WO2013088785A1 - Indium sputtering target member and method for producing same - Google Patents

Indium sputtering target member and method for producing same Download PDF

Info

Publication number
WO2013088785A1
WO2013088785A1 PCT/JP2012/070764 JP2012070764W WO2013088785A1 WO 2013088785 A1 WO2013088785 A1 WO 2013088785A1 JP 2012070764 W JP2012070764 W JP 2012070764W WO 2013088785 A1 WO2013088785 A1 WO 2013088785A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium
target member
sputtering target
grain boundary
member according
Prior art date
Application number
PCT/JP2012/070764
Other languages
French (fr)
Japanese (ja)
Inventor
瑶輔 遠藤
坂本 勝
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to KR1020137011328A priority Critical patent/KR101365284B1/en
Publication of WO2013088785A1 publication Critical patent/WO2013088785A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to an indium sputtering target member and a method for manufacturing the same.
  • Indium is used as a sputtering target member for forming a light absorption layer of a Cu—In—Ga—Se (CIGS) thin film solar cell.
  • CGS Cu—In—Ga—Se
  • Patent Document 1 describes a method in which an indium thin film is formed on a backing plate, and then indium is poured onto the thin film and cast so as to be integrated with the backing plate.
  • Patent Document 2 describes a predetermined amount of indium raw material is charged into a heated mold and dissolved, indium oxide floating on the surface is removed, and cooled to obtain an ingot.
  • the indium target obtained in this way has a problem that the film formation rate is insufficient and the productivity is low.
  • arcing is likely to occur during sputtering, the erosion surface is rough, and particles adhere to the substrate, resulting in a decrease in yield.
  • an object of the present invention is to provide an indium sputtering target that can obtain a high film formation rate and preferably can suppress the occurrence of arcing.
  • the present inventor has intensively studied to solve the above problems, and makes it easy to see the crystal structure by means such as acid etching, electropolishing, and sputtering, and when observed from the surface direction, linear grain boundaries are formed in the crystal grains. It has been discovered that the target having a higher film formation rate than the target having no linear grain boundary. Further, when this linear grain boundary was analyzed by EBSP, it was found that the crystals sandwiching the linear grain boundary had a geometrically consistent relationship, that is, the linear grain boundary was a corresponding grain boundary. It turns out that. And it discovered that this corresponding grain boundary was ⁇ 7.
  • an indium sputtering target member having crystal grains having a linear grain boundary on the surface to be sputtered, and the area ratio of the crystal grains being 65.1% or more. is there.
  • the area ratio of the crystal grains having the linear grain boundary is 88.9% or more.
  • indium sputtering target member in another embodiment, it is formed by heat treatment in the range of 80 to 150 ° C. for 10 minutes or more after plastic working with a total rolling reduction of 65 to 90%.
  • the total rolling reduction of the plastic working is 80% or more.
  • the heat treatment is performed at 120 ° C. or more for 2 hours or more.
  • the following sputtering conditions ⁇ Sputtering gas: Ar ⁇ Sputtering gas pressure: 0.5Pa ⁇ Sputter gas flow rate: 50 SCCM Sputtering temperature: No heating Sputtering power density: 2.0 W / cm 2 ⁇ Substrate: ⁇ 4 inch x 0.7mmt When the sputtering is continuously performed for 1 hour, the number of arcing is 0.
  • the number of voids having a pore diameter of 50 ⁇ m or more is 1 / cm 3 or less.
  • At least a part of the linear grain boundary is a corresponding grain boundary, and the ⁇ value of the corresponding grain boundary is 7.
  • the ratio of the grain boundary length corresponding to ⁇ 7 on the surface to be sputtered to the total grain boundary length is 71.4% or more.
  • the present invention is a sputtering target in which an indium sputtering target member according to the present invention is bonded onto a backing plate.
  • the present invention is a method for producing an indium sputtering target member, which comprises plastically processing an indium ingot under a condition of a total rolling reduction of 65 to 90%.
  • the method includes a step of heat treatment in the range of 80 to 150 ° C. for 10 minutes or longer after the plastic working.
  • the total rolling reduction of the plastic working is 80% or more.
  • the heat treatment is performed at 120 ° C. or more for 2 hours or more.
  • linear grain boundary In the indium sputtering target member according to the present invention, the area ratio of crystal grains having linear grain boundaries and linear grain boundaries on the surface of the target member subjected to sputtering is defined.
  • linear grain boundary means a grain boundary in which the protrusion in the perpendicular direction of a line segment formed when connecting adjacent corners of a grain boundary forming a crystal grain with a straight line is less than 0.1 mm.
  • the straight line means a case where there is a linear region of 50 ⁇ m or more, and when it is less than 50 ⁇ m, it is not included in the straight line.
  • the grain boundary is made easier to see by etching, the grain boundary may be scraped depending on the degree of etching, but the linear shape is not impaired. Therefore, in the present invention, in such a case, the side edge of the cut grain boundary is defined as the grain boundary in the crystal grain to be observed.
  • “a crystal grain having a linear grain boundary” is a crystal grain having a grain boundary satisfying the definition of the linear grain boundary in one or more of the grain boundaries forming the crystal grain.
  • the crystal grain boundary is substantially curved, whereas the indium sputtering target member according to the present invention has many linear grain boundaries.
  • FIG. 1 shows an example of surface photographs of crystal grains of a target member according to the present invention (left side) and a conventional target member (right side) having a linear grain boundary when the surface of the target member after sputtering is photographed with a digital camera. Show.
  • FIG. 1 shows an example of surface photographs of crystal grains of a target member according to the present invention (left side) and a conventional target member (right side) having a linear grain boundary when the surface of the target member after sputtering is photographed with a digital camera. Show.
  • FIG. 1 shows an example of surface photographs of crystal grains of a target member according to the present invention (left side) and a conventional target member (right side) having a linear grain boundary when the surface of the target member after sputtering is photographed with a digital camera. Show.
  • FIG. 1 shows an example of surface photographs of crystal grains of a target member according to the present invention (left side) and a conventional target member (right side) having a linear grain boundary when the surface of the target member after sp
  • FIG. 2 shows a photograph of the surface of crystal grains of a target member according to the present invention (left side) and a conventional target member (right side) having linear grain boundaries when the target member after etching with acid is photographed with a digital microscope.
  • An example is shown.
  • linear grain boundaries can be clearly observed with the product of the present invention, but not with the conventional indium target shown as a comparative example.
  • linear grain boundaries can be observed in the product of the present invention, but not in the comparative example which is a conventional product.
  • the area ratio of crystal grains having a linear grain boundary is defined.
  • the effect of increasing the film formation rate can be obtained by increasing the area ratio of crystal grains having linear grain boundaries. The reason for this is not clear, but it is presumed that grain boundary energy or the like has an effect. If the area ratio is too small, the effect of increasing the film formation rate is small.
  • the area ratio is required to be 10% or more, preferably 15% or more, more preferably 20% or more, Even more preferably 25% or more, even more preferably 30% or more, even more preferably 40% or more, even more preferably 50% or more, and even more preferably 60% or more, Even more preferably, it is 70% or more, for example, 30% to 100%.
  • the area ratio of crystal grains having linear grain boundaries is measured by the following method. Etching the indium target with an acid, electrolytic polishing, or sputtering removes the work-affected layer on the surface and facilitates observation of the structure. Thereafter, the surface is photographed with a digital camera or the like, and the photographed image is subjected to image processing software or the like to obtain the area of the crystal having a linear structure and the photographing field area.
  • the area ratio of crystal grains having a linear grain boundary is represented by ⁇ (area of crystal having a linear structure) / (photographing field area) ⁇ ⁇ 100 (%).
  • photography visual field is measured by the area containing at least 10 or more crystal grains.
  • the corresponding grain boundary length and the ratio of all the grain boundary lengths are also defined.
  • Corresponding grain boundaries are special grain boundaries with high geometrical consistency, and materials with corresponding grain boundaries are compared to materials with only general grain boundaries (random grain boundaries) Often has excellent chemical and mechanical properties.
  • the corresponding grain boundary when one of adjacent crystals sandwiching the crystal grain boundary is rotated around the crystal axis, part of the lattice points periodically coincides with the lattice point of the other crystal grain. It is a grain boundary having such a relationship (this lattice point is called a corresponding lattice point).
  • the ratio between the original unit cell volume and the unit cell volume newly formed by the corresponding lattice point is called a ⁇ value.
  • the corresponding grain boundary is described, for example, in “Physics of Ceramic Materials—Crystals and Interfaces” (Nikkan Kogyo Shimbun, edited by Yuichi Ikuhara, 2003, page 82).
  • the linear grain boundary is a corresponding grain boundary of ⁇ 7.
  • the orientations coincide with each other by rotation of about 85.5 ° (85.5 ° ⁇ 1 °) with the ⁇ 110> axis as a common rotation axis.
  • the ⁇ value of the grain boundary is assumed to be 7.
  • the corresponding grain boundary length for all the grain boundary lengths in the observation field (3.5 mm ⁇ 3.5 mm or more).
  • the ratio is prescribed.
  • the grain boundary length ratio is required to be 15% or more, preferably 25% or more. Yes, more preferably 40% or more, for example 25% or more and 90% or less.
  • the ratio of the ⁇ 7 corresponding grain boundary length is set as the ratio of the above length.
  • the length ratio of the grain boundary corresponding to ⁇ 7 is measured by the following method.
  • the common rotation axis is the ⁇ 110> axis and the rotation angle is about 85 ° (85.5 ° ⁇ 1 °).
  • Other common rotation axes and rotation angles may be used as long as they are equivalent, but in general, when measurement is performed by EBSP, the display is performed with the smallest rotation angle.
  • an EBSP Electron Backscatter Diffraction Pattern
  • FEEPMA Field Emission Electron Probe Micro Analyzer
  • This method is a method of analyzing crystal orientation based on a backscattered electron diffraction pattern (Kikuchi pattern) generated when an electron beam is obliquely applied to a sample surface.
  • analysis is performed in the following procedure. First, the measurement area on the surface of the target material to be measured (observation field of view 3.5 mm ⁇ 3.5 mm) is usually divided into hexagonal areas (pixels), and the Kikuchi pattern obtained for each divided area is known.
  • the step is 20 ⁇ m.
  • the crystal orientation of a measurement point adjacent to the measurement point is obtained, and if the orientation difference between both crystals is 5 ° or more, the interval (side where both hexagons are in contact) is used as the grain boundary and 5 ° If it is less, both are made the same crystal. In this way, the crystal orientation on the sample surface and the distribution of grain boundaries are obtained.
  • the sum total of the grain boundary lengths of the crystal grains included in the observation visual field is calculated using software attached to EBSP.
  • each crystal grain has a corresponding grain boundary ⁇ 7, and among the grain boundaries of the crystal grains included in the observation field of view, the length of the ⁇ 7 corresponding grain boundary is Calculate the total sum.
  • the ratio (%) of the corresponding grain boundary ⁇ 7 is obtained by multiplying (total sum of the lengths of the corresponding grain boundaries ⁇ 7) / (total sum of the lengths of the crystal grain boundaries) by 100.
  • the ratio of the length of the ⁇ 7-corresponding grain boundary to the total grain boundary length is calculated, and the average value in any four observation fields is taken as the measurement value.
  • the common rotation axis is designated as ⁇ 110>
  • the rotation angle is designated as 85.5 °
  • ⁇ 7 Identify the corresponding grain boundaries. Note that the measurement error of the rotation angle is different for each apparatus, but is in the range of 85.5 ° ⁇ 1 °.
  • the number of voids having a pore diameter of 50 ⁇ m or more is 1 / cm 3 or less. It is desirable that the gaps present in the target, particularly large gaps having a hole diameter of 0.5 mm or more, be reduced as much as possible because they cause abnormal discharge during sputtering.
  • the cooling rate is high, voids are formed inside the target, and thus there is a problem that abnormal discharge is likely to occur during sputtering.
  • the voids having a pore diameter of 50 ⁇ m or more are preferably 0.5 pieces / cm 3 or less, more preferably 0.3 pieces / cm 3 or less, still more preferably 0.1 pieces / cm 3 or less, for example, 0 ⁇ 0.3 / cm 3 . It may be 0 / cm 3 .
  • the number of voids having a pore diameter of 50 ⁇ m or more is measured with an electronic scanning ultrasonic flaw detector.
  • Set the target in the flaw detector water tank of the above device measure with a frequency band of 1.5-20MHz, pulse repetition frequency 5KHz, scan speed 60mm / min, and count voids with a hole diameter of 50 ⁇ m or more from the obtained image image.
  • the number ratio of voids is obtained from the volume of the target to be measured.
  • the hole diameter is defined by the diameter of the smallest circle surrounding the hole of the image image.
  • indium which is a raw material is dissolved and poured into a mold.
  • the raw material indium to be used preferably has a high purity because the conversion efficiency of a solar cell produced from the raw material is reduced when impurities are contained. For example, 99.99 mass %, Typically 99.99% to 99.9999% by weight purity of raw materials can be used.
  • it cools to room temperature and forms an indium ingot. Increasing the cooling rate improves production efficiency, but voids are likely to occur.
  • the voids can be reduced by applying a compressive force such as pressing or rolling, so that, for example, 8 ° C./min or more, preferably 10 ° C./min or more, typically 8 to It becomes possible to cool at a rate of 12 ° C./min.
  • a compressive force such as pressing or rolling
  • strain is inserted into the ingot obtained by melt casting by performing plastic working such as pressing or rolling.
  • the ingot after melt casting has few crystal grains having corresponding grain boundaries, but the grain boundaries corresponding to ⁇ 7 increase by inserting strain into indium by rolling or the like.
  • the plastic working may be cold or hot. If the total rolling reduction of plastic processing is too low, the corresponding grain boundaries will not increase sufficiently, while if the total rolling reduction is too high, the ingot thickness before processing will need to be increased, resulting in poor productivity and handling. It is preferable to perform pressing or rolling so that the rolling reduction is 15 to 90%, and it is more preferable to perform pressing or rolling so that the total rolling reduction is 50 to 85%.
  • heat treatment can be applied after plastic working such as pressing or rolling.
  • heat treatment By applying heat treatment, crystal grains having linear grain boundaries are significantly grown, and the ratio of linear grain boundaries and the area ratio of crystal grains having linear grain boundaries can be increased, thereby further increasing the film formation rate. it can.
  • a heat treatment method for example, there is a method in which the material is heated at 80 to 150 ° C. ⁇ 10 to 300 minutes, typically 100 to 140 ° C. ⁇ 60 to 180 minutes. When the heat treatment time is less than 10 minutes, almost no effect is observed, but when the heat treatment time is 10 minutes or more, the above effect is observed.
  • the heating time may be longer than 300 minutes, but it is preferably about 10 to 300 minutes because it causes a decrease in productivity such as occupation of heat treatment equipment.
  • the ratio of the corresponding grain boundary length is about 0% to 20% and the area ratio of the crystal grains having the linear grain boundary is about 0% to about 25%, a dramatic film formation rate increasing effect is seen, Since the effect of increasing the film formation rate becomes moderate in the region beyond that, the heat treatment may be omitted in view of productivity.
  • the thickness of the indium tile after the plastic working is not particularly limited, and may be appropriately set according to the sputtering apparatus to be used, the film formation usage time, etc., but is usually about 3 to 20 mm, typically about 5 to 18 mm. It is.
  • the indium target member thus obtained can be bonded to a sputtering plate with a backing plate and a bonding material.
  • the shape processing of the indium target member may be performed either before or after being bonded to the backing plate. Moreover, you may implement pickling and degreasing
  • the indium sputtering target thus obtained can be suitably used as a sputtering target for preparing a light absorption layer for a CIGS thin film solar cell.
  • Example 1 An indium raw material (purity 4N) dissolved at 170 ° C. was poured into a SUS mold having a length of 250 mm, a width of 160 mm, and a depth of 80 mm (inner dimensions) at 170 ° C., and then allowed to cool to room temperature (about 1 5 ° C./min) to produce an ingot. Subsequently, cold rolling was performed from a thickness of 6.3 mm to a total rolling reduction of 20%, and a tile serving as a target member having a thickness of 5 mm was produced.
  • purity 4N purity 4N
  • This tile was cut into polygonal prisms, bonded to a copper backing plate having a diameter of 250 mm and a thickness of 5 mm, and processed into a disk shape having a diameter of 204 mm ⁇ thickness of 5 mm by a lathe to produce an indium target.
  • Example 2 An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 30%.
  • Example 3 An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 50%.
  • Example 4 An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 65%.
  • Example 5 An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 80%.
  • Example 6 An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 90%.
  • Example 7 An indium target was produced in the same manner as in Example 5 except that the cooling rate during casting was 10 ° C./min (rapid cooling).
  • Example 9 An indium target was produced in the same manner as in Example 8 except that the thickness of the indium ingot before pressing was adjusted so that the total rolling reduction was 30%.
  • Example 10 An indium target was produced in the same manner as in Example 8 except that the thickness of the indium ingot before pressing was adjusted so that the total rolling reduction was 50%.
  • Example 11 An indium target was produced in the same manner as in Example 8 except that the thickness of the indium ingot before pressing was adjusted so that the total rolling reduction was 65%.
  • Example 17 An indium tile was produced in the same manner as in Example 8, and then an indium target was produced in the same manner as in Example 8, except that heat treatment was performed in air at 120 ° C. for 2 hours.
  • Example 18 An indium target was produced in the same manner as in Example 12 except that an indium tile was produced in the same manner as in Example 12 and then heat treatment was performed in air at 120 ° C. for 2 hours.
  • the area ratio of crystal grains having linear grain boundaries, the ⁇ 7-corresponding grain boundary length ratio, and the number ratio of voids having a pore diameter of 50 ⁇ m or more were measured by the following methods. The results are shown in Table 1.
  • the film-forming rate from the start of sputtering was measured. Specifically, by sputtering under the following conditions, the thickness of the obtained film was measured with a stylus type surface shape measuring instrument (Dektak 8 manufactured by ULVAC), and the film thickness was divided by the film formation time (3 min). The film formation rate was calculated. Furthermore, 1 h continuous sputtering was performed under the following conditions, and the arcing number was measured by a visual method.
  • the sputtering conditions are as follows.
  • Sputtering device Canon Anelva, SPF-313H ⁇ Sputtering gas: Ar ⁇ Sputtering gas pressure: 0.5Pa ⁇ Sputter gas flow rate: 50 SCCM Sputtering temperature: T.A. (No heating) ⁇ Sputtering power density: 2.0 W / cm 2 -Substrate: Corning Eagle 2000, ⁇ 4 inch x 0.7 mmt
  • the number ratio of voids having a pore diameter of 50 ⁇ m or more was measured using an electronic scanning ultrasonic flaw detection system PA-101 manufactured by Nippon Kraut Kramer Co., Ltd. according to the method described above.
  • Comparative Example 1 is a comparative example in which plastic processing was not performed, and the film formation rate is slower than that of the inventive example. In addition, there were many voids and arcing. Comparative Example 2 was an example in which the cooling rate at the time of casting was increased as compared with Comparative Example 1, and the number of voids increased, and accordingly the number of arcing increased.
  • Comparative Examples 3 to 6 are examples in which the total rolling reduction was low, and although the crystal grains having linear grain boundaries and the corresponding grain boundaries could be confirmed, since the ratio was small, the effect of increasing the film formation rate was small. In comparison with this, a slight increase in film formation rate was observed. In addition, compared with Comparative Example 1, there was a slight decrease in voids, and the effect of reducing arcing was small.
  • Example 1 is a reference example. By performing rolling at an appropriate total rolling reduction, the area ratio of crystal grains having linear grain boundaries is 10% or more, and the corresponding grain boundary length ratio is 15% or more. Improved. Moreover, compared with the comparative example, the space
  • Example 2 is a reference example.
  • Example 3 is a reference example.
  • Rolling with a total rolling reduction of 50% results in an area ratio of crystal grains having linear grain boundaries of 35.2% and a corresponding grain boundary length ratio of 40.3%, which is higher than that of the comparative example.
  • the film rate was improved.
  • gap decreased and the reduction of arcing was seen in connection with it.
  • Example 4 is an invention example.
  • Example 5 is an invention example.
  • Rolling with a total rolling reduction of 80% resulted in an area ratio of crystal grains having linear grain boundaries of 87.1% and a corresponding grain boundary length ratio of 69.5%, which is higher than that of the comparative example.
  • the film rate was improved.
  • gap decreased and the reduction of arcing was seen in connection with it.
  • Example 6 is an invention example.
  • Example 7 is an invention example. Because of the rapid cooling during casting, the number of voids is the same as in Comparative Example 2 before rolling. However, by rolling with a total rolling reduction of 80%, the voids are greatly reduced, and arcing is reduced accordingly. It was seen.
  • Example 8 is a reference example. By pressing with a total rolling reduction of 20%, the area ratio of crystal grains having linear grain boundaries was 16.3%, and the corresponding grain boundary length ratio was 19.5%.
  • Example 9 is a reference example. By performing the pressing with the total rolling reduction of 30%, the area ratio of crystal grains having linear grain boundaries was 22.5%, and the corresponding grain boundary length ratio was 20.4%. The film rate was improved. Moreover, compared with the comparative example, the space
  • Example 10 is a reference example. By pressing with a total rolling reduction of 50%, the area ratio of crystal grains having linear grain boundaries was 38.5%, and the corresponding grain boundary length ratio was 38.4%. The film rate was improved.
  • Example 11 is a reference example.
  • the area ratio of crystal grains having linear grain boundaries was 63.1%, and the corresponding grain boundary length ratio was 45.1%, which is compared with the comparative example.
  • the film formation rate was improved.
  • gap decreased and the reduction of arcing was seen in connection with it.
  • Example 12 is an invention example. By carrying out the pressing with the total rolling reduction of 80%, the area ratio of crystal grains having linear grain boundaries was 85.1%, and the corresponding grain boundary length ratio was 70.1%, which was higher than that of the comparative example.
  • Example 13 is an invention example.
  • the area ratio of crystal grains having linear grain boundaries was 96.5%, and the corresponding grain boundary length ratio was 86.4%.
  • the film rate was improved and reached the maximum among all examples.
  • gap decreased and the reduction of arcing was seen with it.
  • Example 14 is an invention example. Because of the rapid cooling during casting, the number of voids was the same as in Comparative Example 2 before pressing, but by pressing with a total rolling reduction of 80%, the voids were greatly reduced, and arcing decreased accordingly.
  • Example 15 is a reference example. After rolling at a total rolling reduction of 20%, heat treatment was performed to increase the area ratio of crystal grains having linear grain boundaries and the corresponding grain boundary length ratio, and the film formation rate also increased.
  • Example 16 is an invention example. After rolling at a total rolling reduction of 80%, heat treatment was applied to increase the area ratio of crystal grains having linear grain boundaries and the corresponding grain boundary length ratio, and the film formation rate also increased.
  • Example 17 is a reference example. After pressing at a total rolling reduction of 20%, heat treatment was applied to increase the area ratio of crystal grains having linear grain boundaries and the corresponding grain boundary length ratio, and the film formation rate also increased.
  • Example 18 is an invention example. After pressing at a total rolling reduction of 80%, heat treatment was applied to increase the area ratio of crystal grains having linear grain boundaries and the corresponding grain boundary length ratio, and the film formation rate also increased.

Abstract

Provided is an indium sputtering target that obtains a high film formation rate. An indium sputtering target member has crystal grains having linear grain boundaries at the sputtered surface, and the area fraction of the crystal grains is at least 65.1%.

Description

インジウム製スパッタリングターゲット部材及びその製造方法Indium sputtering target member and method for manufacturing the same
 本発明はインジウム製スパッタリングターゲット部材及びその製造方法に関する。 The present invention relates to an indium sputtering target member and a method for manufacturing the same.
 インジウムは、Cu-In-Ga-Se系(CIGS系)薄膜太陽電池の光吸収層形成用のスパッタリングターゲット部材として使用されている。 Indium is used as a sputtering target member for forming a light absorption layer of a Cu—In—Ga—Se (CIGS) thin film solar cell.
 従来、インジウムスパッタリングターゲット部材は溶解鋳造法によって主に製造されている。
 特公昭63-44820号(特許文献1)にはバッキングプレートにインジウムの薄膜を形成した後、該薄膜の上にインジウムを流し込み鋳造することでバッキングプレートと一体に形成する方法が記載されている。
 また、特開2010-24474号公報(特許文献2)では、加熱された鋳型に所定量のインジウム原料を投入して溶解し、表面に浮遊する酸化インジウムを除去し、冷却してインゴットを得、得たインゴット表面を研削してインジウムターゲットを得るに際し、所定量のインジウム原料を一度に鋳型に投入せずに複数回に分けて投入し、都度生成した溶湯表面の酸化インジウムを除去し、その後、冷却して得られたインゴットを表面研削して得る方法が記載されている。
Conventionally, indium sputtering target members are mainly manufactured by melt casting.
Japanese Patent Publication No. 63-44820 (Patent Document 1) describes a method in which an indium thin film is formed on a backing plate, and then indium is poured onto the thin film and cast so as to be integrated with the backing plate.
In JP 2010-24474 A (Patent Document 2), a predetermined amount of indium raw material is charged into a heated mold and dissolved, indium oxide floating on the surface is removed, and cooled to obtain an ingot. When the obtained ingot surface is ground to obtain an indium target, a predetermined amount of indium raw material is charged in a plurality of times without being poured into the mold at once, and the indium oxide on the surface of the molten metal generated is removed each time. A method is described in which the ingot obtained by cooling is surface ground.
特公昭63-44820号公報Japanese Examined Patent Publication No. 63-44820 特開2010-24474号公報JP 2010-24474 A
 しかしながら、このようにして得られたインジウムターゲットは成膜レートが不十分であり生産性が低いという問題がある。また、スパッタ中にアーキングが発生しやすく、エロージョン表面が荒れ、パーティクルが基板に付着することによって歩留まりが低下するという問題もある。 However, the indium target obtained in this way has a problem that the film formation rate is insufficient and the productivity is low. In addition, arcing is likely to occur during sputtering, the erosion surface is rough, and particles adhere to the substrate, resulting in a decrease in yield.
 そこで、本発明は、高い成膜レートが得られ、好ましくはアーキングの発生も抑制可能なインジウムスパッタリングターゲットを提供することを課題とする。 Therefore, an object of the present invention is to provide an indium sputtering target that can obtain a high film formation rate and preferably can suppress the occurrence of arcing.
 本発明者は上記課題を解決するために鋭意検討したところ、酸によるエッチングや電解研磨、スパッタといった手段により結晶組織を見やすくし、表面方向から観察した際に、結晶粒内に直線状粒界を有するターゲットは、直線状粒界をもたないターゲットに対し、成膜レートが高くなることを発見した。さらに、この直線状粒界をEBSPにより解析したところ、直線状粒界を挟んだ結晶同士が、幾何学的に整合性のある関係となっていること、すなわち、直線状粒界が対応粒界であることが分かった。そして、この対応粒界はΣ7であることを見出した。 The present inventor has intensively studied to solve the above problems, and makes it easy to see the crystal structure by means such as acid etching, electropolishing, and sputtering, and when observed from the surface direction, linear grain boundaries are formed in the crystal grains. It has been discovered that the target having a higher film formation rate than the target having no linear grain boundary. Further, when this linear grain boundary was analyzed by EBSP, it was found that the crystals sandwiching the linear grain boundary had a geometrically consistent relationship, that is, the linear grain boundary was a corresponding grain boundary. It turns out that. And it discovered that this corresponding grain boundary was Σ7.
 上記知見を基礎として完成した本発明は一側面において、スパッタリングされる表面に直線状粒界を有する結晶粒をもち、当該結晶粒の面積割合が65.1%以上であるインジウム製スパッタリングターゲット部材である。 The present invention completed on the basis of the above knowledge is, in one aspect, an indium sputtering target member having crystal grains having a linear grain boundary on the surface to be sputtered, and the area ratio of the crystal grains being 65.1% or more. is there.
 本発明に係るインジウム製スパッタリングターゲット部材の一実施形態においては、前記直線状粒界を有する結晶粒の面積割合が88.9%以上である。 In one embodiment of the indium sputtering target member according to the present invention, the area ratio of the crystal grains having the linear grain boundary is 88.9% or more.
 本発明に係るインジウム製スパッタリングターゲット部材の別の一実施形態においては、総圧下率65~90%の塑性加工に次いで80~150℃の範囲で10分以上熱処理されてできたものである。 In another embodiment of the indium sputtering target member according to the present invention, it is formed by heat treatment in the range of 80 to 150 ° C. for 10 minutes or more after plastic working with a total rolling reduction of 65 to 90%.
 本発明に係るインジウム製スパッタリングターゲット部材の更に別の一実施形態においては、前記塑性加工の総圧下率が80%以上である。 In yet another embodiment of the indium sputtering target member according to the present invention, the total rolling reduction of the plastic working is 80% or more.
 本発明に係るインジウム製スパッタリングターゲット部材の更に別の一実施形態においては、前記熱処理は120℃以上で2時間以上行ってできたものである。 In yet another embodiment of the indium sputtering target member according to the present invention, the heat treatment is performed at 120 ° C. or more for 2 hours or more.
 本発明に係るインジウム製スパッタリングターゲット部材の更に別の一実施形態においては、以下のスパッタリング条件:
・スパッタガス: Ar
・スパッタガス圧: 0.5Pa
・スパッタガス流量: 50SCCM
・スパッタリング温度: 無加熱
・投入スパッタパワー密度: 2.0W/cm2
・基板:φ4インチ×0.7mmt
でスパッタを1時間連続して行ったときに、アーキング回数が0である。
In yet another embodiment of the indium sputtering target member according to the present invention, the following sputtering conditions:
・ Sputtering gas: Ar
・ Sputtering gas pressure: 0.5Pa
・ Sputter gas flow rate: 50 SCCM
Sputtering temperature: No heating Sputtering power density: 2.0 W / cm 2
・ Substrate: φ4 inch x 0.7mmt
When the sputtering is continuously performed for 1 hour, the number of arcing is 0.
 本発明に係るインジウム製スパッタリングターゲット部材の更に別の一実施形態においては、孔径50μm以上の空隙が1個/cm3以下である。 In still another embodiment of the indium sputtering target member according to the present invention, the number of voids having a pore diameter of 50 μm or more is 1 / cm 3 or less.
 本発明に係るインジウム製スパッタリングターゲット部材の更に別の一実施形態においては、前記直線状粒界の少なくとも一部が対応粒界であり、対応粒界のΣ値が7である。 In yet another embodiment of the indium sputtering target member according to the present invention, at least a part of the linear grain boundary is a corresponding grain boundary, and the Σ value of the corresponding grain boundary is 7.
 本発明に係るインジウム製スパッタリングターゲット部材の更に別の一実施形態においては、スパッタリングされる表面におけるΣ7対応粒界長さの全結晶粒界長さに対する割合が71.4%以上である。 In yet another embodiment of the indium sputtering target member according to the present invention, the ratio of the grain boundary length corresponding to Σ7 on the surface to be sputtered to the total grain boundary length is 71.4% or more.
 本発明は別の一側面において、本発明に係るインジウム製スパッタリングターゲット部材がバッキングプレート上にボンディングされているスパッタリングターゲットである。 In another aspect, the present invention is a sputtering target in which an indium sputtering target member according to the present invention is bonded onto a backing plate.
 本発明は更に別の一側面において、インジウムインゴットに対し、総圧下率65~90%の条件で塑性加工することを含むインジウム製スパッタリングターゲット部材の製造方法である。 In yet another aspect, the present invention is a method for producing an indium sputtering target member, which comprises plastically processing an indium ingot under a condition of a total rolling reduction of 65 to 90%.
 本発明に係るインジウム製スパッタリングターゲット部材の製造方法の一実施形態においては、塑性加工に次いで80~150℃の範囲で10分以上熱処理する工程を含む。 In one embodiment of the method for producing an indium sputtering target member according to the present invention, the method includes a step of heat treatment in the range of 80 to 150 ° C. for 10 minutes or longer after the plastic working.
 本発明に係るインジウム製スパッタリングターゲット部材の製造方法の別の一実施形態においては、前記塑性加工の総圧下率が80%以上である。 In another embodiment of the method for producing an indium sputtering target member according to the present invention, the total rolling reduction of the plastic working is 80% or more.
 本発明に係るインジウム製スパッタリングターゲット部材の製造方法の更に別の一実施形態においては、前記熱処理は120℃以上で2時間以上行う。 In yet another embodiment of the method for producing an indium sputtering target member according to the present invention, the heat treatment is performed at 120 ° C. or more for 2 hours or more.
 本発明に係るスパッタリングターゲットを使用してスパッタすることにより、高い成膜レートでの成膜が可能となる。 By performing sputtering using the sputtering target according to the present invention, film formation at a high film formation rate is possible.
スパッタリングにより表面の加工変質層を除去後のターゲット部材表面をデジタルカメラ撮影した場合の、直線状粒界を有する本発明に係るターゲット部材(左側)及び従来のターゲット部材(右側)の結晶粒の表面写真の例を示す。Surfaces of crystal grains of the target member according to the present invention (left side) and the conventional target member (right side) having linear grain boundaries when the surface of the target member after removal of the work-affected layer on the surface by sputtering is photographed with a digital camera. An example of a photograph is shown. 酸エッチングにより表面の加工変質層を除去後のターゲット部材をデジタル顕微鏡により撮影した場合の、直線状粒界を有する本発明に係るターゲット部材(左側)及び従来のターゲット部材(右側)の結晶粒の表面写真の例を示す。When the target member after removing the surface damaged layer by acid etching is photographed with a digital microscope, the target member according to the present invention (left side) and the conventional target member (right side) having a linear grain boundary An example of a surface photograph is shown.
(1.直線状粒界)
 本発明に係るインジウム製スパッタリングターゲット部材では、ターゲット部材のスパッタリングを受ける表面において直線状粒界および直線状粒界を有する結晶粒の面積割合を規定している。
 本発明において、「直線状粒界」とは、結晶粒を形成する粒界の隣り合う角同士を直線で結んだ際にできる線分の垂線方向へのはみ出しが0.1mm未満である粒界とする。なお、この評価はデジタル顕微鏡により、50倍の倍率で撮影した像に対し行ない、評価する線分の太さは0.01mmとする。また、直線とは、50μm以上直線領域がある場合を意味し、50μm未満の場合は直線には含めない。エッチングにより粒界を見やすくした場合、エッチングの程度によっては粒界が削れるケースがあるが、直線状が損なわれる訳ではない。そこで、本発明では、このような場合は、削れた粒界の側縁を、観察対象とする結晶粒における粒界として定義する。
 本発明において、「直線状粒界を有する結晶粒」とは結晶粒を形成する粒界のうち、1つ以上が上記直線状粒界の定義を満たす粒界を有する結晶粒である。従来製品化されているインジウム製スパッタリングターゲットにおいて、結晶粒界はほぼ曲線状であるのに対し、本発明に係るインジウム製スパッタリングターゲット部材では直線状粒界が数多く存在している。
(1. Linear grain boundary)
In the indium sputtering target member according to the present invention, the area ratio of crystal grains having linear grain boundaries and linear grain boundaries on the surface of the target member subjected to sputtering is defined.
In the present invention, the term “linear grain boundary” means a grain boundary in which the protrusion in the perpendicular direction of a line segment formed when connecting adjacent corners of a grain boundary forming a crystal grain with a straight line is less than 0.1 mm. And This evaluation is performed on an image photographed at a magnification of 50 times with a digital microscope, and the thickness of the line segment to be evaluated is 0.01 mm. Further, the straight line means a case where there is a linear region of 50 μm or more, and when it is less than 50 μm, it is not included in the straight line. When the grain boundary is made easier to see by etching, the grain boundary may be scraped depending on the degree of etching, but the linear shape is not impaired. Therefore, in the present invention, in such a case, the side edge of the cut grain boundary is defined as the grain boundary in the crystal grain to be observed.
In the present invention, “a crystal grain having a linear grain boundary” is a crystal grain having a grain boundary satisfying the definition of the linear grain boundary in one or more of the grain boundaries forming the crystal grain. In an indium sputtering target that has been commercialized in the past, the crystal grain boundary is substantially curved, whereas the indium sputtering target member according to the present invention has many linear grain boundaries.
 直線状粒界は、組織が十分に見える形で観察しなければならない。例えば、ターゲット表面に存在する加工変質層を、酸によるエッチング、電解研磨、スパッタリング等により除去し、観察する。観察は目視によって行なってもよいし、デジタルカメラ、デジタル顕微鏡、電子顕微鏡などを用いても良い。図1に、スパッタリング後のターゲット部材表面をデジタルカメラ撮影した場合の、直線状粒界を有する本発明に係るターゲット部材(左側)及び従来のターゲット部材(右側)の結晶粒の表面写真の例を示す。図2に、酸によるエッチング後のターゲット部材をデジタル顕微鏡により撮影した場合の、直線状粒界を有する本発明に係るターゲット部材(左側)及び従来のターゲット部材(右側)の結晶粒の表面写真の例を示す。スパッタリング後のデジタルカメラ写真では、本発明品では明らかに直線状粒界が観察できるが、比較例として示した従来のインジウムターゲットではみられない。また、酸によるエッチング後の表面のデジタル顕微鏡写真においても、本発明品では直線状粒界が観察できるが、従来品である比較例にはみられない。 The straight grain boundary must be observed in such a way that the structure is sufficiently visible. For example, the work-affected layer present on the target surface is removed and observed by etching with acid, electropolishing, sputtering, or the like. Observation may be performed by visual observation, or a digital camera, digital microscope, electron microscope, or the like may be used. FIG. 1 shows an example of surface photographs of crystal grains of a target member according to the present invention (left side) and a conventional target member (right side) having a linear grain boundary when the surface of the target member after sputtering is photographed with a digital camera. Show. FIG. 2 shows a photograph of the surface of crystal grains of a target member according to the present invention (left side) and a conventional target member (right side) having linear grain boundaries when the target member after etching with acid is photographed with a digital microscope. An example is shown. In the digital camera photograph after sputtering, linear grain boundaries can be clearly observed with the product of the present invention, but not with the conventional indium target shown as a comparative example. Also, in the digital micrograph of the surface after etching with acid, linear grain boundaries can be observed in the product of the present invention, but not in the comparative example which is a conventional product.
(2.直線状粒界を有する結晶粒の面積割合)
 本発明に係るインジウム製スパッタリングターゲット部材では、直線状粒界を有する結晶粒の面積割合を規定している。直線状粒界を有する結晶粒の面積割合を高くすることにより、成膜レートを上昇させる効果が得られる。その理由は定かではないが、粒界エネルギー等が影響しているものと推察される。当該面積割合が小さすぎると成膜レートの上昇効果が少ないことから、本発明においては当該面積割合が10%以上であることを要件としており、好ましくは15%以上、より好ましくは20%以上、更により好ましくは25%以上であり、更により好ましくは30%以上であり、更により好ましくは40%以上であり、更により好ましくは50%以上であり、更により好ましくは60%以上であり、更により好ましくは70%以上であり、例えば30%~100%とすることができる。
(2. Area ratio of crystal grains having linear grain boundaries)
In the indium sputtering target member according to the present invention, the area ratio of crystal grains having a linear grain boundary is defined. The effect of increasing the film formation rate can be obtained by increasing the area ratio of crystal grains having linear grain boundaries. The reason for this is not clear, but it is presumed that grain boundary energy or the like has an effect. If the area ratio is too small, the effect of increasing the film formation rate is small. Therefore, in the present invention, the area ratio is required to be 10% or more, preferably 15% or more, more preferably 20% or more, Even more preferably 25% or more, even more preferably 30% or more, even more preferably 40% or more, even more preferably 50% or more, and even more preferably 60% or more, Even more preferably, it is 70% or more, for example, 30% to 100%.
 本発明においては、直線状粒界を有する結晶粒の面積割合を以下の方法で測定する。インジウムターゲットを酸によりエッチングしたり、電解研磨したり、スパッタリングしたりすることにより表面の加工変質層を取り除き、組織を観察しやすくする。その後、表面側からデジタルカメラ等により撮影し、撮影された画像を画像処理ソフトなどにより直線状組織を有する結晶の面積および撮影視野面積を求める。直線状粒界を有する結晶粒の面積割合は{(直線状組織を有する結晶の面積)/(撮影視野面積)}×100(%)で表される。なお、撮影視野の大きさは、少なくとも10個以上の結晶粒を含む面積で測定する。 In the present invention, the area ratio of crystal grains having linear grain boundaries is measured by the following method. Etching the indium target with an acid, electrolytic polishing, or sputtering removes the work-affected layer on the surface and facilitates observation of the structure. Thereafter, the surface is photographed with a digital camera or the like, and the photographed image is subjected to image processing software or the like to obtain the area of the crystal having a linear structure and the photographing field area. The area ratio of crystal grains having a linear grain boundary is represented by {(area of crystal having a linear structure) / (photographing field area)} × 100 (%). In addition, the magnitude | size of an imaging | photography visual field is measured by the area containing at least 10 or more crystal grains.
(3.対応粒界)
 本発明に係るインジウム製スパッタリングターゲット部材では、対応粒界長さと全ての粒界長さの割合も規定している。対応粒界とは、幾何学的に整合性の高い特殊な粒界のことであり、対応粒界を有する材料は、一般的な粒界(ランダム粒界)のみを有する材料と比較して、化学的、力学的に優れた性質をもつことが多い。対応粒界は具体的には、結晶粒界を挟んだ隣接した結晶同士の片方を結晶軸周りに回転したときに、格子点の一部が他方の結晶粒の格子点に周期的に一致する(この格子点を対応格子点と呼ぶ)ような関係になる粒界である。このとき、元の単位胞体積と対応格子点により新たに形成された単位胞体積の比をΣ値という。対応粒界については、例えば「セラミック材料の物理-結晶と界面-」(日刊工業新聞社 幾原雄一編著 2003年、82頁)に記載されている。
(3. Corresponding grain boundary)
In the indium sputtering target member according to the present invention, the corresponding grain boundary length and the ratio of all the grain boundary lengths are also defined. Corresponding grain boundaries are special grain boundaries with high geometrical consistency, and materials with corresponding grain boundaries are compared to materials with only general grain boundaries (random grain boundaries) Often has excellent chemical and mechanical properties. Specifically, the corresponding grain boundary, when one of adjacent crystals sandwiching the crystal grain boundary is rotated around the crystal axis, part of the lattice points periodically coincides with the lattice point of the other crystal grain. It is a grain boundary having such a relationship (this lattice point is called a corresponding lattice point). At this time, the ratio between the original unit cell volume and the unit cell volume newly formed by the corresponding lattice point is called a Σ value. The corresponding grain boundary is described, for example, in “Physics of Ceramic Materials—Crystals and Interfaces” (Nikkan Kogyo Shimbun, edited by Yuichi Ikuhara, 2003, page 82).
 本発明に係るインジウム製スパッタリングターゲット部材においては、直線状粒界はΣ7の対応粒界であることが確認されている。本発明において、インジウムの場合、ある粒界を挟んだ結晶同士が<110>軸を共通回転軸として約85.5°(85.5°±1°)の回転で向きが一致する関係のとき、その粒界のΣ値が7とする。 In the indium sputtering target member according to the present invention, it is confirmed that the linear grain boundary is a corresponding grain boundary of Σ7. In the present invention, in the case of indium, when crystals having a certain grain boundary sandwich each other, the orientations coincide with each other by rotation of about 85.5 ° (85.5 ° ± 1 °) with the <110> axis as a common rotation axis. The Σ value of the grain boundary is assumed to be 7.
(4.対応粒界長さの割合)
 本発明に係るインジウム製スパッタリングターゲット部材では、結晶組織をターゲット表面側からEBSP観察した際に、観察視野(3.5mm×3.5mm以上)中の全ての粒界長さに対する対応粒界長さの割合を規定している。対応粒界長さの割合を高くすることにより、成膜レートが上昇する効果が得られる。当該粒界長さ割合が小さすぎると成膜レートの上昇効果が少ないことから、本発明においては、当該粒界長さ割合が15%以上であることを要件としており、好ましくは25%以上であり、より好ましくは40%以上であり、例えば25%以上90%以下とすることができる。本発明では、前記対応粒界は典型的にはΣ7であるため、Σ7対応粒界長さの割合を上記の長さの割合とする。
(4. Ratio of corresponding grain boundary length)
In the indium sputtering target member according to the present invention, when the crystal structure is observed from the target surface side by EBSP, the corresponding grain boundary length for all the grain boundary lengths in the observation field (3.5 mm × 3.5 mm or more). The ratio is prescribed. By increasing the ratio of the corresponding grain boundary length, an effect of increasing the film forming rate can be obtained. If the grain boundary length ratio is too small, the effect of increasing the film formation rate is small. Therefore, in the present invention, the grain boundary length ratio is required to be 15% or more, preferably 25% or more. Yes, more preferably 40% or more, for example 25% or more and 90% or less. In the present invention, since the corresponding grain boundary is typically Σ7, the ratio of the Σ7 corresponding grain boundary length is set as the ratio of the above length.
 本発明においては、Σ7対応粒界の長さ割合を以下の方法で測定する。まず、本発明においては、隣接する結晶の方位差が5°以上であるときに各結晶の間を結晶粒界とみなす。なお、インジウムにおいては、共通回転軸が<110>軸、回転角約85°(85.5°±1°)となる。等価な関係であれば、他の共通回転軸、回転角でもよいが、一般にEBSPにて測定を行う場合、最も小さい回転角で表示される。 In the present invention, the length ratio of the grain boundary corresponding to Σ7 is measured by the following method. First, in the present invention, when an orientation difference between adjacent crystals is 5 ° or more, a space between each crystal is regarded as a crystal grain boundary. For indium, the common rotation axis is the <110> axis and the rotation angle is about 85 ° (85.5 ° ± 1 °). Other common rotation axes and rotation angles may be used as long as they are equivalent, but in general, when measurement is performed by EBSP, the display is performed with the smallest rotation angle.
 対応粒界Σ7の割合を求める方法としては、本発明では、FEEPMA(Field Emission Electron Probe Micro Analyzer)によるEBSP(Electron Backscatter Diffraction Pattern)法を採用する。この方法は、試料表面に斜めに電子線を当てたときに生じる後方散乱電子回折パターン(菊地パターン)に基づき、結晶方位を解析する方法である。この方法では次のような手順で解析が行われる。まず、測定対象となるターゲット材料表面の測定領域(観察視野3.5mm×3.5mm)を通常、六角形の領域(ピクセル)に区切り、区切られた各領域について得られた菊地パターンを、既知の結晶構造のデータと比較し、その測定点での結晶方位を求める。ステップ(隣り合った測定点同士の間隔)は20μmとする。同様にして、その測定点に隣接する測定点の結晶方位を求め、両方の結晶の方位差が5°以上であればその間(両方の六角形が接している辺)を粒界とし、5°未満であれば両者を同一の結晶とする。このようにして、試料表面の結晶方位および結晶粒界の分布を求める。次に、観察視野中に含まれる結晶粒の粒界の長さの総和をEBSP付属のソフトウェアを用いて算出する。また、同様にEBSP付属のソフトウェアを用いて、各結晶粒が対応粒界Σ7になっているか否かを判定し、観察視野中に含まれる結晶粒の粒界のうち、Σ7対応粒界の長さの総和を算出する。(対応粒界Σ7の長さの総和)/(結晶粒界の長さの総和)に100を乗じて対応粒界Σ7の割合(%)を求める。各観察視野について、全粒界長さに対するΣ7対応粒界の長さの割合を計算し、任意の4箇所の観察視野での平均値を測定値とする。なお、通常市販されているFESEM/EBSP装置には、インジウム(正方晶)に関して対応粒界を求めるモードはないため、共通回転軸を<110>、回転角を85.5°に指定し、Σ7対応粒界の同定を行う。なお、回転角の測定誤差は装置ごとに異なるが、85.5°±1°の範囲とする。 As a method for obtaining the ratio of the corresponding grain boundary Σ7, in the present invention, an EBSP (Electron Backscatter Diffraction Pattern) method by FEEPMA (Field Emission Electron Probe Micro Analyzer) is adopted. This method is a method of analyzing crystal orientation based on a backscattered electron diffraction pattern (Kikuchi pattern) generated when an electron beam is obliquely applied to a sample surface. In this method, analysis is performed in the following procedure. First, the measurement area on the surface of the target material to be measured (observation field of view 3.5 mm × 3.5 mm) is usually divided into hexagonal areas (pixels), and the Kikuchi pattern obtained for each divided area is known. And the crystal orientation at the measurement point is obtained. The step (interval between adjacent measurement points) is 20 μm. Similarly, the crystal orientation of a measurement point adjacent to the measurement point is obtained, and if the orientation difference between both crystals is 5 ° or more, the interval (side where both hexagons are in contact) is used as the grain boundary and 5 ° If it is less, both are made the same crystal. In this way, the crystal orientation on the sample surface and the distribution of grain boundaries are obtained. Next, the sum total of the grain boundary lengths of the crystal grains included in the observation visual field is calculated using software attached to EBSP. Similarly, using the software attached to EBSP, it is determined whether or not each crystal grain has a corresponding grain boundary Σ7, and among the grain boundaries of the crystal grains included in the observation field of view, the length of the Σ7 corresponding grain boundary is Calculate the total sum. The ratio (%) of the corresponding grain boundary Σ7 is obtained by multiplying (total sum of the lengths of the corresponding grain boundaries Σ7) / (total sum of the lengths of the crystal grain boundaries) by 100. For each observation field, the ratio of the length of the Σ7-corresponding grain boundary to the total grain boundary length is calculated, and the average value in any four observation fields is taken as the measurement value. Since the FESEM / EBSP apparatus that is usually commercially available does not have a mode for obtaining the corresponding grain boundary for indium (tetragonal crystal), the common rotation axis is designated as <110>, the rotation angle is designated as 85.5 °, and Σ7 Identify the corresponding grain boundaries. Note that the measurement error of the rotation angle is different for each apparatus, but is in the range of 85.5 ° ± 1 °.
(孔径50μm以上の空隙の個数割合)
 本発明に係るインジウムターゲットは好ましい実施形態において、孔径50μm以上の空隙が1個/cm3以下である。ターゲット内部に存在する空隙、とりわけ孔径0.5mm以上の大きな空隙はスパッタ中に異常放電を発生させる原因となるために極力少なくすることが望ましい。インジウムターゲットを溶解鋳造する際、冷却速度が大きいとターゲット内部に空隙ができてしまうために、スパッタ中に異常放電が発生しやすいという問題がある一方で、冷却速度を小さくすると、特に大型のターゲットを作製する場合にはインゴットサイズが大きくなるため冷却時間が増大し、インゴットが完全に凝固するまで次の鋳造作業ができないことから、生産性が著しく低下するという問題がある。しかしながら本発明によれば、冷却速度を速めることによって生じた空隙を、プレスや圧延などの圧縮力を加えることにより、生産性と空隙の低減の両立が可能となる。孔径50μm以上の空隙は好ましくは0.5個/cm3以下であり、より好ましくは0.3個/cm3以下であり、更により好ましくは0.1個/cm3以下であり、例えば0~0.3個/cm3である。0個/cm3とすることもできる。
(Percentage of voids with a pore size of 50 μm or more)
In a preferred embodiment of the indium target according to the present invention, the number of voids having a pore diameter of 50 μm or more is 1 / cm 3 or less. It is desirable that the gaps present in the target, particularly large gaps having a hole diameter of 0.5 mm or more, be reduced as much as possible because they cause abnormal discharge during sputtering. When melting and casting an indium target, if the cooling rate is high, voids are formed inside the target, and thus there is a problem that abnormal discharge is likely to occur during sputtering. In the case of manufacturing, since the ingot size increases, the cooling time increases, and the next casting operation cannot be performed until the ingot is completely solidified. However, according to the present invention, it is possible to achieve both productivity and reduction of voids by applying a compressive force such as pressing or rolling to the voids generated by increasing the cooling rate. The voids having a pore diameter of 50 μm or more are preferably 0.5 pieces / cm 3 or less, more preferably 0.3 pieces / cm 3 or less, still more preferably 0.1 pieces / cm 3 or less, for example, 0 ~ 0.3 / cm 3 . It may be 0 / cm 3 .
 本発明において、孔径50μm以上の空隙の数は電子走査式超音波探傷器で測定する。ターゲットを上記装置の探傷器水槽内にセットして、周波数帯域1.5~20MHz、パルス繰返し周波数5KHz、スキャンスピード60mm/minで測定し、得られる像イメージから、孔径50μm以上の空隙をカウントして、測定対象ターゲットの体積から空隙の個数割合を求める。ここで、孔径とは像イメージの孔を取り囲む最小円の直径で定義される。 In the present invention, the number of voids having a pore diameter of 50 μm or more is measured with an electronic scanning ultrasonic flaw detector. Set the target in the flaw detector water tank of the above device, measure with a frequency band of 1.5-20MHz, pulse repetition frequency 5KHz, scan speed 60mm / min, and count voids with a hole diameter of 50μm or more from the obtained image image. Then, the number ratio of voids is obtained from the volume of the target to be measured. Here, the hole diameter is defined by the diameter of the smallest circle surrounding the hole of the image image.
(本発明に係るインジウムターゲット部材の製造方法)
 次に、本発明に係るインジウムターゲット部材の製造方法の好適な例を順を追って説明する。まず、原料であるインジウムを溶解し、鋳型に流し込む。使用する原料インジウムは、不純物が含まれていると、その原料によって作製される太陽電池の変換効率が低下してしまうという理由により高い純度を有していることが望ましく、例えば、99.99質量%以上、典型的には99.99質量%~99.9999質量%の純度の原料を使用することができる。その後、室温まで冷却して、インジウムインゴットを形成する。冷却速度を高くすることで生産効率は向上するが、空隙が発生しやすい。しかしながら、本発明によれば、プレスや圧延などの圧縮力を加えることにより空隙を小さくすることができるので、例えば、8℃/min以上、好ましくは10℃/min以上、典型的には8~12℃/minの速度で冷却することが可能となる。
(Method for producing an indium target member according to the present invention)
Next, a preferred example of the method for manufacturing an indium target member according to the present invention will be described in order. First, indium which is a raw material is dissolved and poured into a mold. The raw material indium to be used preferably has a high purity because the conversion efficiency of a solar cell produced from the raw material is reduced when impurities are contained. For example, 99.99 mass %, Typically 99.99% to 99.9999% by weight purity of raw materials can be used. Then, it cools to room temperature and forms an indium ingot. Increasing the cooling rate improves production efficiency, but voids are likely to occur. However, according to the present invention, the voids can be reduced by applying a compressive force such as pressing or rolling, so that, for example, 8 ° C./min or more, preferably 10 ° C./min or more, typically 8 to It becomes possible to cool at a rate of 12 ° C./min.
 次に、溶解鋳造によって得られたインゴットに対して、プレス、圧延等の塑性加工を施すにより、歪を挿入する。溶解鋳造後のインゴットには対応粒界をもつ結晶粒子がほとんど存在しないが、圧延等によりインジウムに歪を挿入することによりΣ7対応粒界が増加する。塑性加工は冷間であってもよく、熱間であってもよい。塑性加工の総圧下率が低すぎると対応粒界が十分に増加しない一方で、総圧下率が高すぎると加工前のインゴット厚みを大きくする必要があり、生産性、ハンドリングが悪いことから、総圧下率が15~90%となるようにプレスや圧延を実施することが好ましく、総圧下率が50~85%となるようにプレスや圧延を実施することがより好ましい。 Next, strain is inserted into the ingot obtained by melt casting by performing plastic working such as pressing or rolling. The ingot after melt casting has few crystal grains having corresponding grain boundaries, but the grain boundaries corresponding to Σ7 increase by inserting strain into indium by rolling or the like. The plastic working may be cold or hot. If the total rolling reduction of plastic processing is too low, the corresponding grain boundaries will not increase sufficiently, while if the total rolling reduction is too high, the ingot thickness before processing will need to be increased, resulting in poor productivity and handling. It is preferable to perform pressing or rolling so that the rolling reduction is 15 to 90%, and it is more preferable to perform pressing or rolling so that the total rolling reduction is 50 to 85%.
 本発明のより好適な方法として、プレスや圧延といった塑性加工を行った後に、熱処理を加えることができる。熱処理を加えることにより直線状粒界を有する結晶粒が有意に成長し、直線状粒界割合および直線状粒界を有する結晶粒の面積割合を高めることができ、より成膜レートを高めることができる。熱処理の方法としては、例えば材料を80~150℃×10~300分、典型的には100~140℃×60~180分で加熱する方法がある。熱処理の時間は10分未満の場合ほぼ効果が見られないが、10分以上であれば前記効果が見られる。加熱時間は300分超としてもよいが、熱処理設備の占有など生産性の低下を招くため、10~300分程度が好ましい。対応粒界長さの割合は0%から20%程度、直線状粒界を有する結晶粒の面積割合は0%から25%程度までの間で飛躍的な成膜レート上昇効果がみられるものの、それ以上の領域では成膜レートの上昇効果は緩やかになるため、熱処理に関しては生産性との兼ね合いにより省略しても良い。 As a more preferable method of the present invention, heat treatment can be applied after plastic working such as pressing or rolling. By applying heat treatment, crystal grains having linear grain boundaries are significantly grown, and the ratio of linear grain boundaries and the area ratio of crystal grains having linear grain boundaries can be increased, thereby further increasing the film formation rate. it can. As a heat treatment method, for example, there is a method in which the material is heated at 80 to 150 ° C. × 10 to 300 minutes, typically 100 to 140 ° C. × 60 to 180 minutes. When the heat treatment time is less than 10 minutes, almost no effect is observed, but when the heat treatment time is 10 minutes or more, the above effect is observed. The heating time may be longer than 300 minutes, but it is preferably about 10 to 300 minutes because it causes a decrease in productivity such as occupation of heat treatment equipment. Although the ratio of the corresponding grain boundary length is about 0% to 20% and the area ratio of the crystal grains having the linear grain boundary is about 0% to about 25%, a dramatic film formation rate increasing effect is seen, Since the effect of increasing the film formation rate becomes moderate in the region beyond that, the heat treatment may be omitted in view of productivity.
 塑性加工後のインジウムタイルの厚みは特に制限はなく、使用するスパッタ装置や成膜使用時間等に応じて適宜設定すればよいが、通常3~20mm程度であり、典型的には5~18mm程度である。 The thickness of the indium tile after the plastic working is not particularly limited, and may be appropriately set according to the sputtering apparatus to be used, the film formation usage time, etc., but is usually about 3 to 20 mm, typically about 5 to 18 mm. It is.
 このようにして得られたインジウムターゲット部材はバッキングプレートとボンディング材を介して貼り合わせ、スパッタリングターゲットとすることができる。 The indium target member thus obtained can be bonded to a sputtering plate with a backing plate and a bonding material.
 インジウムターゲット部材の形状加工はバッキングプレートと貼り合わせる前後の何れで実施してもよい。また、酸洗や脱脂をスパッタリングターゲットの製造工程中で適宜実施してもよい。 The shape processing of the indium target member may be performed either before or after being bonded to the backing plate. Moreover, you may implement pickling and degreasing | defatting suitably in the manufacturing process of a sputtering target.
 このようにして得られたインジウムスパッタリングターゲットは、CIGS系薄膜太陽電池用光吸収層作製用のスパッタリングターゲットとして好適に使用することができる。 The indium sputtering target thus obtained can be suitably used as a sputtering target for preparing a light absorption layer for a CIGS thin film solar cell.
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 EXAMPLES Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
<実施例1>
 縦250mm、横160mm、深さ80mm(内寸)のSUS製の鋳型に170℃で溶解したインジウム原料(純度4N)を鋳型の深さ6.3mmまで流し込んだ後、室温まで放冷(約1.5℃/分)し、インゴットを作製した。続いて、厚さ6.3mmから総圧下率で20%となるよう冷間圧延し、厚さ5mmのターゲット部材となるタイルを作製した。このタイルを多角柱状に切断し、直径250mm、厚さ5mmの銅製のバッキングプレートにボンディングし、旋盤により直径204mm×厚み5mmの円盤状に加工し、インジウムターゲットを作製した。
<Example 1>
An indium raw material (purity 4N) dissolved at 170 ° C. was poured into a SUS mold having a length of 250 mm, a width of 160 mm, and a depth of 80 mm (inner dimensions) at 170 ° C., and then allowed to cool to room temperature (about 1 5 ° C./min) to produce an ingot. Subsequently, cold rolling was performed from a thickness of 6.3 mm to a total rolling reduction of 20%, and a tile serving as a target member having a thickness of 5 mm was produced. This tile was cut into polygonal prisms, bonded to a copper backing plate having a diameter of 250 mm and a thickness of 5 mm, and processed into a disk shape having a diameter of 204 mm × thickness of 5 mm by a lathe to produce an indium target.
<実施例2>
 総圧下率が30%となるように圧延前のインジウムインゴットの厚さを調節した他は実施例1と同様にしてインジウムターゲットを作製した。
<Example 2>
An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 30%.
<実施例3>
 総圧下率が50%となるように圧延前のインジウムインゴットの厚さを調節した他は実施例1と同様にしてインジウムターゲットを作製した。
<Example 3>
An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 50%.
<実施例4>
 総圧下率が65%となるように圧延前のインジウムインゴットの厚さを調節した他は実施例1と同様にしてインジウムターゲットを作製した。
<Example 4>
An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 65%.
<実施例5>
 総圧下率が80%となるように圧延前のインジウムインゴットの厚さを調節した他は実施例1と同様にしてインジウムターゲットを作製した。
<Example 5>
An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 80%.
<実施例6>
 総圧下率が90%となるように圧延前のインジウムインゴットの厚さを調節した他は実施例1と同様にしてインジウムターゲットを作製した。
<Example 6>
An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 90%.
<実施例7>
 鋳造時の冷却速度を10℃/minとした(急冷)以外は実施例5と同様にしてインジウムターゲットを作製した。
<実施例8>
 実施例1と同様の方法で鋳造インゴットを作製し、続いて総圧下率が20%となるようにインジウムインゴットの厚さを調節し、プレスを行なった。その後、このタイルを多角柱状に切断し、直径250mm、厚さ5mmの銅製のバッキングプレートにボンディングし、旋盤により直径204mm×厚み5mmの円盤状に加工し、インジウムターゲットを作製した。
<実施例9>
 総圧下率が30%となるようにプレス前のインジウムインゴットの厚さを調節した他は、実施例8と同様にしてインジウムターゲットを作製した。
<実施例10>
 総圧下率が50%となるようにプレス前のインジウムインゴットの厚さを調節した他は、実施例8と同様にしてインジウムターゲットを作製した。
<実施例11>
 総圧下率が65%となるようにプレス前のインジウムインゴットの厚さを調節した他は、実施例8と同様にしてインジウムターゲットを作製した。
<実施例12>
 総圧下率が80%となるようにプレス前のインジウムインゴットの厚さを調節した他は、実施例8と同様にしてインジウムターゲットを作製した。
<実施例13>
 総圧下率が90%となるようにプレス前のインジウムインゴットの厚さを調節した他は、実施例8と同様にしてインジウムターゲットを作製した。
<実施例14>
 鋳造時の冷却速度を10℃/minとした(急冷)以外は実施例12と同様にしてインジウムターゲットを作製した。
<実施例15>
 実施例1と同様にインジウムタイルを作製した後、120℃で2時間大気中で熱処理を加えた他は、実施例1と同様にしてインジウムターゲットを作製した。
<実施例16>
 実施例5と同様にインジウムタイルを作製した後、120℃で2時間大気中で熱処理を加えた他は、実施例5と同様にしてインジウムターゲットを作製した。
<実施例17>
 実施例8と同様にインジウムタイルを作製した後、120℃で2時間大気中で熱処理を加えた他は、実施例8と同様にしてインジウムターゲットを作製した。
<実施例18>
 実施例12と同様にインジウムタイルを作製した後、120℃で2時間大気中で熱処理を加えた他は、実施例12と同様にしてインジウムターゲットを作製した。
<Example 7>
An indium target was produced in the same manner as in Example 5 except that the cooling rate during casting was 10 ° C./min (rapid cooling).
<Example 8>
A cast ingot was produced in the same manner as in Example 1, and then the indium ingot thickness was adjusted so that the total rolling reduction was 20%, followed by pressing. Thereafter, this tile was cut into a polygonal column shape, bonded to a copper backing plate having a diameter of 250 mm and a thickness of 5 mm, and processed into a disk shape having a diameter of 204 mm × thickness of 5 mm by a lathe to produce an indium target.
<Example 9>
An indium target was produced in the same manner as in Example 8 except that the thickness of the indium ingot before pressing was adjusted so that the total rolling reduction was 30%.
<Example 10>
An indium target was produced in the same manner as in Example 8 except that the thickness of the indium ingot before pressing was adjusted so that the total rolling reduction was 50%.
<Example 11>
An indium target was produced in the same manner as in Example 8 except that the thickness of the indium ingot before pressing was adjusted so that the total rolling reduction was 65%.
<Example 12>
An indium target was produced in the same manner as in Example 8 except that the thickness of the indium ingot before pressing was adjusted so that the total rolling reduction was 80%.
<Example 13>
An indium target was produced in the same manner as in Example 8 except that the thickness of the indium ingot before pressing was adjusted so that the total rolling reduction was 90%.
<Example 14>
An indium target was produced in the same manner as in Example 12 except that the cooling rate during casting was 10 ° C./min (rapid cooling).
<Example 15>
An indium target was prepared in the same manner as in Example 1 except that an indium tile was prepared in the same manner as in Example 1 and then heat treatment was performed in air at 120 ° C. for 2 hours.
<Example 16>
An indium tile was produced in the same manner as in Example 5, and then an indium target was produced in the same manner as in Example 5 except that heat treatment was performed in air at 120 ° C. for 2 hours.
<Example 17>
An indium tile was produced in the same manner as in Example 8, and then an indium target was produced in the same manner as in Example 8, except that heat treatment was performed in air at 120 ° C. for 2 hours.
<Example 18>
An indium target was produced in the same manner as in Example 12 except that an indium tile was produced in the same manner as in Example 12 and then heat treatment was performed in air at 120 ° C. for 2 hours.
<比較例1>
 直径250mm、厚さ5mmの銅製のバッキングプレート上にSUS製の鋳型(内径205mm×高さ15mm)を作製し、170℃で溶解したインジウム原料(純度4N)を鋳型の深さ10mmまで流し込んだ後、室温まで放冷(約1.5℃/分)した。その後、旋盤加工により直径204mm×厚み5mmの円盤状に加工し、インジウムターゲットを作製した。
<比較例2>
 鋳造時の冷却速度を10℃/minにした以外は比較例1と同様にしてインジウムターゲットを作製した。
<Comparative Example 1>
After a SUS mold (inner diameter 205 mm × height 15 mm) was prepared on a copper backing plate having a diameter of 250 mm and a thickness of 5 mm, an indium raw material (purity 4N) dissolved at 170 ° C. was poured to a mold depth of 10 mm. The mixture was allowed to cool to room temperature (about 1.5 ° C./min). Then, it processed into the disk shape of diameter 204mm * thickness 5mm by the lathe process, and produced the indium target.
<Comparative example 2>
An indium target was produced in the same manner as in Comparative Example 1 except that the cooling rate during casting was 10 ° C./min.
<比較例3>
 総圧下率が5%となるように圧延前のインジウムインゴットの厚さを調節した他は、実施例1と同様にしてインジウムターゲットを作製した。
<Comparative Example 3>
An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 5%.
<比較例4>
 総圧下率が10%となるように圧延前のインジウムインゴットの厚さを調節した他は、実施例1と同様にしてインジウムターゲットを作製した。
<比較例5>
 総圧下率が5%となるようにプレス前のインジウムインゴットの厚さを調節した他は、実施例8と同様にしてインジウムターゲットを作製した。
<比較例6>
 総圧下率が10%となるようにプレス前のインジウムインゴットの厚さを調節した他は、実施例8と同様にしてインジウムターゲットを作製した。
<Comparative Example 4>
An indium target was produced in the same manner as in Example 1 except that the thickness of the indium ingot before rolling was adjusted so that the total rolling reduction was 10%.
<Comparative Example 5>
An indium target was produced in the same manner as in Example 8 except that the thickness of the indium ingot before pressing was adjusted so that the total rolling reduction was 5%.
<Comparative Example 6>
An indium target was produced in the same manner as in Example 8 except that the thickness of the indium ingot before pressing was adjusted so that the total rolling reduction was 10%.
 得られた各インジウムターゲットに対して、直線状粒界を有する結晶粒の面積割合、Σ7対応粒界長さ割合、及び孔径50μm以上の空隙の個数割合を以下の方法で測定した。結果を表1に示す。 For each of the obtained indium targets, the area ratio of crystal grains having linear grain boundaries, the Σ7-corresponding grain boundary length ratio, and the number ratio of voids having a pore diameter of 50 μm or more were measured by the following methods. The results are shown in Table 1.
(直線状粒界を有する結晶粒の面積割合)
 先述した方法に従って塩酸でエッチングしたのちデジタルカメラにて撮影し、画像処理ソフト(Olympus社製analySIS FIVE)を使用して、計測した。
(Area ratio of crystal grains having linear grain boundaries)
After etching with hydrochloric acid according to the method described above, the image was taken with a digital camera and measured using image processing software (analySIS FIVE manufactured by Olympus).
(対応粒界をもつ結晶粒子の粒界長さ割合)
 各実施例及び比較例について、FE-EPMA(日本電子株式会社製 JXA8500F)を用いたEBSP法により結晶方位の測定を行い、先述した方法に従って、結晶粒界におけるΣ7対応粒界の割合を求めた。なお、解析用のソフトウェアにはテクセムラボラトリーズ社製TSL OIM Analysisを使用した。
(Grain boundary length ratio of crystal grains with corresponding grain boundaries)
For each example and comparative example, the crystal orientation was measured by the EBSP method using FE-EPMA (JXA8500F manufactured by JEOL Ltd.), and the ratio of Σ7-corresponding grain boundaries in the crystal grain boundaries was determined according to the method described above. . In addition, TSL OIM Analysis made by Texemola Laboratories was used as the analysis software.
 実施例及び比較例で得られたインジウムターゲットについて、スパッタ開始からの成膜レートを測定した。具体的には、下記条件でスパッタし、得られた膜の厚さを触針式表面形状測定器(アルバック社製Dektak8)によって測定し、膜厚を成膜時間(3min)で除することにより成膜レートを算出した。さらに下記条件で1h連続スパッタを行い、アーキング数を目視の方法により測定した。
 スパッタリング条件は次の通りである。
・スパッタリング装置: キャノンアネルバ社製、SPF-313H
・スパッタガス: Ar
・スパッタガス圧: 0.5Pa
・スパッタガス流量: 50SCCM
・スパッタリング温度: R.T.(無加熱)
・投入スパッタパワー密度: 2.0W/cm2
・基板: コーニング社製イーグル2000、φ4インチ×0.7mmt
About the indium target obtained by the Example and the comparative example, the film-forming rate from the start of sputtering was measured. Specifically, by sputtering under the following conditions, the thickness of the obtained film was measured with a stylus type surface shape measuring instrument (Dektak 8 manufactured by ULVAC), and the film thickness was divided by the film formation time (3 min). The film formation rate was calculated. Furthermore, 1 h continuous sputtering was performed under the following conditions, and the arcing number was measured by a visual method.
The sputtering conditions are as follows.
Sputtering device: Canon Anelva, SPF-313H
・ Sputtering gas: Ar
・ Sputtering gas pressure: 0.5Pa
・ Sputter gas flow rate: 50 SCCM
Sputtering temperature: T.A. (No heating)
・ Sputtering power density: 2.0 W / cm 2
-Substrate: Corning Eagle 2000, φ4 inch x 0.7 mmt
(孔径50μm以上の空隙の個数割合)
 孔径50μm以上の空隙の個数割合は、先述した方法に従って、日本クラウトクレーマー株式会社製の電子走査式超音波探傷システムPA-101を使用して測定した。
(Number ratio of voids with a pore diameter of 50 μm or more)
The number ratio of voids having a pore diameter of 50 μm or more was measured using an electronic scanning ultrasonic flaw detection system PA-101 manufactured by Nippon Kraut Kramer Co., Ltd. according to the method described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(考察)
 上記結果より、本発明に係るスパッタリングターゲットを使用してスパッタすることにより、高い成膜レートで成膜できることが分かる。
 比較例1は塑性加工を行わなかった比較例であり、発明例に比べて成膜レートが遅い。また、空隙が多く、アーキングが多くみられた。
 比較例2は比較例1と比べ鋳造時の冷却速度を速くした例であり、空隙数が増え、それに伴いアーキング数の増加がみられた。
 比較例3~6は、総圧下率が低かった例であり、直線状粒界を有する結晶粒や対応粒界を確認できるものの、割合が小さいため成膜レート上昇効果が小さく、比較例1と比べてわずかな成膜レート上昇効果がみられる程度であった。また、比較例1と比べ空隙の減少はわずかで、アーキングの減少効果は少なかった。
 実施例1は参考例である。適切な総圧下率で圧延を実施したことで、直線状粒界を有する結晶粒の面積割合が10%以上、対応粒界長さ割合が15%以上となり、比較例1に比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例2は参考例である。総圧下率を30%として圧延を実施したことで、直線状粒界を有する結晶粒の面積割合が20.1%、対応粒界長さ割合が23.6%となり、比較例と比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例3は参考例である。総圧下率を50%として圧延を実施したことで、直線状粒界を有する結晶粒の面積割合が35.2%、対応粒界長さ割合が40.3%となり、比較例と比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例4は発明例である。総圧下率を65%として圧延を実施したことで、直線状粒界を有する結晶粒の面積割合が65.1%、対応粒界長さ割合が45.6%となり、比較例と比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例5は発明例である。総圧下率を80%として圧延を実施したことで、直線状粒界を有する結晶粒の面積割合が87.1%、対応粒界長さ割合が69.5%となり、比較例と比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例6は発明例である。総圧下率を90%として圧延を実施したことで、直線状粒界を有する結晶粒の面積割合が95.2%、対応粒界長さ割合が83.3%となり、比較例と比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例7は発明例である。鋳造時に急冷したため、圧延前には空隙個数は比較例2と同等となっているが、総圧下率を80%として圧延を実施したことで、空隙が大幅に減少し、それに伴いアーキングの減少がみられた。
 実施例8は参考例である。総圧下率を20%としてプレスを実施したことで、直線状粒界を有する結晶粒の面積割合が16.3%、対応粒界長さ割合が19.5%となり、比較例と比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例9は参考例である。総圧下率を30%としてプレスを実施したことで、直線状粒界を有する結晶粒の面積割合が22.5%、対応粒界長さ割合が20.4%となり、比較例と比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例10は参考例である。総圧下率を50%としてプレスを実施したことで、直線状粒界を有する結晶粒の面積割合が38.5%、対応粒界長さ割合が38.4%となり、比較例と比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例11は参考例である。総圧下率を65.0%としてプレスを実施したことで、直線状粒界を有する結晶粒の面積割合が63.1%、対応粒界長さ割合が45.1%となり、比較例と比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例12は発明例である。総圧下率を80%としてプレスを実施したことで、直線状粒界を有する結晶粒の面積割合が85.1%、対応粒界長さ割合が70.1%となり、比較例と比べて成膜レートが向上した。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例13は発明例である。総圧下率を90%としてプレスを実施したことで、直線状粒界を有する結晶粒の面積割合が96.5%、対応粒界長さ割合が86.4%となり、比較例と比べて成膜レートが向上し、全実施例中最大となった。また、比較例と比べ、空隙が減少し、それに伴いアーキングの減少がみられた。
 実施例14は発明例である。鋳造時に急冷したため、プレス前には空隙個数は比較例2と同等となっているが、総圧下率を80%としてプレスを実施したことで、空隙が大幅に減少し、それに伴いアーキングの減少がみられた。
 実施例15は参考例である。総圧下率20%で圧延した後、熱処理を加えることで直線状粒界を有する結晶粒の面積割合および対応粒界長さ割合が上昇し、成膜レートもまた上昇した。
 実施例16は発明例である。総圧下率80%で圧延した後、熱処理を加えることで直線状粒界を有する結晶粒の面積割合および対応粒界長さ割合が上昇し、成膜レートもまた上昇した。
 実施例17は参考例である。総圧下率20%でプレスした後、熱処理を加えることで直線状粒界を有する結晶粒の面積割合および対応粒界長さ割合が上昇し、成膜レートもまた上昇した。
 実施例18は発明例である。総圧下率80%でプレスした後、熱処理を加えることで直線状粒界を有する結晶粒の面積割合および対応粒界長さ割合が上昇し、成膜レートもまた上昇した。
(Discussion)
From the above results, it can be seen that a film can be formed at a high film formation rate by sputtering using the sputtering target according to the present invention.
Comparative Example 1 is a comparative example in which plastic processing was not performed, and the film formation rate is slower than that of the inventive example. In addition, there were many voids and arcing.
Comparative Example 2 was an example in which the cooling rate at the time of casting was increased as compared with Comparative Example 1, and the number of voids increased, and accordingly the number of arcing increased.
Comparative Examples 3 to 6 are examples in which the total rolling reduction was low, and although the crystal grains having linear grain boundaries and the corresponding grain boundaries could be confirmed, since the ratio was small, the effect of increasing the film formation rate was small. In comparison with this, a slight increase in film formation rate was observed. In addition, compared with Comparative Example 1, there was a slight decrease in voids, and the effect of reducing arcing was small.
Example 1 is a reference example. By performing rolling at an appropriate total rolling reduction, the area ratio of crystal grains having linear grain boundaries is 10% or more, and the corresponding grain boundary length ratio is 15% or more. Improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 2 is a reference example. Rolling with a total rolling reduction of 30% results in an area ratio of crystal grains having linear grain boundaries of 20.1% and a corresponding grain boundary length ratio of 23.6%, which is higher than that of the comparative example. The film rate was improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 3 is a reference example. Rolling with a total rolling reduction of 50% results in an area ratio of crystal grains having linear grain boundaries of 35.2% and a corresponding grain boundary length ratio of 40.3%, which is higher than that of the comparative example. The film rate was improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 4 is an invention example. Rolling with a total rolling reduction of 65% results in an area ratio of crystal grains having linear grain boundaries of 65.1% and a corresponding grain boundary length ratio of 45.6%. The film rate was improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 5 is an invention example. Rolling with a total rolling reduction of 80% resulted in an area ratio of crystal grains having linear grain boundaries of 87.1% and a corresponding grain boundary length ratio of 69.5%, which is higher than that of the comparative example. The film rate was improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 6 is an invention example. Rolling with a total rolling reduction of 90% resulted in an area ratio of crystal grains having linear grain boundaries of 95.2% and a corresponding grain boundary length ratio of 83.3%. The film rate was improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 7 is an invention example. Because of the rapid cooling during casting, the number of voids is the same as in Comparative Example 2 before rolling. However, by rolling with a total rolling reduction of 80%, the voids are greatly reduced, and arcing is reduced accordingly. It was seen.
Example 8 is a reference example. By pressing with a total rolling reduction of 20%, the area ratio of crystal grains having linear grain boundaries was 16.3%, and the corresponding grain boundary length ratio was 19.5%. The film rate was improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 9 is a reference example. By performing the pressing with the total rolling reduction of 30%, the area ratio of crystal grains having linear grain boundaries was 22.5%, and the corresponding grain boundary length ratio was 20.4%. The film rate was improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 10 is a reference example. By pressing with a total rolling reduction of 50%, the area ratio of crystal grains having linear grain boundaries was 38.5%, and the corresponding grain boundary length ratio was 38.4%. The film rate was improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 11 is a reference example. By carrying out the pressing with the total rolling reduction of 65.0%, the area ratio of crystal grains having linear grain boundaries was 63.1%, and the corresponding grain boundary length ratio was 45.1%, which is compared with the comparative example. The film formation rate was improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 12 is an invention example. By carrying out the pressing with the total rolling reduction of 80%, the area ratio of crystal grains having linear grain boundaries was 85.1%, and the corresponding grain boundary length ratio was 70.1%, which was higher than that of the comparative example. The film rate was improved. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen in connection with it.
Example 13 is an invention example. By carrying out the pressing at a total rolling reduction of 90%, the area ratio of crystal grains having linear grain boundaries was 96.5%, and the corresponding grain boundary length ratio was 86.4%. The film rate was improved and reached the maximum among all examples. Moreover, compared with the comparative example, the space | gap decreased and the reduction of arcing was seen with it.
Example 14 is an invention example. Because of the rapid cooling during casting, the number of voids was the same as in Comparative Example 2 before pressing, but by pressing with a total rolling reduction of 80%, the voids were greatly reduced, and arcing decreased accordingly. It was seen.
Example 15 is a reference example. After rolling at a total rolling reduction of 20%, heat treatment was performed to increase the area ratio of crystal grains having linear grain boundaries and the corresponding grain boundary length ratio, and the film formation rate also increased.
Example 16 is an invention example. After rolling at a total rolling reduction of 80%, heat treatment was applied to increase the area ratio of crystal grains having linear grain boundaries and the corresponding grain boundary length ratio, and the film formation rate also increased.
Example 17 is a reference example. After pressing at a total rolling reduction of 20%, heat treatment was applied to increase the area ratio of crystal grains having linear grain boundaries and the corresponding grain boundary length ratio, and the film formation rate also increased.
Example 18 is an invention example. After pressing at a total rolling reduction of 80%, heat treatment was applied to increase the area ratio of crystal grains having linear grain boundaries and the corresponding grain boundary length ratio, and the film formation rate also increased.

Claims (14)

  1.  スパッタリングされる表面に直線状粒界を有する結晶粒をもち、当該結晶粒の面積割合が65.1%以上であるインジウム製スパッタリングターゲット部材。 An indium sputtering target member having crystal grains having a linear grain boundary on the surface to be sputtered, and the area ratio of the crystal grains being 65.1% or more.
  2.  前記直線状粒界を有する結晶粒の面積割合が88.9%以上である請求項1に記載のインジウム製スパッタリングターゲット部材。 2. The indium sputtering target member according to claim 1, wherein an area ratio of crystal grains having the linear grain boundary is 88.9% or more.
  3.  総圧下率65~90%の塑性加工に次いで80~150℃の範囲で10分以上熱処理されてできた請求項1又は2に記載のインジウム製スパッタリングターゲット部材。 3. The indium sputtering target member according to claim 1, wherein the indium sputtering target member has been subjected to a heat treatment in a range of 80 to 150 ° C. for 10 minutes or more after plastic working with a total rolling reduction of 65 to 90%.
  4.  前記塑性加工の総圧下率が80%以上である請求項3に記載のインジウム製スパッタリングターゲット部材。 The indium sputtering target member according to claim 3, wherein a total rolling reduction of the plastic working is 80% or more.
  5.  前記熱処理は120℃以上で2時間以上行う請求項3又は4に記載のインジウム製スパッタリングターゲット部材。 The indium sputtering target member according to claim 3 or 4, wherein the heat treatment is performed at 120 ° C or more for 2 hours or more.
  6.  以下のスパッタリング条件:
    ・スパッタガス: Ar
    ・スパッタガス圧: 0.5Pa
    ・スパッタガス流量: 50SCCM
    ・スパッタリング温度: 無加熱
    ・投入スパッタパワー密度: 2.0W/cm2
    ・基板:φ4インチ×0.7mmt
    でスパッタを1時間連続して行ったときに、アーキング回数が0である請求項1~5の何れか一項に記載のインジウム製スパッタリングターゲット部材。
    The following sputtering conditions:
    ・ Sputtering gas: Ar
    ・ Sputtering gas pressure: 0.5Pa
    ・ Sputtering gas flow rate: 50 SCCM
    Sputtering temperature: No heating Sputtering power density: 2.0 W / cm 2
    ・ Substrate: φ4 inch x 0.7mmt
    The indium sputtering target member according to any one of claims 1 to 5, wherein the number of arcing is 0 when sputtering is performed continuously for 1 hour.
  7.  孔径50μm以上の空隙が1個/cm3以下である請求項1~6の何れか一項に記載のインジウム製スパッタリングターゲット部材。 The indium sputtering target member according to any one of claims 1 to 6, wherein the number of voids having a pore diameter of 50 µm or more is 1 piece / cm 3 or less.
  8.  前記直線状粒界の少なくとも一部が対応粒界であり、対応粒界のΣ値が7である請求項1~7の何れか一項に記載のインジウム製スパッタリングターゲット部材。 The indium sputtering target member according to any one of claims 1 to 7, wherein at least a part of the linear grain boundary is a corresponding grain boundary, and the Σ value of the corresponding grain boundary is 7.
  9.  スパッタリングされる表面におけるΣ7対応粒界長さの全結晶粒界長さに対する割合が71.4%以上である請求項1~8の何れか一項に記載のインジウム製スパッタリングターゲット部材。 The indium sputtering target member according to any one of claims 1 to 8, wherein a ratio of a grain boundary length corresponding to Σ7 on a surface to be sputtered to a total grain boundary length is 71.4% or more.
  10.  請求項1~9の何れか一項に記載のインジウム製スパッタリングターゲット部材がバッキングプレート上にボンディングされているスパッタリングターゲット。 A sputtering target in which the indium sputtering target member according to any one of claims 1 to 9 is bonded onto a backing plate.
  11.  インジウムインゴットに対し、総圧下率65~90%の条件で塑性加工することを含むインジウム製スパッタリングターゲット部材の製造方法。 A method for producing a sputtering target member made of indium, comprising plastically processing an indium ingot under a condition of a total rolling reduction of 65 to 90%.
  12.  前記製造方法において、塑性加工に次いで80~150℃の範囲で10分以上熱処理する工程を含む請求項11に記載のインジウム製スパッタリングターゲット部材の製造方法。 12. The method for producing an indium sputtering target member according to claim 11, further comprising a step of heat-treating at 80 to 150 ° C. for 10 minutes or longer after the plastic working.
  13.  前記塑性加工の総圧下率が80%以上である請求項11又は12に記載のインジウム製スパッタリングターゲット部材の製造方法。 The method for producing an indium sputtering target member according to claim 11 or 12, wherein a total rolling reduction of the plastic working is 80% or more.
  14.  前記熱処理は120℃以上で2時間以上行う請求項12又は13に記載のインジウム製スパッタリングターゲット部材の製造方法。 The method for manufacturing an indium sputtering target member according to claim 12 or 13, wherein the heat treatment is performed at 120 ° C or more for 2 hours or more.
PCT/JP2012/070764 2011-12-12 2012-08-15 Indium sputtering target member and method for producing same WO2013088785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137011328A KR101365284B1 (en) 2011-12-12 2012-08-15 Indium sputtering target member and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-271334 2011-12-12
JP2011271334 2011-12-12

Publications (1)

Publication Number Publication Date
WO2013088785A1 true WO2013088785A1 (en) 2013-06-20

Family

ID=48612245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070764 WO2013088785A1 (en) 2011-12-12 2012-08-15 Indium sputtering target member and method for producing same

Country Status (3)

Country Link
KR (1) KR101365284B1 (en)
TW (1) TWI468537B (en)
WO (1) WO2013088785A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344820B2 (en) * 1981-05-07 1988-09-07 Mitsui Mining & Smelting Co
JP2007113033A (en) * 2005-10-18 2007-05-10 Hitachi Metals Ltd METHOD FOR PRODUCING Mo TARGET MATERIAL, AND Mo TARGET MATERIAL
WO2009107763A1 (en) * 2008-02-29 2009-09-03 新日鉄マテリアルズ株式会社 Metallic sputtering target material
JP2010024474A (en) * 2008-07-16 2010-02-04 Sumitomo Metal Mining Co Ltd Method for producing indium target
JP2011179054A (en) * 2010-02-26 2011-09-15 Kobe Steel Ltd SPUTTERING TARGET OF Al-BASE ALLOY
JP2011236445A (en) * 2010-04-30 2011-11-24 Jx Nippon Mining & Metals Corp Indium metal target and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344820B2 (en) * 1981-05-07 1988-09-07 Mitsui Mining & Smelting Co
JP2007113033A (en) * 2005-10-18 2007-05-10 Hitachi Metals Ltd METHOD FOR PRODUCING Mo TARGET MATERIAL, AND Mo TARGET MATERIAL
WO2009107763A1 (en) * 2008-02-29 2009-09-03 新日鉄マテリアルズ株式会社 Metallic sputtering target material
JP2010024474A (en) * 2008-07-16 2010-02-04 Sumitomo Metal Mining Co Ltd Method for producing indium target
JP2011179054A (en) * 2010-02-26 2011-09-15 Kobe Steel Ltd SPUTTERING TARGET OF Al-BASE ALLOY
JP2011236445A (en) * 2010-04-30 2011-11-24 Jx Nippon Mining & Metals Corp Indium metal target and method for manufacturing the same

Also Published As

Publication number Publication date
KR20130087022A (en) 2013-08-05
KR101365284B1 (en) 2014-02-19
TWI468537B (en) 2015-01-11
TW201323639A (en) 2013-06-16

Similar Documents

Publication Publication Date Title
TWI518197B (en) Hot-rolled copper plate
JP4948634B2 (en) Indium target and manufacturing method thereof
TWI390067B (en) Indium target and its manufacturing method
JP5254290B2 (en) Indium target and manufacturing method thereof
TW201408399A (en) Cylindrical indium sputtering target and process for producing same
TWI398409B (en) Indium target and its manufacturing method
WO2012029364A1 (en) Indium target and production method for same
WO2019187311A1 (en) Sputtering target member and method for producing same
WO2012029355A1 (en) Indium target and method for producing same
JP5291754B2 (en) Sputtering target for solar cell
JP2014189817A (en) Pure copper plate and heat radiation substrate
JP6027823B2 (en) Hot-rolled copper plate and hot-rolled copper plate shape adjustment method
JP5183818B1 (en) Indium sputtering target member and method for manufacturing the same
US20170169998A1 (en) In-Cu Alloy Sputtering Target And Method For Producing The Same
WO2013088785A1 (en) Indium sputtering target member and method for producing same
TWI632247B (en) Sputter target
JP2009235491A (en) METHOD FOR HOMOGENIZING Al-Cu ALLOY
TW202245018A (en) Hot-rolled copper alloy sheet and sputtering target
WO2021215376A1 (en) Yttrium ingot and sputtering target using same
WO2018235889A1 (en) Sputtering target material, sputtering target, aluminum sheet for sputtering target, and production method therefor
JP2016141876A (en) Cu-Ga ALLOY SPUTTERING TARGET AND Cu-Ga ALLOY INGOT

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137011328

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858415

Country of ref document: EP

Kind code of ref document: A1