-12-12 2013-06-20 Jx日鉱日石金属株式会社 Indium sputtering target member and method for producing same
WO2013103029A1 (en) 2012-01-05 2013-07-11 Jx日鉱日石金属株式会社 Indium sputtering target, and method for producing same
US9758860B2 (en) 2012-01-05 2017-09-12 Jx Nippon Mining & Metals Corporation Indium sputtering target and method for manufacturing same
WO2014030362A1 (en) 2012-08-22 2014-02-27 Jx日鉱日石金属株式会社 Cylindrical indium sputtering target and process for producing same
US9761421B2 (en) 2012-08-22 2017-09-12 Jx Nippon Mining & Metals Corporation Indium cylindrical sputtering target and manufacturing method thereof
JP5281186B1 (en) * 2012-10-25 2013-09-04 Jx日鉱日石金属株式会社 Indium target and manufacturing method thereof

Also Published As

Publication number Publication date
JPS57185973A (en) 1982-11-16

Similar Documents

Publication Publication Date Title
JPS6344820B2 (en)
EP0258452B1 (en) Process for producing copper-clad laminate
JP5672537B2 (en) Cylindrical sputtering target and manufacturing method thereof
US2418265A (en) Process for providing aluminum and aluminum alloys with metal coatings
WO2020052487A1 (en) Cyanide-free silver plating method having silver graphite composite material serving as matrix, silver graphite electrical contact, and relay
US2734024A (en) Method of making bearings
JPS62233B2 (en)
US6531039B2 (en) Anode for plating a semiconductor wafer
US2846378A (en) Electrode and its manufacture
JPH0723553B2 (en) Method for plating three-dimensional network structure
US3683488A (en) Methods of bonding metals together
US3730761A (en) Coating of metals
CN1329969A (en) Method for preparing one-sided platinum plated refractory metal plate and extended metal grid
JPS63317699A (en) Pretreatment of metallic plating
US6789723B2 (en) Welding process for Ti material and Cu material, and a backing plate for a sputtering target
US1282269A (en) Galvanoplastic process and product.
JPH02267261A (en) Production of target for sputtering
KR102517417B1 (en) Copper foil for semiconductor and maunfacturing method thereof
US2824027A (en) Method of making low resistance contact with a lead dioxide electrode
US2970091A (en) Method of alloying aluminum and copper
JPS58212840A (en) Casting mold for continuous casting
JPH04218691A (en) Method for sealing superhard chromium plating film with resin
JPH01177399A (en) Pb-base insoluble anode for electroplating
JPH10330982A (en) Metallic foil electrodeposition drum
JPS62182297A (en) Electrically conductive roll for electroplating having high corrosion resistance