JP2007201313A - Metal deposited film - Google Patents

Metal deposited film Download PDF

Info

Publication number
JP2007201313A
JP2007201313A JP2006020196A JP2006020196A JP2007201313A JP 2007201313 A JP2007201313 A JP 2007201313A JP 2006020196 A JP2006020196 A JP 2006020196A JP 2006020196 A JP2006020196 A JP 2006020196A JP 2007201313 A JP2007201313 A JP 2007201313A
Authority
JP
Japan
Prior art keywords
deposition
film
margin
width direction
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006020196A
Other languages
Japanese (ja)
Inventor
Chikashi Shinoda
史 篠田
Osamu Watanabe
渡邊  修
Kusato Hirota
草人 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006020196A priority Critical patent/JP2007201313A/en
Publication of JP2007201313A publication Critical patent/JP2007201313A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal deposited film having a security function, decreasing an influence on an adjacent split part, and corresponding to an arbitrary film resistance. <P>SOLUTION: The metal deposited film with a metal deposited on at least one side of a polymeric film includes at least one line of nondeposited margin continued in a longitudinal direction, and a plurality of nondeposited margin in a widthwise direction meeting the following (1) to (3). Each nondeposited margin respectively has at least one discontinuous part (1). Each nondeposited margin does not intersect (2). There is at least one narrow part between adjacent nondeposited margins in a width direction (3). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はコンデンサー用フイルム加工品に関するものである。さらに詳しくは、フィルム基材に導電性金属を連続蒸着する金属蒸着フィルムを所定の幅に細断した後にリール上に巻かれたフィルムであって、コンデンサー素子を形成するために用いられる金属蒸着フィルムに関する。   The present invention relates to a processed film for a capacitor. More specifically, a metal vapor deposition film for continuously depositing a conductive metal on a film substrate is a film wound on a reel after being shredded to a predetermined width and used to form a capacitor element. About.

従来より、フィルム基材の上に導電性金属、すなわちアルミニウム、金、チタン、鉄、銀、銅、スズ、インジウム、亜鉛等の金属を蒸着する際に、マージンやパターンと呼ばれる非蒸着箇所を形成することによって、長手方向並びに幅方向に金属蒸着部を分割する方法が知られている。このことから例えば特許文献1、2が提案されている。
仏国特許第2651602号公報 特開平2001−35743号公報
Conventionally, when depositing conductive metals, that is, metals such as aluminum, gold, titanium, iron, silver, copper, tin, indium, and zinc, on the film substrate, non-deposition locations called margins and patterns are formed. By doing so, a method of dividing the metal vapor deposition portion in the longitudinal direction and the width direction is known. Thus, for example, Patent Documents 1 and 2 have been proposed.
French Patent No. 2651602 Japanese Patent Laid-Open No. 2001-35743

しかしながら、分割部を細分化すると保安機能は向上するものの、発熱しやすく、隣り合う分割部で電流通路を共用するため、保安機能が作動する際に互いに影響して正常部分も容量も減少するという課題があった。また、細分化せずにピッチを狭めた形でかつ膜抵抗を上げて、自己回復性を向上させたパターンも提案されているが、膜抵抗に制限があるという課題があった。   However, although the security function is improved if the divided parts are subdivided, heat is likely to be generated, and the current path is shared between the adjacent divided parts, so that the normal part and the capacity are reduced by affecting each other when the safety function is activated. There was a problem. In addition, although a pattern in which the pitch is narrowed without being subdivided and the film resistance is increased to improve the self-recovery property has been proposed, there is a problem that the film resistance is limited.

そこで本発明の目的は、上記従来技術の課題を解決し、十分な保安機能を備え、かつ、隣り合う分割部への影響を低減し、かつ任意の膜抵抗に対応する金属蒸着フィルムを手供することによる。   Therefore, an object of the present invention is to provide a metal vapor deposition film that solves the above-described problems of the prior art, has a sufficient security function, reduces the influence on adjacent divided portions, and corresponds to an arbitrary film resistance. It depends.

本発明の金属蒸着フィルムは、上記課題を解決するために以下の構成をとるものである。すなわち、フィルム基材の少なくとも片面に金属が蒸着された金属蒸着フィルムであって、該金属蒸着面に、長手方向に連続した少なくとも1本の非蒸着マージン、及び、下記(1)〜(3)を満たす複数本の幅方向の非蒸着マージンを含む金属蒸着フィルム。
(1)各非蒸着マージンには、それぞれに少なくとも1箇所の不連続部分がある。
(2)各非蒸着マージンは交差しない。
(3)隣り合う非蒸着マージンの間に、幅方向で少なくとも1ヶ所の狭隘部がある。
である。
The metal vapor deposition film of the present invention has the following configuration in order to solve the above problems. That is, a metal vapor deposition film in which a metal is vapor-deposited on at least one surface of a film substrate, and at least one non-deposition margin continuous in the longitudinal direction on the metal vapor deposition surface, and the following (1) to (3) The metal vapor deposition film containing the non-deposition margin of the multiple width direction satisfy | filling.
(1) Each non-deposition margin has at least one discontinuous portion.
(2) Each non-deposition margin does not intersect.
(3) There is at least one narrow portion in the width direction between adjacent non-deposition margins.
It is.

本発明の金属蒸着フィルムによれば、コンデンサ素子を形成した際に容量減少が少なく、直流耐電圧の高い金属蒸着フィルムを提供することができる。   According to the metal vapor deposition film of the present invention, it is possible to provide a metal vapor deposition film having a small direct current withstand voltage with little decrease in capacity when a capacitor element is formed.

以下、本発明の好ましい実施の形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本発明にかかるフィルム基材は、導電性金属が蒸着できるものであれば特に限定されないが、ポリエチレン、無延伸あるいは延伸ポリプロピレン、ポリメチルペンテン、シクロオレフィン系ポリマー、ノルボルネン系ポリマー、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミド、液晶ポリマーなどの単体、またはこれら2種以上の混合物並びにポリマーアロイからなる有機高分子フィルムが好ましく、コンデンサーを形成した場合の耐電圧特性、誘電正接特性、絶縁抵抗特性に優れる点から、無延伸あるいは延伸のポリプロピレン系フィルムが特に好ましく用いられる。また、これらフィルム基材の蒸着面側に各種コーティング、スパッタ、CVD、蒸着膜が誘電率を上げるなどの諸特性を向上させるために設けられた場合でも、本発明の目的を達成させる限りにおいてフィルム基材の種類は特に限定されない。   The film substrate according to the present invention is not particularly limited as long as a conductive metal can be deposited, but polyethylene, unstretched or stretched polypropylene, polymethylpentene, cycloolefin polymer, norbornene polymer, polyethylene terephthalate, polyethylene naphthalene. Organic polymer films made of phthalates, polyamides, polyamideimides, polyphenylene sulfides, polyetherimides, polyimides, liquid crystal polymers, or a mixture of two or more of these and polymer alloys are preferred, and withstand voltage characteristics when capacitors are formed From the viewpoint of excellent dielectric loss tangent characteristics and insulation resistance characteristics, a non-stretched or stretched polypropylene film is particularly preferably used. In addition, even when various coatings, sputtering, CVD, and vapor deposition films are provided on the vapor deposition surface side of these film bases in order to improve various properties such as increasing the dielectric constant, as long as the object of the present invention is achieved, The kind of base material is not specifically limited.

本発明のフィルム基材として好ましく用いられるポリプロピレン系フィルムは、ポリプロピレンのホモポリマーからなるフィルム以外に、プロピレンと他のαーオレフィン(例えばエチレン、ブテンなど)の共重合体からなるフィルムであっても、またポリプロピレンと他のα−オレフイン重合体(例えばポリエチレン、ポリブテンなど)とのブレンド品からなるフィルムであってもかまわない。   The polypropylene film preferably used as the film substrate of the present invention may be a film made of a copolymer of propylene and other α-olefin (eg, ethylene, butene, etc.) in addition to a film made of polypropylene homopolymer, A film made of a blend of polypropylene and another α-olefin polymer (for example, polyethylene, polybutene, etc.) may also be used.

また本発明にかかるフィルム基材に含有される添加剤は特に限定されるものではなく、本発明の目的とする特性に支障を及ぼさない範囲で、適宜選択添加してもよい。   Moreover, the additive contained in the film base material according to the present invention is not particularly limited, and may be appropriately selected and added as long as the target characteristics of the present invention are not affected.

なお、フィルム基材表面はコロナ放電処理、火炎処理、プラズマ処理などの表面処理、或いは、接着剤のコーティング層、樹脂コーティング層、溶融押し出しによる樹脂層などの積層が行われていても良いが、蒸着面の濡れ張力の均一化が容易である点からコロナ放電処理を行うことが好ましい。   The film substrate surface may be subjected to surface treatment such as corona discharge treatment, flame treatment, plasma treatment, or lamination of an adhesive coating layer, a resin coating layer, a resin layer by melt extrusion, It is preferable to perform the corona discharge treatment from the viewpoint that it is easy to make the wet tension on the vapor deposition surface uniform.

本発明にかかる導電性金属の蒸着膜は、アルミニウムの含有率が80重量%以上、もしくは亜鉛の含有率が80重量%以上であれば特に限定されず、アルミニウム、金、チタン、鉄、銀、銅、スズ、インジウム、亜鉛などの導電性金属、或いはこれらを組み合わせたもの、またはその他の導電性金属との合金を蒸着することにより得られるが、均一で安定した導電性金属の蒸着膜を得る観点から、亜鉛単体、または亜鉛とアルミニウムの積層品、アロイ、または亜鉛とアルミニウムの合金、アルミニウム単体を用いることが好ましい。また、金属膜の抵抗値(金属膜の厚み)は特に制限されず、連続マージンが形成される側と反対側の金属膜が厚い、いわゆるヘビーエッジ構造や、幅方向に渡って膜抵抗が漸減(膜厚漸増)、漸増(膜厚漸減)される構造であっても特に構わない。   The conductive metal vapor deposition film according to the present invention is not particularly limited as long as the aluminum content is 80% by weight or more, or the zinc content is 80% by weight or more, and aluminum, gold, titanium, iron, silver, Obtained by depositing a conductive metal such as copper, tin, indium, zinc, or a combination thereof, or an alloy with another conductive metal, to obtain a uniform and stable deposited film of conductive metal From the viewpoint, it is preferable to use zinc alone, a laminate of zinc and aluminum, an alloy, an alloy of zinc and aluminum, or aluminum alone. In addition, the resistance value of the metal film (thickness of the metal film) is not particularly limited, and the metal film on the side opposite to the side where the continuous margin is formed is thick, so-called heavy edge structure, or the film resistance gradually decreases in the width direction. A structure in which the film thickness is gradually increased or gradually increased (thickness gradually decreases) may be used.

本発明の金属蒸着フィルムにはフィルム基材の少なくとも片面に金属蒸着面が形成され、該金属蒸着面側に長手方向に連続した非蒸着マージンが形成されており、金属蒸着面には幅方向にさらに規則性のある幾何学的パターンの非蒸着マージンが形成されたものである。該幅方向の非蒸着マージンは少なくとも1箇所の不連続部分があり、隣り合う非蒸着マージンと幅方向に渡って交差することなく、かつ隣り合う非蒸着マージンとの間に幅方向で少なくとも一箇所の狭隘部を持つことが必須である。ここで、長手方向とはフィルム基材の巻き取り方向のことであり、幅方向とは長手方向に直交する方向のことをいう。   In the metal vapor deposition film of the present invention, a metal vapor deposition surface is formed on at least one surface of the film substrate, and a non-deposition margin continuous in the longitudinal direction is formed on the metal vapor deposition surface side. Further, a non-deposition margin having a regular geometric pattern is formed. The non-deposition margin in the width direction has at least one discontinuous portion, and does not intersect the adjacent non-deposition margin in the width direction and at least one position in the width direction between the adjacent non-deposition margins. It is essential to have a narrow part. Here, the longitudinal direction refers to the winding direction of the film substrate, and the width direction refers to the direction orthogonal to the longitudinal direction.

幅方向の非蒸着マージンに不連続箇所が形成されないと、長手方向に隣り合うマージン間に渡って蒸着膜に亀裂が入った場合、電極側の蒸着面はコンデンサーとして機能するが、反電極側である長手方向マージン側の電極面はコンデンサーとして機能しないため、電極側により近い側で亀裂が生じた場合に容量減少の割合が大きくなる。その場合でも、幅方向の非蒸着マージンに不連続部分を形成することによって、この不連続部分を通じて他の電極からの電流供給が得られるため、容量減少の低下を抑えることができる。つまり、耐電圧が低い部分のみ限定的に容量減少させて、他の蒸着領域をより確保することが可能となる。   If no discontinuous part is formed in the non-deposition margin in the width direction, if the deposited film cracks between adjacent margins in the longitudinal direction, the deposition surface on the electrode side functions as a capacitor, but on the opposite electrode side Since the electrode surface on the side of a certain margin in the longitudinal direction does not function as a capacitor, the rate of capacity reduction increases when a crack occurs on the side closer to the electrode side. Even in such a case, by forming the discontinuous portion in the non-deposition margin in the width direction, current supply from other electrodes can be obtained through the discontinuous portion, so that a decrease in capacity reduction can be suppressed. In other words, the capacity can be reduced only in a portion where the withstand voltage is low, and other vapor deposition regions can be secured.

また、幅方向に隣り合う非蒸着マージンが互いに交差している場合は不連続部分からの電流供給のみとなり、発熱などの弊害を生じてしまう。しかし、幅方向に隣り合う非蒸着マージンが互いに交差せずに狭隘部を設けることにより、電極からの電流供給低減を抑えて発熱を防止して、フィルム基材並びに蒸着金属の劣化促進を低減し、かつ、ヒューズ効果によって、耐電圧が低下した領域のみを容量減少分として限定的に取り除くことを可能とするものである。   Further, when non-deposition margins adjacent in the width direction cross each other, only current is supplied from the discontinuous portion, which causes problems such as heat generation. However, non-deposition margins adjacent in the width direction do not intersect with each other to provide a narrow portion, which suppresses current supply from the electrodes and prevents heat generation, thereby reducing deterioration of the film base and deposited metal. In addition, only the region where the withstand voltage is lowered due to the fuse effect can be limitedly removed as the capacity reduction.

前記狭隘部の幅と、前記幅方向の非蒸着マージンの不連続部分の幅は蒸着膜の膜抵抗を鑑みて適切に選択すれば良く、0.2mm以上Pmm未満であれば良いが、より適切に容量減少を抑えるために望ましくは0.3mm以上4mm以下、更に望ましくは0.4mm以上2mm以下である。ここで、P(mm):長手方向の非蒸着マージンと各幅方向の非蒸着マージンとの各交点の間隔を意味する(以下、パターンピッチとする)。   The width of the narrow portion and the width of the discontinuous portion of the non-deposition margin in the width direction may be appropriately selected in view of the film resistance of the deposited film, and may be 0.2 mm or more and less than Pmm, but more appropriate In order to suppress the decrease in capacity, it is preferably 0.3 mm or more and 4 mm or less, and more preferably 0.4 mm or more and 2 mm or less. Here, P (mm): means an interval between intersections of the non-deposition margin in the longitudinal direction and the non-deposition margin in the width direction (hereinafter referred to as a pattern pitch).

更に、不連続部分の幅は幅方向に同一でなくても良く、例えば、電極側が容量減少した場合を考慮して、電極側よりも反電極側の不連続部分の幅を大きく、あるいは小さくさせても良い。   Further, the width of the discontinuous portion may not be the same in the width direction. For example, in consideration of the case where the capacitance is reduced on the electrode side, the width of the discontinuous portion on the counter electrode side is made larger or smaller than the electrode side. May be.

狭隘部は幅方向に少なくとも1箇所あればよいが、2箇所以上5箇所以内が望ましく、より望ましくは2箇所以上3箇所以内である。6箇所以上では狭隘部による発熱が増加して劣化につながる恐れがあり、1個では容量減少低減効果が小さい。   The narrow portion may be at least one place in the width direction, but is preferably 2 or more and 5 or less, and more preferably 2 or more and 3 or less. If there are six or more locations, heat generation by the narrow portion may increase, leading to deterioration, and a single device has a small capacity reduction reduction effect.

また、幅方向に複数狭隘部を持つ場合は、狭隘部から狭隘部までの間隔が一定でなくても良く、例えば、電極側から反電極側に向かって、順次増大、あるいは減少されていても構わない。   Further, when there are a plurality of narrowed portions in the width direction, the interval from the narrowed portion to the narrowed portion may not be constant, for example, it may be increased or decreased sequentially from the electrode side to the counter electrode side. I do not care.

幅方向の非蒸着マージンと電極端面の距離はコンデンサを形成したときに所定の特性が得られれば特に制限されない。例えば、パターンピッチが比較的小さい場合に、電極端面とメタリコン(溶射金属)との接触状態が低下して誘電正接が増大することが懸念され、それが求められるコンデンサ特性に影響することを重視する場合には該電極端面から一定の距離を形成しても良く、また、特に誘電正接を重視する必要のない場合は、該距離をとらずに該電極端面まで幅方向非蒸着マージンを形成しても構わない。   The distance between the non-evaporation margin in the width direction and the electrode end face is not particularly limited as long as a predetermined characteristic is obtained when the capacitor is formed. For example, when the pattern pitch is relatively small, there is a concern that the contact state between the electrode end face and the metallicon (sprayed metal) may decrease and increase the dielectric loss tangent, and importance is placed on affecting the required capacitor characteristics. In this case, a certain distance from the electrode end face may be formed. In addition, when it is not particularly important to consider the dielectric loss tangent, a width direction non-deposition margin is formed to the electrode end face without taking the distance. It doesn't matter.

長手方向に連続した非蒸着マージンの幅は絶縁性の観点から0.3mm以上が望ましく、0.5mm以上が更に望ましい。   The width of the non-deposition margin continuous in the longitudinal direction is preferably 0.3 mm or more, and more preferably 0.5 mm or more from the viewpoint of insulation.

幅方向の非蒸着マージンの幅は容量減少につながるため、小さいことが望ましいが、絶縁性を確保するためにその幅は0.05mm以上、更に望ましくは0.1mm以上である。   The width of the non-deposition margin in the width direction is preferably small because it leads to a decrease in capacity. However, in order to ensure insulation, the width is 0.05 mm or more, more preferably 0.1 mm or more.

幅方向の非蒸着マージンの幾何学的パターンは、幅方向に狭隘部が形成されれば特に制限されない。隣り合う幅方向の非蒸着マージンがいずれも曲線である場合、狭隘部は曲線の頂点同士や、曲線の頂点同士以外のいずれで形成されていても良い。隣り合う幅方向マージンが直線と曲線の場合、狭隘部は直線と曲線の頂点で形成されていても良い。つまるところ、狭隘部が幅方向に少なくとも1箇所形成されていれば、幅方向の非蒸着マージンはどのようなパターンであってもよい。幅方向の非蒸着マージンが曲線同士で形成される代表的なパターン例を図1〜3に示し、直線と曲線から形成される代表的なパターンを図4に示す。   The geometric pattern of the non-deposition margin in the width direction is not particularly limited as long as a narrow portion is formed in the width direction. When the adjacent non-deposition margins in the width direction are curves, the narrow portion may be formed by any one of the vertices other than the vertices of the curves or the vertices of the curves. When the adjacent margins in the width direction are a straight line and a curve, the narrow portion may be formed by a vertex of the straight line and the curve. In other words, as long as at least one narrow portion is formed in the width direction, the non-deposition margin in the width direction may be any pattern. A typical pattern example in which the non-deposition margin in the width direction is formed by curves is shown in FIGS. 1 to 3, and a typical pattern formed by straight lines and curves is shown in FIG.

本発明にかかる長手方向の非蒸着マージンの非蒸着区分帯を形成するために用いられる方法として、オイルを用いる方法が挙げられる。オイルとしては、一般にシリコーン系オイル、フッ素系オイル、流動パラフィンなどが挙げられる。また、このほかの方法として他にテープ、レーザーを用いる方法があるが、いずれの方法でも所定の幅で非蒸着部分が長手方向連続的に形成されれば良く、特に方法に限定されない。   As a method used for forming the non-deposition zone of the non-deposition margin in the longitudinal direction according to the present invention, a method using oil is exemplified. Examples of the oil generally include silicone oil, fluorine oil, liquid paraffin, and the like. In addition, there are other methods using tape and laser as other methods, but any method may be used as long as the non-deposition portion is continuously formed in the longitudinal direction with a predetermined width, and the method is not particularly limited.

本発明にかかる幅方向の非蒸着マージンを形成する方法としてオイルを用いる方法、スクリーンを用いる方法、レーザーを用いる方法が挙げられるが、生産性およびマージン形成後の寸法精密性から、あらかじめ適量のオイルを非蒸着区分帯を凸状に形成した印刷ロールの凸部に付着させ、転写する方法が最も好ましい。   Examples of a method for forming a non-evaporation margin in the width direction according to the present invention include a method using oil, a method using a screen, and a method using a laser. From the viewpoint of productivity and dimensional accuracy after forming a margin, an appropriate amount of oil is used in advance. The most preferable method is to adhere and transfer the non-evaporated section zone to the convex portion of the printing roll having a convex shape.

ここでの印刷ロールのオイル付着面は金属、樹脂やゴムなどの有機物素材、および各種素材の多孔質素材のいずれであっても、印刷後の寸法精密性が損なわなければ特に限定されるものではないが、生産性並びに寸法精密性の観点から 樹脂やゴム素材並びに樹脂やゴムの多孔質素材であることが望ましい。   The oil adhesion surface of the printing roll here is not particularly limited as long as the dimensional accuracy after printing is not impaired, whether it is metal, organic materials such as resin or rubber, and porous materials of various materials. However, from the viewpoint of productivity and dimensional accuracy, it is desirable to use a resin or rubber material and a porous material of resin or rubber.

本発明にかかる金属蒸着フイルムの構成は、フィルム基材/蒸着または蒸着と印刷によるマージン形成/金属蒸着膜/または金属蒸着膜の積層、及びまたは金属膜の混合(アロイ)を取るが、更に金属膜保護のためのオイル膜、高分子膜、酸化膜の形成、並びにフィルム基材と金属蒸着膜との間に高分子膜、酸化膜が形成されても良く、これら金属蒸着膜前後の膜の働きを強めるために放射線処理を行っても構わない。   The metal vapor deposition film according to the present invention has a film base / deposition or margin formation by vapor deposition and printing / metal vapor deposition film / or lamination of metal vapor deposition film, and / or metal film mixing (alloy). Formation of oil film, polymer film and oxide film for film protection, and polymer film and oxide film may be formed between the film substrate and metal vapor deposition film. Radiation treatment may be performed to strengthen the work.

ここでいう放射線とは紫外線、赤外線、電子線、イオン粒子、α線、β線、γ線、励起原子、励起分子、グロー放電、プラズマなどを指す。特に放射線が、電子線、不活性原子イオン、酸素イオンまたは励起酸素(分子または原子)からなる群から選ばれた少なくとも1種以上であることが好ましい。不活性原子イオン、酸素イオン、励起酸素(分子または原子)は不活性ガス、または/及び酸素原子を含む分子からなるガス、或いは他のガスとの混合ガスを用いたプラズマ中に存在し、よって有機物層をプラズマにさらすことによっても有機物を重合及び/または架橋させることができる。通常、プラズマ中のイオン、励起ガス粒子は有機化合物層深くには進入できないが、本発明では有機物層の厚みが薄いので重合及び/または架橋可能である。またプラズマの際に酸素ガス、アルゴンガスなどのガスを用いても良い。   The radiation here refers to ultraviolet rays, infrared rays, electron beams, ion particles, α rays, β rays, γ rays, excited atoms, excited molecules, glow discharge, plasma, and the like. In particular, the radiation is preferably at least one selected from the group consisting of electron beams, inert atom ions, oxygen ions, or excited oxygen (molecules or atoms). Inert atomic ions, oxygen ions, excited oxygen (molecules or atoms) are present in a plasma using an inert gas, and / or a gas composed of molecules containing oxygen atoms, or a mixed gas with other gases. The organic material can also be polymerized and / or crosslinked by exposing the organic material layer to plasma. Usually, ions and excitation gas particles in the plasma cannot penetrate deep into the organic compound layer, but in the present invention, the organic layer is thin and can be polymerized and / or crosslinked. A gas such as oxygen gas or argon gas may be used for the plasma.

本発明により得られた金属蒸着フィルムがコンデンサー用途に好適に用いられるためには、膜抵抗値が1.5〜100Ω/□であることが好ましい。また、本発明に用いられる蒸着フィルムはヘビーエッジの有無を問わない。へビーエッジとは、細断後の金属蒸着膜の幅方向端面の電極形成部付近において金属膜厚が、他に比べて厚い部分を示す。ヘビーエッジ形成方法としては蒸着源上方にスリット板を設け、ヘビーエッジを形成する箇所のスリットを長手方向に長くする方法や、蒸着ステージを多数設け、所定の箇所を厚くする方法があるが、いずれの方法を用いても良い。   In order for the metal vapor-deposited film obtained by the present invention to be suitably used for capacitor applications, the film resistance value is preferably 1.5 to 100Ω / □. Moreover, the vapor deposition film used for this invention does not ask | require the presence or absence of a heavy edge. The heavy edge refers to a portion where the metal film thickness is thicker than the others in the vicinity of the electrode forming portion on the end surface in the width direction of the metal vapor-deposited film after chopping. As a method for forming a heavy edge, there is a method in which a slit plate is provided above the vapor deposition source and a slit in a portion where the heavy edge is formed is elongated in the longitudinal direction, and a method in which a large number of vapor deposition stages are provided and a predetermined portion is thickened. The method may be used.

本発明により用いられる金属蒸着フィルムは金属蒸着及び後処理工程終了後、所定の幅に切断され、リール状に巻き取られたものである。細断方法はリール状に整えられるものであれば特限定されないが、金属蒸着後のフィルムを長手方向に連続的に所定幅に切断するスリッッターを用いることが、フィルム幅の均一性、端面形状から望ましい。また、フィルム幅はフィルムの長手軸方向のカット端面形状は上面(金属蒸着面側から基材面を透かす、或いはその逆の方向)から見て直線である必要はなく、一定周期で、連続的な波形であっても構わない。   The metal vapor deposition film used by this invention is cut | disconnected by the predetermined | prescribed width | variety after completion | finish of metal vapor deposition and a post-processing process, and was wound up in the reel shape. The shredding method is not particularly limited as long as it can be arranged in a reel shape, but it is possible to use a slitter that continuously cuts the film after metal deposition in the longitudinal direction to a predetermined width from the uniformity of the film width and the end face shape. desirable. In addition, the film width does not need to be a straight line when viewed from the top surface (through the metal deposition surface side or the opposite direction), and the cut end surface shape in the longitudinal axis direction of the film is continuous at a constant cycle. A simple waveform may be used.

本発明により得られた金属蒸着フィルムはリール状に巻き取られた後にフィルムの寸法や各種特性を著しく損なわない限りにおいて加熱処理を行っても良く、加熱処理の方法として熱風オーブン、真空オーブンのいずれを用いても構わない。   The metal vapor-deposited film obtained by the present invention may be subjected to a heat treatment as long as the film dimensions and various properties are not significantly impaired after being wound up in a reel shape. Either a hot air oven or a vacuum oven can be used as a heat treatment method. May be used.

次に、本発明に用いる測定法及び評価法について説明する。   Next, the measurement method and evaluation method used in the present invention will be described.

(1)ステップアップDCBDV
a.サンプル作成方法:
細断後リール状に巻かれた金属蒸着フィルムをPBT製Φ9円筒状コアに巻回方式により素子巻きを行い、熱処理後両側端面電極部に金属溶射(以下メタリコン)による電極を形成した後に、リード線を半田付けにて接合し、電圧処理を行って、静電容量10μFのコンデンサー素子を形成した。
(1) Step-up DCBDV
a. Sample creation method:
A metal vapor-deposited film wound in a reel shape after chopping is wound on a PBT Φ9 cylindrical core by a winding method, and after heat treatment, electrodes are formed on both side end electrode portions by metal spraying (hereinafter referred to as metallicon), then lead The wires were joined by soldering and voltage treatment was performed to form a capacitor element with a capacitance of 10 μF.

b.電圧印可方法:
2KV電源(ハイデン研究所製:型式HD2K2P−PS)に素子のリード線を接続し、常温にて開始電圧800V、ステップ昇圧100V、各ステップ保持時間10分の条件で、ステップアップDCBDVを行った。容量の測定は各ステップ終了毎にLCRメータで行った。
b. Voltage application method:
The lead wire of the element was connected to a 2 KV power source (manufactured by HEIDEN Laboratory: model HD2K2P-PS), and step-up DCBDV was performed under the conditions of a starting voltage of 800 V, a step-up voltage of 100 V, and a step holding time of 10 minutes. The capacity was measured with an LCR meter at the end of each step.

c.容量測定方法:
安藤電気株式会社製TYPE AG−4311 LCRMETERを用いて、1VAC×1kHzを課電して測定した。
c. Capacity measurement method:
Using TYPE AG-4411 LCRMETER manufactured by Ando Electric Co., Ltd., 1 VAC × 1 kHz was applied and measured.

(2)高温DCVT
予め100℃のオーブンに素子を2時間以上投入しておき、その後、700VDCを課電して24Hr、48Hr経過後の容量をそれぞれ常温で測定した。
(2) High temperature DCVT
The device was previously placed in an oven at 100 ° C. for 2 hours or more, and then 700 VDC was applied, and the capacity after 24 hours and 48 hours passed was measured at room temperature.

素子容量が35μFであること以外はステップアップDCBDV用の素子形成と同様に実施した。また、電圧印可装置並びに容量測定装置もステップアップDCBDVと同一、加熱オーブンはTABAI ESPEC社製PR−4Sを用いた。   The device was formed in the same manner as the device formation for step-up DCBDV except that the device capacitance was 35 μF. Further, the voltage applying device and the capacity measuring device are the same as the step-up DCBDV, and the heating oven is a PR-4S manufactured by Tabai ESPEC.

(3)非蒸着マージンの狭隘部の幅、不連続部分の幅
バックライト投影板の上に測定用の蒸着フィルム一枚を載せ、非蒸着マージンの狭隘部の幅、並びに不連続部分の幅をPEAK社製SCALE LUPE(×10)で目視測定した。
(3) The width of the narrow part of the non-deposition margin and the width of the discontinuous part A single deposition film for measurement is placed on the backlight projection plate, and the width of the narrow part of the non-deposition margin and the width of the discontinuous part are set. Visual measurement was performed with a SCALE LUPE (× 10) manufactured by PEAK.

以下、本発明の詳細につき実施例を用いてさらに説明する。   Hereinafter, the details of the present invention will be further described using examples.

(実施例1〜3、比較例1〜3)
フィルム基材として幅640mm、厚み3.2μmの2軸延伸ポリプロピレンフィルム(東レ(株)製:トレファン(登録商標)2172)を用いた。真空蒸着機上室内を5×10−3torrに減圧し、予めオイル蒸発器の中に供給しておいたフッ素系オイルを90℃以上に加熱し、オイル蒸発器上部に設けられたスリットを通してフィルム基材に長手方向の非蒸着マージンを形成する。次いで、転写ロールに蒸気状のオイルを供給して付着させ、転写ロールの表面に形成されたオイルを、図1,2にそれぞれ示す(1)開発A、(2)開発B、及び図5に示す(3)半TD、(4)T、(5)クロス、のパターンが同一のロールに彫刻された印刷ロールに転写させる。更に印刷ロールの彫刻パターン表面に形成されたオイル層を、連続的に巻き出し側から巻き取り側に移動するフィルム基材に転写させて、幅方向の非蒸着マージンを形成した。次いで、2×10−4torr以下に排気された真空蒸着機下室に位置する冷却ロール下部で、アルミニウムの膜抵抗がヘビー部で2〜3Ω/□、アクティブ部で8〜11Ω/□となるようにスリットを通して蒸着し、印刷パターン(マージンパターン)の形成されたアルミ蒸着フィルムを作成した。フィルム速度は350m/minで連続的に行った。
(Examples 1-3, Comparative Examples 1-3)
A biaxially stretched polypropylene film (made by Toray Industries, Inc .: Trefan (registered trademark) 2172) having a width of 640 mm and a thickness of 3.2 μm was used as the film substrate. The vacuum chamber upper chamber is depressurized to 5 × 10 −3 torr, the fluorine-based oil previously supplied in the oil evaporator is heated to 90 ° C. or more, and the film is passed through the slit provided on the oil evaporator. A non-deposition margin in the longitudinal direction is formed on the substrate. Next, the vapor-form oil is supplied to the transfer roll and attached thereto, and the oil formed on the surface of the transfer roll is shown in FIGS. 1 and 2, respectively (1) Development A, (2) Development B, and The patterns (3) half TD, (4) T, and (5) cross shown are transferred to a printing roll engraved on the same roll. Furthermore, the oil layer formed on the surface of the engraving pattern of the printing roll was transferred to a film substrate that continuously moved from the unwinding side to the winding side to form a non-deposition margin in the width direction. Next, at the lower part of the cooling roll located in the lower chamber of the vacuum deposition apparatus evacuated to 2 × 10 −4 torr or less, the film resistance of aluminum becomes 2-3Ω / □ at the heavy part and 8-11Ω / □ at the active part. As described above, vapor deposition was performed through the slits to prepare an aluminum vapor deposition film on which a printing pattern (margin pattern) was formed. The film speed was continuously performed at 350 m / min.

次にアルミ蒸着フィルムをスリッターと呼ばれる細断機で50mm幅に連続的に細断し、同幅で3000m以上の長さを巻き取ったリール状蒸着品を作成した。そして長手マージン位置が左右対称となるヘビーエッジ印刷パターン蒸着リールとヘビーエッジ一般蒸着リールを組み合わせて、PBTコアを用いる素子巻き機で200〜300gfの張力をかけて巻き上げ、容量10μF、35μFの素子を作成した。各マージンパターンが形成されたアルミ蒸着フィルムを用いたコンデンサを、それぞれ
実施例1:(1)開発Aパターン
パターンピッチ :4mm(長手方向)
幅方向非蒸着マージンの狭隘部の幅 :1.8mm
幅方向非蒸着マージンの不連続部分の幅 :2.0mm
幅方向の非蒸着マージンと電極端面との距離:10mm
実施例2:(2)開発Bパターン
パターンピッチ :4mm(長手方向)
幅方向非蒸着マージンの狭隘部の幅 :1.8mm
幅方向非蒸着マージンの不連続部分の幅 :2.0mm
幅方向の非蒸着マージンと電極端面との距離:10mm
比較例1:(3)半TDパターン
パターンピッチ :4mm(長手方向)
幅方向の非蒸着マージンと電極端面との距離:10mm
比較例2:(4)Tパターン
パターンピッチ :17mm(長手方向)
ヒューズ幅 :0.5mm
比較例3:(5)クロスパターン
パターンピッチ :15.3mm(長手方向)
ヒューズ幅 :0.5mm
とした。
Next, the aluminum vapor-deposited film was continuously shredded to a width of 50 mm with a shredding machine called a slitter, and a reel-like vapor-deposited product having a width of 3000 m or more with the same width was produced. A combination of a heavy edge printing pattern vapor deposition reel and a heavy edge general vapor deposition reel whose longitudinal margin positions are symmetric is wound up by applying a tension of 200 to 300 gf with an element winding machine using a PBT core, and elements having a capacity of 10 μF and 35 μF are wound. Created. Capacitors using aluminum vapor deposition films on which each margin pattern is formed are as follows. Example 1: (1) Development A pattern Pattern pitch: 4 mm (longitudinal direction)
Width of narrow part of width direction non-deposition margin: 1.8mm
Width of discontinuous part in width direction non-deposition margin: 2.0 mm
The distance between the non-deposition margin in the width direction and the electrode end face: 10 mm
Example 2: (2) Development B pattern Pattern pitch: 4 mm (longitudinal direction)
Width of narrow part of width direction non-deposition margin: 1.8mm
Width of discontinuous part in width direction non-deposition margin: 2.0 mm
The distance between the non-deposition margin in the width direction and the electrode end face: 10 mm
Comparative Example 1: (3) Half TD pattern Pattern pitch: 4 mm (longitudinal direction)
The distance between the non-deposition margin in the width direction and the electrode end face: 10 mm
Comparative Example 2: (4) T pattern Pattern pitch: 17 mm (longitudinal direction)
Fuse width: 0.5mm
Comparative Example 3: (5) Cross pattern Pattern pitch: 15.3 mm (longitudinal direction)
Fuse width: 0.5mm
It was.

次いで各コンデンサー素子の電極作成のため、メタリコン、リード線付けを行い、初期容量を安藤電気製LCRメーターで測定した。   Subsequently, in order to prepare electrodes for each capacitor element, metallicons and lead wires were attached, and the initial capacity was measured with an LCR meter manufactured by Ando Electric.

10μFのコンデンサ素子を用いて、ステップアップDCBDVを実施し図6に示す結果を得た。35μFのコンデンサ素子を用いて、高温DCVTを実施し図7に示す結果を得た。   Step-up DCBDV was performed using a 10 μF capacitor element, and the results shown in FIG. 6 were obtained. High temperature DCVT was performed using a 35 μF capacitor element, and the results shown in FIG. 7 were obtained.

容量減少10%時でのステップアップDCBDVでは実施例1,2の電圧が高く、高温VTでも48時間後の容量低下がないことが確認された。   In step-up DCBDV when the capacity decreased by 10%, the voltages of Examples 1 and 2 were high, and it was confirmed that there was no capacity decrease after 48 hours even at high temperature VT.

(実施例3,4、比較例4)
フィルム基材として幅640mm、厚み3.2μmの2軸延伸ポリプロピレンフィルム(東レ(株)製:トレファン(登録商標)2172)を用いた。真空蒸着機上室内を5×10−3torrに減圧し、予めオイル蒸発器の中に供給しておいたフッ素系オイルを90℃以上に加熱し、オイル蒸発器上部に設けられたスリットを通して高分子フィルムに長手方向の非蒸着マージンを形成する。次いで、転写ロールに蒸気状のオイルを供給して付着させ、転写ロールの表面に形成されたオイルを、図1,2にそれぞれ示す(1)開発A、(2)開発B、及び図5に示す(3)半TD、(4)T、(5)クロス、のパターンが同一のロールに彫刻された印刷ロールに転写させる。更に印刷ロールの彫刻パターン表面に形成されたオイル層を、連続的に巻き出し側から巻き取り側に移動するフィルム基材に転写させて、幅方向の非蒸着マージンを形成した。次いで、2×10−4torr以下に排気された真空蒸着機下室に位置する冷却ロール下部で、アルミニウムの膜抵抗がヘビー部で3〜4Ω/□、アクティブ部で12〜20Ω/□となるようにスリットを通して蒸着し、印刷パターン(マージンパターン)の形成されたアルミ蒸着フィルムを作成した。フィルム速度は350m/minで連続的に行った。
(Examples 3 and 4, Comparative Example 4)
A biaxially stretched polypropylene film (made by Toray Industries, Inc .: Trefan (registered trademark) 2172) having a width of 640 mm and a thickness of 3.2 μm was used as the film substrate. The vacuum chamber upper chamber is depressurized to 5 × 10 −3 torr, and the fluorine-based oil supplied in advance in the oil evaporator is heated to 90 ° C. or higher, and high through a slit provided in the upper part of the oil evaporator. A non-deposition margin in the longitudinal direction is formed in the molecular film. Next, the vapor-form oil is supplied to the transfer roll and attached thereto, and the oil formed on the surface of the transfer roll is shown in FIGS. 1 and 2, respectively (1) Development A, (2) Development B, and The patterns (3) half TD, (4) T, and (5) cross shown are transferred to a printing roll engraved on the same roll. Furthermore, the oil layer formed on the surface of the engraving pattern of the printing roll was transferred to a film substrate that continuously moved from the unwinding side to the winding side to form a non-deposition margin in the width direction. Next, at the lower part of the cooling roll located in the lower chamber of the vacuum deposition apparatus evacuated to 2 × 10 −4 torr or less, the film resistance of aluminum becomes 3 to 4Ω / □ in the heavy part and 12 to 20Ω / □ in the active part. As described above, vapor deposition was performed through the slits to prepare an aluminum vapor deposition film on which a printing pattern (margin pattern) was formed. The film speed was continuously performed at 350 m / min.

次にアルミ蒸着フィルムをスリッターと呼ばれる細断機で50mm幅に連続的に細断し、同幅で3000m以上の長さを巻き取ったリール状蒸着品を作成した。そして長手マージン位置が左右対称となるヘビーエッジ印刷パターン蒸着リールとヘビーエッジ一般蒸着リールを組み合わせて、PBTコアを用いる素子巻き機で200〜300gfの張力をかけて巻き上げ、容量10μF、35μFの素子を作成した。各マージンパターンが形成されたアルミ蒸着フィルムを用いたコンデンサを、それぞれ
実施例3:(1)開発Aパターン
パターンピッチ :4mm(長手方向)
幅方向非蒸着マージンの狭隘部の幅 :1.8mm
幅方向非蒸着マージンの不連続部分の幅 :2.0mm
幅方向の非蒸着マージンと電極端面との距離:10mm
実施例4:(2)開発Bパターン
パターンピッチ4mm(長手方向)
幅方向非蒸着マージンの狭隘部の幅 :1.8mm
幅方向非蒸着マージンの不連続部分の幅 :2.0mm
幅方向の非蒸着マージンと電極端面との距離:10mm
比較例4:(3)半TDパターン
パターンピッチ :4mm(長手方向)
幅方向の非蒸着マージンと電極端面との距離:10mm
とした。
Next, the aluminum vapor-deposited film was continuously shredded to a width of 50 mm with a shredding machine called a slitter, and a reel-like vapor-deposited product having a width of 3000 m or more with the same width was produced. A combination of a heavy edge printing pattern vapor deposition reel and a heavy edge general vapor deposition reel whose longitudinal margin positions are symmetric is wound up by applying a tension of 200 to 300 gf with an element winding machine using a PBT core, and elements having a capacity of 10 μF and 35 μF are wound. Created. Capacitors using aluminum vapor deposition films on which each margin pattern was formed were respectively Example 3: (1) Development A pattern Pattern pitch: 4 mm (longitudinal direction)
Width of narrow part of width direction non-deposition margin: 1.8mm
Width of discontinuous part in width direction non-deposition margin: 2.0 mm
The distance between the non-deposition margin in the width direction and the electrode end face: 10 mm
Example 4: (2) Development B pattern Pattern pitch 4 mm (longitudinal direction)
Width of narrow part of width direction non-deposition margin: 1.8mm
Width of discontinuous part in width direction non-deposition margin: 2.0 mm
The distance between the non-deposition margin in the width direction and the electrode end face: 10 mm
Comparative Example 4: (3) Half TD pattern Pattern pitch: 4 mm (longitudinal direction)
The distance between the non-deposition margin in the width direction and the electrode end face: 10 mm
It was.

次いで各コンデンサー素子の電極作成のため、メタリコン、リード線付けを行い、その後初期容量を安藤電気製LCRメーターで測定した。   Next, in order to prepare electrodes for each capacitor element, metallicons and lead wires were attached, and then the initial capacity was measured with an LCR meter manufactured by Ando Electric.

10μFのコンデンサ素子を用いて、ステップアップDCBDVを実施し図6に示す結果を得た。また、35μFのコンデンサ素子を用いて、高温DCVTを実施し図7に示す結果を得た。   Step-up DCBDV was performed using a 10 μF capacitor element, and the results shown in FIG. 6 were obtained. Moreover, high temperature DCVT was implemented using the 35 micro F capacitor | condenser element, and the result shown in FIG. 7 was obtained.

容量減少10%時でのステップアップDCBDVでは実施例3,4の電圧が高く、高温VTでも48Hr後の容量低下がないことが確認された。   In step-up DCBDV when the capacity decreased by 10%, the voltages of Examples 3 and 4 were high, and it was confirmed that there was no capacity decrease after 48 hours even at high temperature VT.

本願発明にかかる非蒸着マージンパターンNon-deposition margin pattern according to the present invention 本願発明にかかる非蒸着マージンパターンNon-deposition margin pattern according to the present invention 本願発明にかかる非蒸着マージンパターンNon-deposition margin pattern according to the present invention 本願発明にかかる非蒸着マージンパターンNon-deposition margin pattern according to the present invention 従来技術の非蒸着マージンパターンConventional non-deposition margin pattern ステップアップDCBDVの測定結果Step-up DCBDV measurement results 高温DCVTの測定結果Measurement result of high temperature DCVT 狭隘部の幅、不連続部分の幅、パターンピッチ、幅方向の非蒸着マージンと電極端面との距離を説明する図The figure explaining the distance between the width of the narrow part, the width of the discontinuous part, the pattern pitch, the non-deposition margin in the width direction, and the electrode end face

符号の説明Explanation of symbols

1 長手方向の非蒸着マージン
2 幅方向の非蒸着マージン
3 不連続箇所
4 狭隘部
5 金属蒸着面
6 狭隘部の幅
7 不連続部分の幅
8 パターンピッチ
9 ヒューズ
10 ヒューズ幅
11 幅方向の非蒸着マージンと電極端面との距離
DESCRIPTION OF SYMBOLS 1 Non-deposition margin of longitudinal direction 2 Non-deposition margin of width direction 3 Discontinuous part 4 Narrow part 5 Metal deposition surface 6 Narrow part width 7 Discontinuous part width 8 Pattern pitch 9 Fuse 10 Fuse width 11 Non-evaporation of width direction Distance between margin and electrode end face

Claims (5)

フィルム基材の少なくとも片面に金属が蒸着された金属蒸着フィルムであって、該金属蒸着面に、長手方向に連続した少なくとも1本の非蒸着マージン、及び、下記(1)〜(3)を満たす複数本の幅方向の非蒸着マージンを含む金属蒸着フィルム。
(1)各非蒸着マージンには、それぞれに少なくとも1箇所の不連続部分がある。
(2)各非蒸着マージンは交差しない。
(3)隣り合う非蒸着マージンの間に、幅方向で少なくとも1ヶ所の狭隘部がある。
A metal vapor deposition film in which a metal is vapor-deposited on at least one surface of a film substrate, and the metal vapor deposition surface satisfies at least one non-deposition margin that is continuous in the longitudinal direction and the following (1) to (3): Metal vapor deposition film including multiple non-deposition margins in the width direction.
(1) Each non-deposition margin has at least one discontinuous portion.
(2) Each non-deposition margin does not intersect.
(3) There is at least one narrow portion in the width direction between adjacent non-deposition margins.
前記複数本の幅方向の非蒸着マージンが全て曲線である請求項1に記載の金属蒸着フィルム。   The metal vapor deposition film according to claim 1, wherein all of the plurality of non-deposition margins in the width direction are curves. 前記複数本の幅方向の非蒸着マージンが、直線と曲線が交互に並んだものである請求項1に記載の金属蒸着フィルム。   2. The metal-deposited film according to claim 1, wherein the plurality of non-deposition margins in the width direction are formed by alternately arranging straight lines and curves. 前記狭隘部の幅と、前記幅方向の非蒸着マージンの不連続部分の幅とが0.2mm以上P(mm)未満である請求項1〜4のいずれかに記載の金属蒸着フィルム。
(ただし、P(mm):長手方向の非蒸着マージンと各幅方向の非蒸着マージンとの各交点の間隔。)
The metal vapor deposition film according to claim 1, wherein a width of the narrow portion and a width of a discontinuous portion of the non-deposition margin in the width direction are 0.2 mm or more and less than P (mm).
(However, P (mm): the distance between each intersection of the non-deposition margin in the longitudinal direction and the non-deposition margin in each width direction.)
請求項1〜4のいずれかに記載の金属蒸着フィルムを構成材料とするフィルムコンデンサ。   The film capacitor which uses the metal vapor deposition film in any one of Claims 1-4 as a constituent material.
JP2006020196A 2006-01-30 2006-01-30 Metal deposited film Withdrawn JP2007201313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020196A JP2007201313A (en) 2006-01-30 2006-01-30 Metal deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020196A JP2007201313A (en) 2006-01-30 2006-01-30 Metal deposited film

Publications (1)

Publication Number Publication Date
JP2007201313A true JP2007201313A (en) 2007-08-09

Family

ID=38455568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020196A Withdrawn JP2007201313A (en) 2006-01-30 2006-01-30 Metal deposited film

Country Status (1)

Country Link
JP (1) JP2007201313A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088258A (en) * 2007-09-28 2009-04-23 Nichicon Corp Metallized film capacitor
JP2010016047A (en) * 2008-07-01 2010-01-21 Shizuki Electric Co Inc Metallized film capacitor
JP2012099747A (en) * 2010-11-05 2012-05-24 Kojima Press Industry Co Ltd Metal deposition film
JP2015056582A (en) * 2013-09-13 2015-03-23 小島プレス工業株式会社 Conductor evaporation film for film capacitor
JP2017143170A (en) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 Metalized film and metalized film capacitor using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088258A (en) * 2007-09-28 2009-04-23 Nichicon Corp Metallized film capacitor
JP2010016047A (en) * 2008-07-01 2010-01-21 Shizuki Electric Co Inc Metallized film capacitor
JP2012099747A (en) * 2010-11-05 2012-05-24 Kojima Press Industry Co Ltd Metal deposition film
JP2015056582A (en) * 2013-09-13 2015-03-23 小島プレス工業株式会社 Conductor evaporation film for film capacitor
JP2017143170A (en) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 Metalized film and metalized film capacitor using the same

Similar Documents

Publication Publication Date Title
US6153259A (en) Thin film, method and apparatus for forming the same, and electronic component incorporating the same
WO1998006776A1 (en) Polypropylene film and capacitor made by using the same as the dielectric
US5844770A (en) Capacitor structures with dielectric coated conductive substrates
JP2007201313A (en) Metal deposited film
WO1990003266A1 (en) Aluminium vacuum evaporation film and its production method
JP2009000957A (en) Metal vapor deposition film for capacitor and metallized film capacitor using the same
JP2001072778A (en) Biaxially oriented polypropylene film
JP4742398B2 (en) Biaxially oriented polypropylene film
JP2008263172A (en) Metallized film and capacitor using the same
JP2009147255A (en) Metallized film and metallized film capacitor
JP2008115417A (en) Method for producing metallized film, and metallized film
JP2007100184A (en) Method for producing metal vapor deposited film
JP2018157055A (en) Metallized film for capacitor and capacitor using the same
JP2008149553A (en) Metal vapor deposition film
JP2002154187A (en) Polypropylene film and film capacitor
JP2007109845A (en) Capacitor and metal deposition film therefor
JP2003257777A (en) Polypropylene film for capacitor and capacitor
JP2002141246A (en) Polyester film for capacitor and film capacitor
JP2004281677A (en) High molecular dielectric and film for capacitor
JPS62222518A (en) Manufacture of transparent conductive film
EP4324642A1 (en) Metallized polypropylene film
JP2003109837A (en) Laminated film capacitor, manufacturing method of the laminated film capacitor and laminated film capacitor manufacturing device
US20240181749A1 (en) Metallized polypropylene film
JPH11288842A (en) Metallized film capacitor
JPH0897081A (en) Production of film capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110131