JPS6344180B2 - - Google Patents

Info

Publication number
JPS6344180B2
JPS6344180B2 JP11985881A JP11985881A JPS6344180B2 JP S6344180 B2 JPS6344180 B2 JP S6344180B2 JP 11985881 A JP11985881 A JP 11985881A JP 11985881 A JP11985881 A JP 11985881A JP S6344180 B2 JPS6344180 B2 JP S6344180B2
Authority
JP
Japan
Prior art keywords
depth
ultrasonic
measuring device
water temperature
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11985881A
Other languages
Japanese (ja)
Other versions
JPS5821129A (en
Inventor
Junichi Fujiwara
Noritoshi Ito
Kyomi Minohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP11985881A priority Critical patent/JPS5821129A/en
Publication of JPS5821129A publication Critical patent/JPS5821129A/en
Publication of JPS6344180B2 publication Critical patent/JPS6344180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/24Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 この発明は水中の深度方向の温度分布を測定す
ることに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to measuring temperature distribution in the depth direction underwater.

従来、水中の温度測定を行なう装置としてサー
ミスタのような感温素子が多く用いられている。
この種の測定装置は比較的精度よく温度測定を行
なうことができるが、極部的にしか測定ができ
ず、広範囲の温度分布を測定するためには、多数
の異なる点の温度測定を行なわなければならず、
測定に長時間を要する欠点がある。
Conventionally, temperature sensing elements such as thermistors have often been used as devices for measuring temperature in water.
This type of measuring device can measure temperature with relative accuracy, but it can only measure local areas, and in order to measure a wide range of temperature distribution, it must measure temperature at many different points. Not necessarily,
It has the disadvantage that measurement takes a long time.

この発明は、水中に超音波パルスを送波してそ
の伝搬時間を測定することにより、水中の温度変
傾の傾向を測定する装置を提供する。
The present invention provides an apparatus for measuring trends in temperature gradients in water by transmitting ultrasonic pulses into water and measuring the propagation time.

以下この発明の1実施例について説明する。 One embodiment of this invention will be described below.

第1図において、1及び2は超音波送受波器で
船3の船底に装備される。そして、超音波送受波
器1は船底から直下の海底に向けて超音波パルス
を送受波する。又、超音波送受波器2は船3が矢
印A方向に航行するとき、直下の海底に対してθ
だけ後方の海底に向けて超音波パルスを送受波す
る。
In FIG. 1, 1 and 2 are ultrasonic transducers installed on the bottom of a ship 3. The ultrasonic transducer 1 transmits and receives ultrasonic pulses from the bottom of the ship to the seabed directly below. Also, when the ship 3 is sailing in the direction of arrow A, the ultrasonic transducer 2 is set at θ with respect to the seabed directly below.
It sends and receives ultrasonic pulses toward the ocean floor behind it.

超音波送受波器1は送信器19に基づいて周波
数f1の超音波パルスを周期的に送波する。直下の
海底からの反射波は送受波器1に受波された後受
信器4に導かれて増巾検波される。受信器4の出
力はカウンター5へ送出される。カウンター5は
送信器19が送受波器1を励振する毎にクロツク
パルス源20のクロツクパルスを計数し、受信器
4が海底反射波を検出したとき、計数を停止す
る。そしてその計数値はラツチ回路6へ送出さ
れ、カウンター5から次の計数値が送出されるま
での間計数値がラツチされる。
The ultrasonic transducer 1 periodically transmits ultrasonic pulses of frequency f 1 based on the transmitter 19 . The reflected wave from the seabed immediately below is received by the transducer 1 and then guided to the receiver 4 where it is amplified and detected. The output of receiver 4 is sent to counter 5. The counter 5 counts clock pulses from the clock pulse source 20 every time the transmitter 19 excites the transducer 1, and stops counting when the receiver 4 detects a seabed reflected wave. The counted value is then sent to the latch circuit 6, where it is latched until the next counted value is sent out from the counter 5.

ラツチ回路6の計数値は記憶回路7へ送出され
て航程計8から出力が送出されたときその計数値
が記憶される。航程計8は船3の移動距離を測定
するもので、船3が一定距離(単位距離)走行す
る毎に出力を送出する。記憶回路7は航程計8が
出力を送出する毎にラツチ回路6のラツチ数値を
順に記憶していき、記憶容量を越えた後は最も古
い記憶数値が順に更新しながら記憶される。従つ
て、記憶回路7は船3が一定距離L0を走行する
間の深度データーを記憶する。
The count value of the latch circuit 6 is sent to the storage circuit 7, and when the output from the range meter 8 is sent out, the count value is stored. The range meter 8 measures the distance traveled by the ship 3, and sends out an output every time the ship 3 travels a certain distance (unit distance). The storage circuit 7 sequentially stores the latch values of the latch circuit 6 every time the range meter 8 sends an output, and after the storage capacity is exceeded, the oldest stored value is stored while being updated in order. Therefore, the memory circuit 7 stores depth data while the ship 3 travels a certain distance L0 .

他方、超音波送受波器2は送信器9に基づいて
θ方向に超音波パルスを送波して海底からの反射
波を受波する。そして、その海底反射波は受信器
10で検出された後カウンター11へ送出され
る。
On the other hand, the ultrasonic transducer 2 transmits ultrasonic pulses in the θ direction based on the transmitter 9 and receives reflected waves from the ocean floor. Then, the seabed reflected wave is detected by the receiver 10 and then sent to the counter 11.

カウンター11は送信器9が送受波器2を励振
する毎にクロツクパルス源21のクロツクパルス
列を計数し、受信器10が海底パルスを検出した
とき、その計数値がラツチ回路12へ送出されて
ラツチされる。ラツチ回路12のラツチ数値はθ
方向に送波した音波が帰来するまでの時間に相当
する。
The counter 11 counts the clock pulse train of the clock pulse source 21 every time the transmitter 9 excites the transducer 2, and when the receiver 10 detects a submarine pulse, the counted value is sent to the latch circuit 12 and latched. be done. The latch value of the latch circuit 12 is θ
It corresponds to the time it takes for a sound wave sent in a direction to return.

上記において、超音波送受波器2が超音波パル
スを送受波する方向θは指向角制御回路13によ
つて制御され、指向角制御回路13は指向角θに
対応するデーターを水平距離演算回路14へ送出
する。水平距離演算回路14は超音波パルスをθ
方向に送波するときの海底までの水平方向の距離
Lを演算する。その演算結果は記憶回路7へ送出
されて、記憶回路7の記憶数値のうち上記演算し
た水平距離Lに対応する記憶数値D0を読み出す。
従つて、記憶回路7から読み出される記憶数値は
船3の現在位置からθ方向の海底位置の深度に相
当する。
In the above, the direction θ in which the ultrasonic transducer 2 transmits and receives ultrasonic pulses is controlled by the directivity angle control circuit 13, and the directivity angle control circuit 13 transmits data corresponding to the directivity angle θ to the horizontal distance calculation circuit 14. Send to. The horizontal distance calculation circuit 14 converts the ultrasonic pulse into θ
Calculate the horizontal distance L to the seabed when transmitting waves in the direction. The calculation result is sent to the storage circuit 7, and among the stored numerical values in the storage circuit 7, the stored numerical value D 0 corresponding to the horizontal distance L calculated above is read out.
Therefore, the stored numerical value read out from the storage circuit 7 corresponds to the depth of the seabed position in the θ direction from the current position of the ship 3.

記憶回路7から読み出され深度データーD0
水平距離演算回路14から送出される距離データ
ーLと共に伝播時間演算回路16へ送出される。
The depth data D 0 read from the storage circuit 7 is sent to the propagation time calculation circuit 16 together with the distance data L sent from the horizontal distance calculation circuit 14 .

伝播時間演算回路16は、θ方向に送波した超
音波パルスがθ方向の海底で反射されて帰来する
までの時間を演算する。例えば、θ方向の海底ま
での直線距離Rは R=√0 22 より求めることができるから、この直線距離Rを
音波の伝播速度Cで除算することにより、θ方向
の海底までの理論上の音波の往復時間を求めるこ
とができる。なお、音波の伝播速度Cは表面層の
水温に対応するものを用いる。
The propagation time calculation circuit 16 calculates the time it takes for an ultrasonic pulse transmitted in the θ direction to be reflected on the ocean floor in the θ direction and return. For example, the straight line distance R to the seabed in the θ direction can be found from R = √ 0 2 + 2 , so by dividing this straight line distance R by the propagation speed C of the sound wave, the theoretical distance to the sea bed in the θ direction can be calculated as follows. The round trip time of the sound wave can be found. Note that the propagation velocity C of the sound wave is determined to correspond to the water temperature of the surface layer.

しかし、実際には、水温は均一ではなく深度に
従つて変化し、一般には深くなるに従つて水温も
低くなる。この場合、θ方向に送波した超音波パ
ルスは点線Bのように屈折して、理論上の海底点
とは若干異なつた海底から反射する。このため、
超音波送受波器2に反射波が帰来するまでの時間
は、理論上の時間よりも短かくなり、水温変化の
傾向が大きくなるに従つてこの度合が大きくな
る。又、水温が深度と共に高くなるときは、θ方
向に送受波する超音波は、上記とは逆に、点線C
のように屈折する結果、反射波が実際に帰来する
までの時間は、理論上の時間よりも長くなる。
However, in reality, water temperature is not uniform but changes with depth, and generally the water temperature becomes lower as the depth increases. In this case, the ultrasonic pulse transmitted in the θ direction is refracted as indicated by the dotted line B and reflected from the seabed slightly different from the theoretical seabed point. For this reason,
The time it takes for the reflected wave to return to the ultrasonic transducer 2 is shorter than the theoretical time, and this degree increases as the tendency of water temperature change increases. Also, when the water temperature increases with depth, the ultrasonic waves transmitted and received in the θ direction will move along the dotted line C, contrary to the above.
As a result of the refraction, the time it takes for the reflected wave to actually return is longer than the theoretical time.

伝播時間演算回路16の演算結果は比較回路1
7へ送出されてラツチ回路12がラツチしている
実際の測定時間との比率が計算される。そして、
その比較結果は表示器18へ送出されて表示され
る。従つて、上記から明きらかなように、表示器
18の表示値から水温変化の傾向を知ることがで
きる。又、超音波パルスの送受波方向θは任意に
可変できるから、送受波方向θを種々変化させて
測定することにより水温変化をより詳細に観測す
ることができる。
The calculation result of the propagation time calculation circuit 16 is sent to the comparison circuit 1.
7 and the actual measurement time during which the latch circuit 12 is latched is calculated. and,
The comparison result is sent to the display 18 and displayed. Therefore, as is clear from the above, it is possible to know the tendency of the water temperature change from the value displayed on the display 18. Further, since the transmission/reception direction θ of the ultrasonic pulse can be arbitrarily varied, changes in water temperature can be observed in more detail by making measurements while varying the transmission/reception direction θ.

以上説明したように、この発明によると、航行
する船から超音波パルスを送受波するだけで水温
変化の傾向を知ることができるから、漁場等の探
索に用いて極めて有益な装置を得ることができ
る。
As explained above, according to the present invention, trends in water temperature changes can be determined simply by transmitting and receiving ultrasonic pulses from a sailing ship, making it possible to obtain an extremely useful device for use in searching for fishing grounds, etc. can.

なお、上記において、超音波送受波器1並びに
2は海底からの反射波を受波するごとくなされて
いるが、海底反射波の代わりに水中反射波を用い
ても同様に水温の変化傾向を知ることができる。
すなわち、水中に送波した音波は、水温の変化す
る境界付近で一部が反射し、の反射源が水面方向
に広く分布していることが多いから、この反射波
を利用しても上記と同様にして水音の変化傾向を
知ることができる。
In the above, the ultrasonic transducers 1 and 2 are configured to receive reflected waves from the seabed, but it is also possible to similarly detect water temperature change trends by using underwater reflected waves instead of seabed reflected waves. be able to.
In other words, a part of the sound waves transmitted into water is reflected near the boundary where the water temperature changes, and the sources of reflection are often widely distributed toward the water surface, so even if these reflected waves are used, the above cannot be achieved. In the same way, it is possible to know the tendency of changes in water sound.

又、上記において、測定した水音の変化傾向に
基づいて水中温度を測定することも可能である。
すなわち、船3の船底に感音素子22を設けて水
温計23で送受波器1,2付近の水温を測定し
て、この水音を基準にした水温変化を上記水温変
化傾向より演算すると、各深度毎の水温を知るこ
とができる。
Moreover, in the above, it is also possible to measure the water temperature based on the change tendency of the measured water sound.
That is, if a sound sensing element 22 is installed on the bottom of the boat 3 and the water temperature near the transducers 1 and 2 is measured with a water thermometer 23, and the water temperature change based on this water sound is calculated from the water temperature change trend described above, You can know the water temperature at each depth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す。 FIG. 1 shows an embodiment of the invention.

Claims (1)

【特許請求の範囲】 1 船底からほぼ直下方向に超音波パルスを送波
して反射波を受波するまでの時間に基づいて該反
射源の深度を測定する深度測定装置と、 該深度測定装置の超音波送受波方向に対してθ
方向に超音波パルスを送波して上記深度測定装置
の測定した深度の反射源からの反射波を受波する
までの時間を測定する超音波送受波装置と、 上記深度測定装置の測定した深度と上記超音波
送受波装置の超音波パルスの送波方向θとに基づ
いて上記θ方向に送波した超音波パルスがθ方向
の上記測定深度及び反射して帰来するまでの理論
上の時間を演算する手段とを具備し、該演算時間
と上記超音波送受波装置の測定時間との対比に基
づいて水中温度の変化傾向を測定することを特徴
とする水温測定装置。 2 上記超音波送受波装置の超音波送受波方向θ
が任意に可変可能になされていることを特徴とす
る特許請求の範囲第1項記載の水温測定装置。 3 船底からほぼ直下に向けて超音波パルスを送
波して反射波を受波するまでの時間に基づいて該
反射源の深度を測定する深度測定装置と、 該深度測定装置の超音波送受波方向に対してθ
方向に超音波パルスを送波して上記深度測定装置
の測定した深度の反射源からの反射波を受波する
までの時間を測定する超音波送受波装置と、 上記深度測定装置の測定した深度と上記超音波
送受波装置の超音波パルスの送波方向θとに基づ
いて上記θ方向に送波した超音波パルスがθ方向
の上記測定深度で反射して帰来するまでの理論上
の時間を演算する手段と、 上記超音波パルスを送受波する送受波器の深度
付近の水温を測定する水温測定器と、 上記深度測定装置の測定した深度と上記演算手
段の演算時間との比率を演算し、さらに該比率と
上記水温測定器の測定値とに基づいて水中温度を
演算する演算手段とを具備してなる水温測定装
置。 4 上記超音波送受波装置の超音波送受波方向θ
が任意に可変可能になされていることを特徴とす
る特許請求の範囲第3項記載の水温測定装置。
[Claims] 1. A depth measuring device that measures the depth of a reflection source based on the time it takes to transmit an ultrasonic pulse from the bottom of a ship in a direction almost directly below and receive a reflected wave; and the depth measuring device. θ with respect to the ultrasonic wave transmission and reception direction of
an ultrasonic transceiver device that transmits ultrasonic pulses in a direction and measures the time it takes to receive a reflected wave from a reflection source at a depth measured by the depth measuring device; and a depth measured by the depth measuring device. and the transmission direction θ of the ultrasonic pulse of the ultrasonic transceiver device, the measurement depth in the θ direction and the theoretical time required for the ultrasonic pulse transmitted in the θ direction to return after being reflected. 1. A water temperature measuring device, comprising: calculating means, and measuring a tendency of change in water temperature based on a comparison between the calculating time and the measuring time of the ultrasonic wave transmitting/receiving device. 2 Ultrasonic wave transmission/reception direction θ of the ultrasonic wave transmission/reception device
2. The water temperature measuring device according to claim 1, wherein the temperature can be changed arbitrarily. 3. A depth measuring device that measures the depth of the reflection source based on the time it takes to transmit an ultrasonic pulse almost directly below the bottom of the ship and receive the reflected wave; and ultrasonic wave transmission and reception of the depth measuring device. θ with respect to the direction
an ultrasonic transceiver device that transmits ultrasonic pulses in a direction and measures the time it takes to receive a reflected wave from a reflection source at a depth measured by the depth measuring device; and a depth measured by the depth measuring device. and the transmission direction θ of the ultrasonic pulse of the ultrasonic transceiver device, the theoretical time it takes for the ultrasonic pulse transmitted in the θ direction to be reflected at the measurement depth in the θ direction and return. means for calculating, a water temperature measuring device for measuring water temperature near the depth of the transducer for transmitting and receiving the ultrasonic pulses, and calculating a ratio between the depth measured by the depth measuring device and the calculation time of the calculating means. A water temperature measuring device further comprising a calculation means for calculating the water temperature based on the ratio and the measured value of the water temperature measuring device. 4 Ultrasonic wave transmission/reception direction θ of the ultrasonic wave transmission/reception device
4. The water temperature measuring device according to claim 3, wherein the temperature can be changed arbitrarily.
JP11985881A 1981-07-29 1981-07-29 Measuring apparatus for temperature of water Granted JPS5821129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11985881A JPS5821129A (en) 1981-07-29 1981-07-29 Measuring apparatus for temperature of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11985881A JPS5821129A (en) 1981-07-29 1981-07-29 Measuring apparatus for temperature of water

Publications (2)

Publication Number Publication Date
JPS5821129A JPS5821129A (en) 1983-02-07
JPS6344180B2 true JPS6344180B2 (en) 1988-09-02

Family

ID=14772010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11985881A Granted JPS5821129A (en) 1981-07-29 1981-07-29 Measuring apparatus for temperature of water

Country Status (1)

Country Link
JP (1) JPS5821129A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131436A (en) * 1983-12-19 1985-07-13 Furuno Electric Co Ltd Measuring device of water temperature
JPH0158829U (en) * 1987-10-09 1989-04-13

Also Published As

Publication number Publication date
JPS5821129A (en) 1983-02-07

Similar Documents

Publication Publication Date Title
KR101238387B1 (en) Towing tank using ultrasonic measurement of ice thickness measurement system and method
US4104912A (en) System for taking current-metering measurements
US3795893A (en) Doppler speed log
JPS6344180B2 (en)
JPH0160774B2 (en)
JPS6365899B2 (en)
JP2916362B2 (en) Apparatus and method for correcting sound velocity in position measurement
JP2003215112A (en) Ultrasonic wave density meter
RU2810693C1 (en) Method for determining vertical angle of underwater object
JPS62124480A (en) Ice thickness measuring method for sea ice
JPH0376852B2 (en)
RU2692409C1 (en) Method of measuring liquid level
RU2123191C1 (en) Echo sounder
RU2195635C1 (en) Method of measurement of level of liquid and loose media
JP4358154B2 (en) Ultrasonic wave height meter
JPH07318397A (en) Ultrasonic liquid gage
SU1029006A1 (en) Device for measuring fluid film thickness
JPH08334321A (en) Ultrasonic distance-measuring apparatus
JPH05172793A (en) Sound characteristic value measuring device
JPS6013233A (en) Water-temperature measuring device
SU1460619A1 (en) Method of measuring distribution of sound velocity in liquid medium
JPS6239336Y2 (en)
JPS622182A (en) Underwater position measuring instrument
JPH0961145A (en) Method and apparatus for measurement of thickness or sound velocity
JPH04252989A (en) Snow coverage meter