JPS6344288B2 - - Google Patents

Info

Publication number
JPS6344288B2
JPS6344288B2 JP56114409A JP11440981A JPS6344288B2 JP S6344288 B2 JPS6344288 B2 JP S6344288B2 JP 56114409 A JP56114409 A JP 56114409A JP 11440981 A JP11440981 A JP 11440981A JP S6344288 B2 JPS6344288 B2 JP S6344288B2
Authority
JP
Japan
Prior art keywords
film
winding
treatment
surface treatment
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56114409A
Other languages
Japanese (ja)
Other versions
JPS5816415A (en
Inventor
Toshuki Matsuo
Osahisa Karibe
Masahiko Nakaishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Paper Co Ltd
Original Assignee
Honshu Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Paper Co Ltd filed Critical Honshu Paper Co Ltd
Priority to JP11440981A priority Critical patent/JPS5816415A/en
Publication of JPS5816415A publication Critical patent/JPS5816415A/en
Publication of JPS6344288B2 publication Critical patent/JPS6344288B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気用延伸ポリプロピレンフイルムに
関するものである。 延伸ポリプロピレンフイルムを誘電体として、
その片面にアルミニウム、亜鉛などの金属を蒸着
して電極を形成させてコンデンサ等に用いられる
電気用延伸ポリプロピレンフイルムは知られてい
る。 近年延伸ポリプロピレンフイルムは、その優れ
た機械的特性と電気的性質を有しているため、コ
ンデンサの誘電体としての用途が着実に伸び、使
用量の増大と共にフイルム延伸、蒸着、コンデン
サ素子巻等の加工工程での生産性が著しく向上
し、高速化が進んでいる。 しかし、一方高速化に伴い巻取り、巻戻しにお
ける蛇行および断面ずれ、しわ等が発生し易くな
つてきており、これが生産性を向上する阻害要因
となり問題となつている。 蛇行や断面ずれの原因は、巻取り作業の高速化
により、フイルムが巻取られるときにフイルムと
フイルムの間に巻き込まれる空気の量即ち搬送空
気量の増大にあると考えられる。 またフイルム厚さに“ばらつき”即ち偏肉があ
ると巻取径が大きくなるに従い、更にずれ易くな
る。 この高速巻取り時におけるトラブルを解決する
ためには、搬送空気量の均一化並びに減少、又は
巻き込んだ空気をフイルムがずれないように除く
必要がある。 これらの解決方法として、例えば機械精度を向
上させたり、巻取り時のテンシヨンを調整する方
法があるが、既存設備の機械精度を上げるといつ
ても限界があり、現実には難しい。また巻取り時
のテンシヨンを調整する方法は、具体的には巻き
を硬くする方向となり、結果としてたるみ発生に
つながり好ましくない。このたるみはフイルム厚
さの“ばらつき”が大きいと更に助長されること
になる。 従つて解決方法としては、機械や操業条件の大
幅な変更なしにフイルム自体の改良によることが
最も望ましい。 断面ずれや蛇行は前記の通り搬送空気量の不均
一な増大に起因していると考えられることから、
例えばフイルムの表層に凹凸を形成させることに
より、搬送空気を逃げ易くする方法もとられてい
るが、これは一方でフイルムのスリツプ性が増大
し、フイルムが滑り易くなり、蛇行することにも
なる。 従つてこの方法では凹凸の度合とスリツプ性の
バランスをとることが難しく、かつ不充分な効果
しか得られない。 本発明者等は上記の諸点を考慮の上、電気用延
伸ポリプロピレンフイルムの通常の表面処理を施
した一面(以下蒸着面と略称)の反対面(以下非
蒸着面と略称)の表面処理程度がフイルム巻取り
時の搬送空気量に関係することに着目し、高速巻
取り適性向上について鋭意検討の結果、本発明を
完成するに至つた。 即ち金属化を行う延伸ポリプロピレンフイルム
の非蒸着面を弱く表面処理して、高速巻取り時の
フイルムのスリツプ性をコントロールすることに
より、搬送空気量を均一化し、高速巻取り適性を
向上することができたのである。 更に具体的には通常金属蒸着用に使用される延
伸ポリプロピレンフイルムの表面処理程度は、片
面金属化用では蒸着面のみ通常の表面処理が行な
われ、その処理程度は表面ぬれ張力で一般に35〜
42dyne/cm程度であり、その反対面である非蒸
着面の表面処理は行なわれず表面ぬれ張力は普通
30〜31dyne/cmである。 これに対し、本発明の電気用延伸ポリプロピレ
ンフイルムは、片面金属化フイルム用であつて、
蒸着面の表面処理は通常の蒸着用フイルムと同じ
であるが、非蒸着面の表面コロナ処理を施し、か
つその処理程度を33dyne/cm以下とした点に特
徴がある。非蒸着面の表面を弱表面コロナ処理と
することにより、高速巻取り時におけるスリツプ
性をコントロールできるようになり、搬送空気量
を均一化させ、蛇行、断面ずれなどの発生を防止
することができた。 このため例えばコンデンサ用として素子巻する
場合、250m/分以上の高速で巻いても問題なく
巻くことができ、しかも巻取径を大きく巻けるの
で、静電容量の大きな素子を製造できるという利
点がある。 従来フイルム表面のスリツプ性を向上させるた
め、フイルムの表面粗化、添加剤の内部添加或い
は表面塗工等が提案、実施されてきたが、本発明
の目的を達成できるようなフイルムのスリツプ性
を低下させ、しかもそれを適度なレベルにコント
ロールするという有効な方法は殆んどなかつた。 本発明の電気用延伸ポリプロピレンフイルム
は、前記のように一面が通常の表面処理、反対面
が弱い表面処理が施されている点に特徴があり、
従来の片面のみを通常の表面処理を行なつたフイ
ルム或いは両面を通常の表面処理を行なつたフイ
ルムとは異なり、従来の表面処理を行なつたフイ
ルムにはない特別な効果を有する。 なお従来の片面表面処理フイルムの場合、処理
条件によつて、反対面にも表面処理効果が生ず
る、いわゆる裏抜けが起つていることがあるが、
この場合は部分的に裏抜け現象が起きるので、反
対面の表面処理効果が現われる部分はフイルムの
進行方向に幅数mmから10mm前後の細い帯状に複数
の本数が不規則に形成されており、この場合は後
述の如く、本発明のように通常の表面処理された
フイルム面(蒸着面)の反対面(非蒸着面)を別
に表面処理を行いフイルム面に均一に表面処理を
施したものとは異なるのである。 本発明の特徴は金属蒸着に用いる電気用延伸ポ
リプロピレンフイルムの非蒸着面に弱い表面コロ
ナ処理を行うことにより、スリツプ性を或る程度
低下させることで搬送空気量を均一化し、高速巻
取り適性を向上させるのであるから、表面コロナ
処理が、たとえ僅かでも行なわれていさえすれば
よい。またぬれ張力が33dyne/cmを越えて強す
ぎても、特に金属蒸着面とのスリツプ性が低下し
すぎて、しわ等が発生するのみでなく、巻取り後
ブロツキングを起して、金属蒸着膜が表面処理し
た非蒸着面に転移するというトラブルが発生する
おそれがあるので好ましくない。 従つて非蒸着面の表面処理程度は33dyne/cm
以下が適当である。 フイルム表面の表面処理はできるだけ均一に行
われることが必要である。表面処理が不均一であ
ると得られたフイルムのスリツプ性が、処理程度
のむらに対応して不均一となり、安定な巻取り作
業は困難となる。コロナ表面弱処理の場合完全な
均一性を求めるのは非常に難しいが、均一処理の
ためには、電極の表面を研磨その他により物理
的、化学的に清浄にしたり、電極とロールの間隔
をせまく、かつできるだけ巾方向に均一であるこ
とが必要である。 本発明の電気用延伸ポリプロビレンフイルムは
非蒸着面のみを弱く表面処理を行い、蒸着面は従
来の通常の表面処理を行なつているので、フイル
ム自体の特性を損うことなく、その生産性も全く
低下させることはない。非蒸着面の表面処理の実
施時期は金属蒸着後の断さい、巻取りの時点で表
面処理が施されてあればよいので、フイルムの蒸
着前であつても、蒸着後でも差し支えない。 本発明の電気用延伸ポリプロピレンフイルム
は、蒸着面に金属蒸着を行ない、片面金属化フイ
ルムとし、これの小幅の断さい、巻取り、或いは
コンデンサの素子巻を高速で行う際のフイルムの
蛇行、巻取の断面ずれ更にしわの発生を防止する
と共に、大きい巻径のコンデンサ素子を巻取るこ
とができるという効果を奏する。 本発明の電気用延伸ポリプロピレンフイルムを
得るための表面処理は、通常知られるコロナ放電
処理、火炎処理、化学薬品による処理等が考えら
れるが、火炎処理は特に薄物である電気用延伸ポ
リプロピレンフイルムの場合熱による寸法変化の
問題があり、化学薬品処理は電気用延伸ポリプロ
ピレンフイルムという点から電気特性に悪影響を
及ぼす可能性がある。従つて好ましいのはコロナ
放電処理で、その処理程度は印加電圧、消費電
流、フイルムの通過速度等により容易にコントロ
ールできる。 延伸ポリプロピレンフイルムの金属化は、通常
の真空蒸着法により、アルミニウム、亜鉛(亜鉛
の場合は銀又は銅を予備蒸着する。)などの金属
の結晶粒子をフイルム表面に蒸着して行う。 以下本発明の実施例を示すが、本発明の応用例
はこれに限定されるものではない。 実施例1〜2及び比較例1〜3 厚さ8μmの電気用2軸延伸ポリプロピレンフイ
ルムを用いて、同フイルムの通常のコロナ表面処
理面(ぬれ張力38dyne/cm)に真空蒸着機で常
法によりアルミニウムを蒸着した後、反対面の非
蒸着面に、コロナ放電処理条件を変えて表面処理
を施し、各種の処理程度の金属化延伸ポリプロピ
レンフイルムを得た。 これらの金属化フイルムをスリツターにより、
幅100mmに断さい、巻取りした後、コンデンサ用
素子巻機(西村製作所製VB−2型)にかけて、
巻戻しながら素子巻を行い、高速巻取り性を評価
した。その結果を第1表に示す。 同時に比較のため、非蒸着面を表面処理しない
或いは、31dyne/cmに弱処理する以外は、実施
例と全く同様に実施し、比較例1,2とし、結果
を第1表に示した。
The present invention relates to a stretched polypropylene film for electrical applications. Stretched polypropylene film is used as a dielectric,
Stretched polypropylene films for electrical applications, which are used in capacitors and the like, are known in which metals such as aluminum and zinc are vapor-deposited on one side to form electrodes. In recent years, the use of stretched polypropylene film as a dielectric material in capacitors has steadily increased due to its excellent mechanical and electrical properties. Productivity in the machining process has improved significantly and speeds are increasing. However, as the speed increases, meandering, cross-sectional deviation, wrinkles, etc. are becoming more likely to occur during winding and unwinding, and this has become a problem as it becomes an impediment to improving productivity. It is thought that the cause of the meandering and cross-sectional deviation is an increase in the amount of air caught between the films when the film is wound, that is, the amount of conveyed air due to the speeding up of the winding operation. Furthermore, if there is "variation" in film thickness, that is, uneven thickness, the film becomes more likely to shift as the winding diameter increases. In order to solve this problem during high-speed winding, it is necessary to equalize and reduce the amount of conveying air, or to remove the trapped air so that the film does not shift. There are ways to solve these problems, for example, by improving the machine precision or adjusting the tension during winding, but there are always limits to improving the machine precision of existing equipment, and it is difficult to do so in reality. Further, the method of adjusting the tension during winding specifically tends to make the winding stiffer, which is undesirable as it leads to the occurrence of slack. This sagging will be further exacerbated if the "variation" in film thickness is large. Therefore, the most desirable solution is to improve the film itself without making any major changes to the machinery or operating conditions. Since the cross-sectional deviation and meandering are thought to be caused by the uneven increase in the amount of conveyed air as described above,
For example, methods have been used to make it easier for conveying air to escape by forming irregularities on the surface layer of the film, but this also increases the slipperiness of the film, making it more slippery and causing it to meander. . Therefore, with this method, it is difficult to balance the degree of unevenness and the slip property, and only an insufficient effect can be obtained. Taking into consideration the above points, the present inventors have determined that the degree of surface treatment on the opposite side (hereinafter referred to as the non-deposited side) of one side (hereinafter referred to as the vapor-deposited side) that has been subjected to the usual surface treatment of the stretched polypropylene film for electrical applications was determined. Focusing on the relationship with the amount of conveying air during film winding, the present invention was completed as a result of intensive study on improving suitability for high-speed winding. In other words, by mildly surface-treating the non-evaporated surface of the stretched polypropylene film that undergoes metallization and controlling the film's slip properties during high-speed winding, it is possible to equalize the amount of air conveyed and improve the suitability for high-speed winding. It was done. More specifically, the degree of surface treatment of a stretched polypropylene film that is normally used for metal deposition is as follows: For single-sided metallization, normal surface treatment is performed only on the deposition side, and the degree of surface treatment is generally 35 to 35% in terms of surface wetting tension.
The surface wetting tension is about 42dyne/cm, and the surface wetting tension is normal because no surface treatment is performed on the non-evaporated surface, which is the opposite surface.
It is 30-31 dyne/cm. On the other hand, the electrical oriented polypropylene film of the present invention is for single-sided metallized film, and
The surface treatment of the vapor-deposited surface is the same as that of ordinary vapor-deposited films, but the feature is that the surface of the non-evaporated surface is subjected to corona treatment, and the degree of treatment is 33 dyne/cm or less. By subjecting the non-evaporated surface to a weak surface corona treatment, it is possible to control slippage during high-speed winding, equalize the amount of conveyed air, and prevent meandering, cross-sectional deviation, etc. Ta. For this reason, when winding an element for a capacitor, for example, it can be wound at high speeds of 250 m/min or higher without any problems, and the winding diameter can be increased, so it has the advantage of being able to manufacture elements with large capacitance. . Conventionally, methods such as roughening the film surface, adding additives internally, or coating the surface have been proposed and implemented in order to improve the slip property of the film surface. There have been few effective ways to reduce it and control it to an appropriate level. The electrical stretched polypropylene film of the present invention is characterized in that one side is subjected to a normal surface treatment and the opposite side is subjected to a weak surface treatment, as described above.
Unlike conventional films that have undergone normal surface treatment on only one side or films that have undergone normal surface treatment on both sides, this film has special effects not found in films that have undergone conventional surface treatment. In the case of conventional single-sided surface-treated films, depending on the processing conditions, the surface treatment effect may also occur on the opposite side, which is so-called strike-through.
In this case, the bleed-through phenomenon occurs partially, so the part where the surface treatment effect appears on the opposite side is formed irregularly in the shape of a thin strip of several mm to around 10 mm in width in the direction of film travel. In this case, as described later, as in the present invention, the opposite side (non-deposited side) of the film surface (deposited side) which has been subjected to a normal surface treatment is separately subjected to surface treatment, and the surface treatment is uniformly applied to the film side. are different. The feature of the present invention is that by performing a weak surface corona treatment on the non-evaporation surface of the electrical stretched polypropylene film used for metal vapor deposition, the slip property is reduced to a certain extent, the amount of conveying air is made uniform, and the suitability for high-speed winding is improved. It is sufficient that the surface corona treatment is carried out even if only slightly. Furthermore, if the wetting tension is too strong, exceeding 33 dyne/cm, the slip properties with the metal-deposited surface will be too low, which will not only cause wrinkles, but also cause blocking after winding, causing the metal-deposited film to This is not preferable since there is a possibility that a problem may occur in which the evaporated particles are transferred to the surface-treated non-vapor-deposited surface. Therefore, the degree of surface treatment on the non-evaporated surface is 33dyne/cm.
The following are appropriate. It is necessary that the surface treatment of the film be as uniform as possible. If the surface treatment is non-uniform, the resulting film will have non-uniform slip properties corresponding to the unevenness of the treatment, making stable winding operations difficult. In the case of mild corona surface treatment, it is very difficult to obtain complete uniformity, but in order to achieve uniform treatment, the electrode surface must be physically and chemically cleaned by polishing or other means, and the distance between the electrode and the roll must be narrowed. , and as uniform as possible in the width direction. In the electrical oriented polypropylene film of the present invention, only the non-vapor-deposited side is lightly surface-treated, and the vapor-deposited side is subjected to conventional surface treatment, so the properties of the film itself are not impaired and its productivity is improved. It doesn't degrade at all. The surface treatment of the non-evaporated surface may be carried out after the metal evaporation, as long as the surface treatment is performed at the time of winding, so it may be performed either before or after the film is evaporated. The stretched polypropylene film for electrical use of the present invention is a single-sided metallized film by performing metal vapor deposition on the vapor deposition surface, and the meandering and winding of the film when it is cut into small widths and wound, or when winding a capacitor element at high speed. This has the effect of preventing the occurrence of cross-sectional deviation and wrinkles in the winding, and also making it possible to wind up a capacitor element with a large winding diameter. The surface treatment for obtaining the electrical oriented polypropylene film of the present invention may include commonly known corona discharge treatment, flame treatment, treatment with chemicals, etc. Flame treatment is particularly suitable for thin electrical oriented polypropylene films. There is the problem of dimensional changes due to heat, and chemical treatment can have a negative effect on electrical properties since it is a stretched polypropylene film for electrical use. Therefore, corona discharge treatment is preferred, and the degree of treatment can be easily controlled by adjusting the applied voltage, current consumption, film passing speed, etc. The stretched polypropylene film is metallized by depositing crystal particles of a metal such as aluminum or zinc (in the case of zinc, silver or copper is preliminarily deposited) on the surface of the film using a conventional vacuum deposition method. Examples of the present invention will be shown below, but the application examples of the present invention are not limited thereto. Examples 1 to 2 and Comparative Examples 1 to 3 Using a biaxially oriented polypropylene film for electrical use with a thickness of 8 μm, a conventional corona surface treatment surface (wetting tension of 38 dyne/cm) of the same film was coated with a vacuum evaporator using a conventional method. After aluminum was vapor-deposited, surface treatment was performed on the opposite non-vapor-deposited surface by changing the corona discharge treatment conditions to obtain metallized stretched polypropylene films with various degrees of treatment. These metallized films are slittered,
After cutting it to a width of 100 mm and winding it, it is passed through a capacitor element winding machine (VB-2 type manufactured by Nishimura Seisakusho).
Element winding was performed while unwinding, and high-speed winding performance was evaluated. The results are shown in Table 1. At the same time, for comparison, comparative examples 1 and 2 were carried out in exactly the same manner as in the example except that the non-evaporated surface was not subjected to surface treatment or was lightly treated to 31 dyne/cm, and the results are shown in Table 1.

【表】 なお第1表に表示した物性及び試験方法を次に
示す。 ぬれ張力 JISK6768ポリエチレン及びポリプロ
ピレンフイルムのぬれ試験方法(ただ
し、31.5dyne/cmの液は31dyne/cm
の液と32dyne/cmの液とを同量混合
した) 接触角 協和科学(株)CA−P−1型接触角直読装
置により、20℃、65%RHの雰囲気中
で、蒸溜水を使用して測定する。 摩擦係数 (スリツプ性の評価) ASTMD1894により測定。 東洋精機UTM−4L型テンシロンを使
用しASTMD1894に従い測定した。 第1表の結果から明らかなように、本発明の実
施例1〜2の非蒸着面を弱コロナ処理してぬれ張
力31.5〜33dyne/cm、(接触角102〜94度)とした
ものは高速で巻取適性が良好であるが、比較例
1,2の非蒸着面をコロナ処理しないもの及び比
較例3の非蒸着面をコロナ処理してぬれ張力
34dyne/cm(接触角90)としたものは、いずれ
も巻取り適性が不良である。この結果から非蒸着
面の表面処理程度は弱すぎても、強すぎても摩擦
抵抗(スリツプ性)のコントロールができず、本
発明の表面処理程度の範囲とすることにより良好
な高速巻取り適性を備えた延伸ポリプロピレンフ
イルムが得られることは明らかである。 なお、先の従来技術の説明の中で、フイルムの
スリツプ性をよくするために、表層に凹凸を設け
ることを述べたが、比較例2は表層に凹凸を設け
て粗面化したフイルムを用いている。このフイル
ムの表面粗さは1.5/1.2(Rmax/Rz)であるが、
その他実施例、比較例のフイルムは0.40/0.35で
ある。 即ち表面凹凸の効果を見ても、比較例1,2間
で若干巻取り適性を改良しているものの、巻取り
不良の域を出るものではなく、非蒸着面の弱表面
処理のような効果はない。 フイルムの表面粗さ JISB0651表面粗さ触針式
測定器により測定。 実施例3〜4及び比較例4〜5 厚さ6μmで幅方向に厚みむら度合の異なる幅
520mmの蒸着用の電気用延伸ポリプロピレンフイ
ルムの非蒸着面に、弱コロナ処理を施し、蒸着面
にアルミニウム蒸着を行なつた後、幅100mmで5
本に断さいしながら巻取つた。 その際の高速巻取り適性を評価した結果を第2
表に示す。 同時に比較のため、電気用延伸ポリプロピレン
フイルムの非蒸着面に弱コロナ処理を施さない以
外は、実施例3〜4と全く同様にして高速巻取り
適性を評価した結果を第2表に示す。 なお第2表に示したフイルムの幅方向の厚みむ
らは、幅520mmの幅方向に10カ所をダイヤルゲー
ジ形マイクロメーターで測定し、その最高値と最
低値の範囲で表示した。 第2表の結果によれば、比較例4の厚みむらが
比較的小さいものでも、巻取り適性が良くないの
に対し、実施例3,4の厚みむらの大きい
[Table] The physical properties and test methods shown in Table 1 are shown below. Wetting tension JISK6768 Wetting test method for polyethylene and polypropylene films (31.5dyne/cm liquid is 31dyne/cm
and 32 dyne/cm solution) Contact angle Using distilled water in an atmosphere of 20°C and 65% RH using a contact angle direct reading device of type CA-P-1 manufactured by Kyowa Kagaku Co., Ltd. Measure. Friction coefficient (slip property evaluation) Measured according to ASTMD1894. Measurement was carried out using Toyo Seiki UTM-4L type Tensilon according to ASTMD1894. As is clear from the results in Table 1, the non-evaporated surfaces of Examples 1 and 2 of the present invention were subjected to weak corona treatment to give a wetting tension of 31.5 to 33 dyne/cm (contact angle of 102 to 94 degrees), which resulted in higher speeds. The winding suitability is good in Comparative Examples 1 and 2, and the non-evaporated surface of Comparative Example 3 is treated with corona and the wetting tension is
All of those with 34 dyne/cm (contact angle 90) have poor winding suitability. These results show that frictional resistance (slip property) cannot be controlled even if the degree of surface treatment on the non-vaporized surface is too weak or strong, and good suitability for high-speed winding is achieved by keeping the surface treatment within the range of the present invention. It is clear that a stretched polypropylene film is obtained. In addition, in the explanation of the prior art above, it was mentioned that the surface layer is provided with unevenness in order to improve the slip property of the film, but Comparative Example 2 uses a film whose surface layer is roughened by providing unevenness. ing. The surface roughness of this film is 1.5/1.2 (Rmax/Rz),
Films of other Examples and Comparative Examples have a ratio of 0.40/0.35. In other words, looking at the effect of surface irregularities, although the winding suitability was slightly improved between Comparative Examples 1 and 2, it did not go beyond the level of poor winding, and the effect was similar to that of weak surface treatment on the non-evaporated surface. There isn't. Film surface roughness Measured using JISB0651 surface roughness stylus measuring device. Examples 3 to 4 and Comparative Examples 4 to 5 Widths with a thickness of 6 μm and varying degrees of thickness unevenness in the width direction
After performing weak corona treatment on the non-evaporation surface of a 520 mm electrical stretched polypropylene film for vapor deposition and performing aluminum vapor deposition on the vapor deposition surface,
I cut into the book while winding it up. The results of evaluating the suitability for high-speed winding at that time are shown in the second
Shown in the table. At the same time, for comparison, Table 2 shows the results of evaluating the suitability for high-speed winding in exactly the same manner as in Examples 3 and 4, except that the non-evaporated surface of the stretched electrical polypropylene film was not subjected to weak corona treatment. The thickness unevenness in the width direction of the film shown in Table 2 was measured at 10 points in the width direction of a width of 520 mm using a dial gauge type micrometer, and the range between the highest and lowest values was expressed. According to the results in Table 2, even though Comparative Example 4 has relatively small thickness unevenness, the winding suitability is not good, whereas Examples 3 and 4 have large thickness unevenness.

【表】 ものでも、高速巻取り適性が良好であることか
ら、非蒸着面の弱表面処理の効果は明らかであ
る。比較例5は非蒸着面を表面処理しない厚みむ
らの大きいフイルムでは、巻取り適性は更に悪く
なることを示している。 以上の実施例、比較例の結果で明らかなよう
に、本発明の電気用延伸ポリプロピレンフイルム
は、表面に凹凸を設けるなどの他の方法により得
られるフイルムに比較し、或いは幅方向に厚みむ
らのあるフイルムを用いてもスリツプ性をコント
ロールして、優れた高速巻取り適性を有するもの
である。
[Table] The effect of mild surface treatment on the non-evaporated surface is clear, as the suitability for high-speed winding is good. Comparative Example 5 shows that a film with large thickness unevenness in which the non-evaporated surface is not surface-treated has worse winding suitability. As is clear from the results of the above Examples and Comparative Examples, the electrical stretched polypropylene film of the present invention is superior to films obtained by other methods such as providing unevenness on the surface, or has less uneven thickness in the width direction. Even if a certain film is used, the slip property can be controlled and it has excellent high-speed winding suitability.

Claims (1)

【特許請求の範囲】 1 通常の表面処理を施した一面(蒸着面)に、
金属を蒸着した金属化フイルムに用いられる電気
用延伸ポリプロピレンフイルムにおいて、通常の
表面処理を施した一面(蒸着面)の反対面(非蒸
着面)がぬれ張力33dyne/cm以下に表面処理さ
れていることを特徴とする電気用延伸ポリプロピ
レンフイルム。 2 通常の表面処理を施した一面(蒸着面)に、
金属蒸着膜を有する特許請求の範囲第1項記載の
電気用延伸ポリプロピレンフイルム。
[Claims] 1. On one surface (vapor deposition surface) subjected to ordinary surface treatment,
In a stretched polypropylene film for electrical use used as a metallized film with metal vapor-deposited, one side (vapor-deposited side) that has undergone normal surface treatment and the opposite side (non-vapor-deposited side) are surface-treated to have a wetting tension of 33 dyne/cm or less. A stretched polypropylene film for electrical use. 2. On one surface (deposition surface) that has been subjected to normal surface treatment,
The stretched polypropylene film for electrical use according to claim 1, which has a metal vapor deposited film.
JP11440981A 1981-07-23 1981-07-23 Electric orientation polypropylene film Granted JPS5816415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11440981A JPS5816415A (en) 1981-07-23 1981-07-23 Electric orientation polypropylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11440981A JPS5816415A (en) 1981-07-23 1981-07-23 Electric orientation polypropylene film

Publications (2)

Publication Number Publication Date
JPS5816415A JPS5816415A (en) 1983-01-31
JPS6344288B2 true JPS6344288B2 (en) 1988-09-05

Family

ID=14636958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11440981A Granted JPS5816415A (en) 1981-07-23 1981-07-23 Electric orientation polypropylene film

Country Status (1)

Country Link
JP (1) JPS5816415A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121313A (en) * 1984-11-16 1986-06-09 松下電器産業株式会社 Metalized film capacitor
JPS61145812A (en) * 1984-12-19 1986-07-03 松下電器産業株式会社 Film capacitor
JP2516936B2 (en) * 1986-10-16 1996-07-24 松下電器産業株式会社 Double-sided metallized polyolefin film capacitor
JP2516952B2 (en) * 1987-02-10 1996-07-24 松下電器産業株式会社 Metallized film capacitors
DE68928852T2 (en) * 1988-09-28 1999-05-20 Toray Industries ALUMINUM VACUUM DAMPING FILM AND METHOD FOR PRODUCING THE SAME
EP1060867B1 (en) * 1999-06-17 2003-01-02 Toray Industries, Inc. Plastic film
JPWO2004084242A1 (en) 2003-03-19 2006-06-29 東レ株式会社 Polypropylene film for flat capacitor and flat capacitor comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187328A (en) * 1981-05-13 1982-11-18 Toray Ind Inc Surface treatment of plastic film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187328A (en) * 1981-05-13 1982-11-18 Toray Ind Inc Surface treatment of plastic film

Also Published As

Publication number Publication date
JPS5816415A (en) 1983-01-31

Similar Documents

Publication Publication Date Title
US6018454A (en) Metallized film, a production method thereof, and a capacitor using it
JPS6344288B2 (en)
KR100356277B1 (en) Evaporation film and capacitor using it
US3916075A (en) Chemically highly resistant material
US2968583A (en) Capacitor sections and methods of making the same
JPS6249978B2 (en)
JP2007201313A (en) Metal deposited film
JP3539017B2 (en) Metallized film and capacitor using the same
JP4604758B2 (en) Capacitor film and capacitor using the same
JP2003257777A (en) Polypropylene film for capacitor and capacitor
JP2600722B2 (en) Polypropylene film
JP3796694B2 (en) Metal-deposited plastic substrate and method for producing the same
JP4508310B2 (en) Metal-deposited film for capacitor and capacitor using the same
JPH0738368B2 (en) Method for manufacturing aluminum electrode material for electrolytic capacitor
JP2005029819A (en) Metal vapor deposition film manufacturing method
JPH0793249B2 (en) Method for producing metallized film
KR940008653B1 (en) Method of making plastic film for condenser using aluminium distilation and adhesion
JPS5980920A (en) Metallized film condenser
JPH03143629A (en) Preparation of metallized film and condenser using it
JPS6357932B2 (en)
SU1732381A1 (en) Method of packing material manufacture for tape cassette
JPH0594924A (en) Manufacture of stepped vapor deposition film
JPH0551967B2 (en)
JP2536578B2 (en) Method for producing vapor-deposited polyester film
JPH0115130B2 (en)