JPH0376852B2 - - Google Patents

Info

Publication number
JPH0376852B2
JPH0376852B2 JP25799784A JP25799784A JPH0376852B2 JP H0376852 B2 JPH0376852 B2 JP H0376852B2 JP 25799784 A JP25799784 A JP 25799784A JP 25799784 A JP25799784 A JP 25799784A JP H0376852 B2 JPH0376852 B2 JP H0376852B2
Authority
JP
Japan
Prior art keywords
ultrasonic
water
water temperature
waves
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25799784A
Other languages
Japanese (ja)
Other versions
JPS61134639A (en
Inventor
Hiroshi Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP25799784A priority Critical patent/JPS61134639A/en
Publication of JPS61134639A publication Critical patent/JPS61134639A/en
Publication of JPH0376852B2 publication Critical patent/JPH0376852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/24Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、水温の垂直分布測定方法に関し、
詳しくは、超音波を利用して水中の水温を間接的
に測定することにより水温の垂直分布状況を一時
に測定する方法に関する。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a method for measuring vertical distribution of water temperature.
Specifically, the present invention relates to a method for simultaneously measuring the vertical distribution of water temperature by indirectly measuring the water temperature in water using ultrasonic waves.

従来の技術 海洋研究、漁業資源の開発において、海洋の水
中の水温、とりわけ水温の深度に応じた垂直分布
を知ることは非常に重要な意義を有する。
BACKGROUND OF THE INVENTION In marine research and development of fisheries resources, it is extremely important to know the water temperature in the ocean, especially the vertical distribution of water temperature depending on depth.

従来、海水中の水温を知る手段としては、感温
素子(サーミスタ)などを用い所定深度の水温を
直接的に測定することが一般的に行なわれている
が、これら直接的測定手段は、感温素子を所定深
度に正確に沈めた後、所定の温度表示に落ち付く
までに一定の時間を必要とするので、測定点一個
毎についての測定に手間が掛り、また、一回の測
定で一個の特定された水温情報しか知り得ないの
で、広く分布した水域の温度を知るためには多数
回の観測を繰り返す必要があり、深度に応じた水
温分布を測定するのは非常に面倒であるといつた
欠点があつた。
Conventionally, the common way to know the water temperature in seawater is to directly measure the water temperature at a predetermined depth using a temperature sensing element (thermistor). After the temperature element is accurately sunk to a predetermined depth, it takes a certain amount of time for the temperature to settle down to the predetermined temperature display, so it takes time to measure each measurement point, and it takes time to measure each measurement point. Since we can only know specific water temperature information, it is necessary to repeat observations many times in order to know the temperature of a widely distributed body of water, and it is extremely troublesome to measure water temperature distribution according to depth. I had a lot of flaws.

一方、このような問題を解決する手段として、
水中の音波伝播速度と水温との相関関係を利用
し、水中での超音波伝播時間より水中の水温を関
接的に測定する手段も種々提案されかつ、実施が
試みられている(例えば、特開昭56−53428号、
特開昭58−27034号)。しかし、これらの手段も、
測定し得る水温は、一個の測定点毎のものに限ら
れ、面状に広がる水温分布を測定するには多数の
特定点を選定し、各測定点毎に測定を繰り返す必
要があり、例えば潮目などのように水温分布の変
化の激しい海域においては有効な水温分布状況を
知ることは困難であるといつた問題があつた。
On the other hand, as a means to solve such problems,
Various methods have been proposed and attempted to directly measure the water temperature in water from the ultrasonic propagation time in water by utilizing the correlation between the sound wave propagation velocity in water and the water temperature (for example, Kaisho 56-53428,
(Japanese Patent Publication No. 58-27034). However, these measures also
The water temperature that can be measured is limited to that at each measurement point, and in order to measure the water temperature distribution that spreads over a surface, it is necessary to select many specific points and repeat measurements at each measurement point. There was a problem that it was difficult to know the effective water temperature distribution situation in sea areas where the water temperature distribution changes rapidly.

発明の解決しようとする問題点 この発明は上記問題点に鑑み、極く短時間のう
ちに所定の水域の垂直面に沿つた水温分布を一括
して測定し、いわば、水温に関する海水の断層写
真的な情報を得ることを目的としてなされたもの
である。
Problems to be Solved by the Invention In view of the above-mentioned problems, the present invention measures the water temperature distribution along the vertical plane of a predetermined body of water all at once in an extremely short period of time, and creates a tomographic photograph of seawater related to water temperature. This was done for the purpose of obtaining relevant information.

問題点を解決する技術 この発明の水温の垂直分布測定方法は、垂直下
方の指向性超音波発信装置及び無指向性超音波受
波装置を一組とし、該一組の超音波発信受波装置
を水中に一定間隔毎水平方向に複数組配置し、前
記すべての超音波発信装置から超音波を発射し、
該超音波の水底反射波及び直接到来波を前記すべ
ての超音波受波装置で、各超音波発信装置毎に受
信し、かくして得られた超音波の水中伝播時間を
基にして超音波発信受波装置の配列方向を含む水
中の垂直面内を前記超音波発信受波装置の組数に
応じ縦横同数に区画し、この区画した水塊毎の超
音波の水中伝播の累積として、該水塊一個毎につ
いての音速を連立方程式により解き、得られた各
水塊毎の音速より音速と水温との相関を利用して
各水塊の水温を算出することを特徴とするもので
ある。
Technique for Solving Problems The water temperature vertical distribution measuring method of the present invention includes a set of a vertically downward directional ultrasonic transmitter and an omnidirectional ultrasonic receiver, and the set of the ultrasonic transmitter and receiver A plurality of sets of are placed in the water at regular intervals in the horizontal direction, and all of the ultrasonic transmitters emit ultrasonic waves,
The underwater reflected waves and directly arriving waves of the ultrasonic waves are received by each ultrasonic transmitter by all the ultrasonic receivers, and the ultrasonic transmitter/receiver is determined based on the underwater propagation time of the ultrasonic waves thus obtained. The underwater vertical plane including the array direction of the wave devices is divided into the same number of vertical and horizontal sections according to the number of sets of the ultrasonic wave transmitting/receiving devices, and the cumulative underwater propagation of ultrasonic waves for each divided water mass is calculated as the water mass. The method is characterized in that the speed of sound for each water mass is solved by simultaneous equations, and the water temperature of each water mass is calculated from the obtained sound velocity for each water mass using the correlation between the sound speed and water temperature.

作 用 海洋中における超音波の音速は伝播する水中の
温度に大きく依存しており、その他塩分濃度、水
深等によりも影響されるが、わずかであつて、音
速をC(m/sec)、水温をT(℃)、塩分濃度をS
(0/00)、水深をZ(m)とすれば C=1410+4.21T−0.037T2 +1.14S+0.0168Z … の関係があることが知られている。
Effect The sound speed of ultrasonic waves in the ocean largely depends on the temperature of the water in which it propagates, and is also influenced by salinity, water depth, etc., but it is only slightly affected by the sound speed in C (m/sec) and the water temperature. is T (℃), and the salinity is S
(0/00) and the water depth is Z (m), it is known that there is a relationship as follows: C=1410+4.21T−0.037T 2 +1.14S+0.0168Z...

上式より明らかなように、水中での音波の伝播
速度は、主として水温に影響され、水温が高けれ
ば速く、また水温が低くければ遅く伝播する。従
つて、水中の音波の伝播経路に水温の高低差があ
る場合、水中に発射されやがて水底で反射されて
戻つて来る音波の反響時間は、水中の温度分布の
情報を担つている筈である。
As is clear from the above equation, the propagation speed of sound waves in water is mainly affected by the water temperature; the higher the water temperature, the faster the sound waves propagate, and the lower the water temperature, the slower the propagation speed. Therefore, if there is a difference in water temperature along the propagation path of underwater sound waves, the reverberation time of the sound waves that are emitted into the water, reflected at the bottom of the water, and then returned should carry information about the temperature distribution in the water. .

今、水中を第1図に示すように4つの区画N1
N2,N3,N4に分け、水線面WLより超音波を発
信し、夫々の伝播経路P1,P2,P3,P4及びP5
超音波を受信したとすると、この水中において経
路P1で伝播する超音波はN1→N3→N2、また、経
路P2でN2→N4→N1、以下同様に経路P3ではN1
→N3→N1、経路P4ではN2→N4→N2、経路P5
はN1→N2と伝播し、各区画N1…N4での水温の
影響を受けて伝播する。
Now, as shown in Figure 1, there are four divisions N 1 in the water,
Suppose that ultrasonic waves are divided into N 2 , N 3 , N 4 and transmitted from the water line WL, and the ultrasonic waves are received on the respective propagation paths P 1 , P 2 , P 3 , P 4 and P 5 . The ultrasonic wave propagating underwater on path P 1 is N 1 →N 3 →N 2 , and on path P 2 it is N 2 →N 4 →N 1 , and similarly on path P 3 it is N 1
→N 3 →N 1 , propagates as N 2 →N 4 →N 2 on route P 4 , and N 1 →N 2 on route P 5 , and propagates under the influence of water temperature in each section N 1 ...N 4 .

一方、各経路P1…P5での超音波発信より受信
までの時間差をSP1,SP2,SP3,SP4,SP5とす
れば、これら時間差は、区画N1…N4毎を超音波
が伝播するのであるから、これらを基にして各区
画の伝播速度を知ることが出来る。
On the other hand, if the time differences from ultrasonic transmission to reception in each path P 1 ... P 5 are SP 1 , SP 2 , SP 3 , SP 4 , SP 5 , then these time differences are calculated for each section N 1 ... N 4 . Since ultrasonic waves propagate, the propagation speed in each section can be determined based on these.

即ち、各区画での温度に依存した音速をC1
C2,C3、C4、水深をD各区画の深さd(=D/2) とすると、 SP1=d/C1+d/C3+d/cosθ/C3+d/cosθ/C
2 SP2=d/C2+d/C4+d/cosθ/C4+d/cosθ/C
1 SP3=d/C1+d/C3+d/C3+d/C1 SP4=d/C2+d/C4+d/C4+d/C2 SP5=d′/2/C1+d′/2/C2 (d′…区画N1…N4の幅) の連立方程式が成立する。ここで、SP1…SP5
計測値として既知であり、D及びdも測深によつ
て判明可能であつて、cosθ及びd′の値も、水深D
と超音波送受波器の位置より機可学的に定まるか
ら結局未知数はC1…C4の4つとなり、上記連立
方程式を解くことが可能となる。
That is, the temperature-dependent sound speed in each section is C 1 ,
C 2 , C 3 , C 4 , and the water depth is the depth of each section D (=D/2), then SP 1 = d/C 1 + d/C 3 + d/cos θ/C 3 + d/cos θ/C
2 SP 2 = d/C 2 + d/C 4 + d/cos θ/C 4 + d/cos θ/C
1 SP 3 = d/C 1 +d/C 3 +d/C 3 +d/C 1 SP 4 = d/C 2 +d/C 4 +d/C 4 +d/C 2 SP 5 = d'/2/C 1 +d The simultaneous equations ′/2/C 2 (d′...width of section N 1 ...N 4 ) are established. Here, SP 1 ... SP 5 are known as measured values, D and d can also be determined by sounding, and the values of cos θ and d' are also determined by the water depth D.
Since this is mechanically determined from the position of the ultrasonic transducer, there are four unknowns, C 1 ...C 4 , and it is possible to solve the above simultaneous equations.

この解を求めれば、各区画N1…N4の超音波の
音速が求まり、この音速より前述の式より各区
画内の水深を知ることが出来るのである。
By finding this solution, the sound speed of the ultrasonic waves in each section N1 ... N4 can be found, and from this sound speed, the water depth within each section can be determined from the above formula.

上記説明は、本発明の作用説明のため単純化し
たものであり、実際の水中の温度分布をさらに詳
細に知るためには、第2図に示すように超音波発
信及び受波装置Eを多数(図示例は10組)所定間
隔毎に配置し、この超音波発信及び受波装置Eの
数だけ縦横に水中を区画し、各区画Nijについて
音速の連立方程式を立て、これらを解くことによ
り各区画の音速を求め、これらより水温を算出す
ることが行なわれる。
The above explanation is simplified to explain the operation of the present invention, and in order to know the actual temperature distribution in water in more detail, it is necessary to use a large number of ultrasonic transmitting and receiving devices E as shown in Fig. 2. (10 sets in the illustrated example) are placed at predetermined intervals, and the water is divided vertically and horizontally by the number of ultrasonic transmitting and receiving devices E. Simultaneous equations of sound speed are established for each section Nij, and by solving these, each The speed of sound in each section is determined, and the water temperature is calculated from these.

なお、超音波の水中伝播経路の特定のため、超
音波発信装置としては指向性を有する超音波発信
装置が、また、超音波受波装置としては、無指向
性の受波装置が用いられる。
In order to specify the underwater propagation path of ultrasound, a directional ultrasound transmitter is used as the ultrasound transmitter, and an omnidirectional receiver is used as the ultrasound receiver.

また、区画を第2図に示すように多数にした場
合、例えば第2図のPで示す部分では、音波の伝
播経路が、N43とN44の区画にかかる場合がある
が、いずれか多くかかる区画に属するもの(図示
例ではN44区画)として式を立てても差し支えな
い。
Furthermore, if there are a large number of sections as shown in Fig. 2, for example, in the part indicated by P in Fig. 2, the propagation path of the sound wave may span sections N43 and N44 , whichever is larger. There is no problem in setting up the formula as belonging to such a section (in the illustrated example, N44 section).

実施例 次に、この発明の方法を実施例により説明す
る。
Examples Next, the method of the present invention will be explained by examples.

第3図は、この発明の方法を実施するための装
置の概念図である。
FIG. 3 is a conceptual diagram of an apparatus for carrying out the method of the present invention.

第3図において、船体Vの船底にペンシルビー
ムの指向性超音波発信装置1Aと無指向性超音波
受波装置1Bを1組としてこれを船体Vの船首尾
方向に一定間隔l毎に配置する。
In FIG. 3, a pencil beam directional ultrasound transmitter 1A and an omnidirectional ultrasound receiver 1B are arranged as a set on the bottom of the hull V at regular intervals l in the bow and stern direction of the hull V. .

次に、上記1組の超音波発信受波装置のうち超
音波発信装置1Aを短かい時間間隔で順次作動さ
せ水中に超音波を発射し、このときの水底反射波
及び直接到来波の時間差Stを各受波装置1B…1
Bで受波し、測定する。
Next, the ultrasonic transmitting device 1A of the above-mentioned set of ultrasonic transmitting and receiving devices is sequentially operated at short time intervals to emit ultrasonic waves into the water, and the time difference St between the bottom reflected wave and the direct arriving wave is Each wave receiving device 1B...1
Receive the wave at B and measure it.

このとき、各組の超音波発信、受波装置1A,
1Bを船首より船尾方向に順にE1,E2…E10とす
ると、E1の発信音波は、E1,E2,E3,E4…E10
受信され、E2の発信音波はE1,E2,E3…E10で受
信され、以下同様に受信される結果、全部で100
組の時間差Stが測定され、かつ、このとき同時に
隣接する受波装置に、直接到来波として、E1
E2,E2→E3(E1),E3→E4(E2),E4→E5(E3)、以
下同様にして、10個の時間差が測定される。この
うち、E9→E10とE10→E9の到来波のデータは、同
じとなる筈であるから、これらより、全体で109
本の連立方程式が成立することとなり、未知数
100個の値の解くことは充分可能となる。
At this time, each set of ultrasonic transmitter, receiver 1A,
If 1B is E 1 , E 2 ...E 10 in order from the bow to the stern, the sound wave emitted by E 1 is received by E 1 , E 2 , E 3 , E 4 ...E 10 , and the sound wave emitted by E 2 is E 1 , E 2 , E 3 ...Received at E 10 , and so on, resulting in a total of 100
The time difference St between the pairs is measured, and at the same time, E 1
Ten time differences are measured in the same manner as E 2 , E 2 →E 3 (E 1 ), E 3 →E 4 ( E 2 ), E 4 →E 5 (E 3 ), and so on. Of these, the data of the arriving waves of E 9 → E 10 and E 10 → E 9 should be the same, so from these, the total is 109
The book's simultaneous equations hold true, and the unknown
It is quite possible to solve for 100 values.

かくして得られた各区画Nijの音速より前述の
式より各区画の水温を算出すれば、第4図に示
すように垂直断面内における水温の分布状況が判
明するのである。
By calculating the water temperature in each section using the above-mentioned formula from the sound velocity in each section Nij obtained in this way, the distribution of water temperature in the vertical cross section can be determined as shown in FIG.

なお、上記連立方程式を解くにあつては、未知
数の数が非常に多くなるため、コンピユータによ
るガウスジヨルダンの消去法、ガウスザイデルの
反復法、逐次近似法、フーリエ変換法、フイルタ
ードバツクプロジエクシヨン法、コンボリユーシ
ヨン法などの演算方式で演算される。
In order to solve the above simultaneous equations, since the number of unknowns is very large, computer-based Gauss-Gi-Jordan elimination method, Gauss-Seidel iterative method, successive approximation method, Fourier transform method, and filtered back programming are used. It is calculated using calculation methods such as Yon method and convolution method.

また、本発明の方法を実施するにあたり、区画
Nijの設定が直接温度分布の精度に影響するから
水深D及びd(=D/n)は予め精密に測定した
水深が用いられ、また、反射角に関するcosθ値も
前記で得た水深及び超音波発信受波装置の位置の
相関より幾何学的に正確に設定される。
In addition, in carrying out the method of the present invention,
Since the setting of Nij directly affects the accuracy of temperature distribution, water depths D and d (=D/n) that are precisely measured in advance are used, and the cosθ value regarding the reflection angle is also determined using the water depth and ultrasonic waves obtained above. It is set geometrically accurately by the correlation of the positions of the transmitting and receiving devices.

上述のごとくにして、各区画毎の水温が求めら
れる訳であるが、これらの水温値は、各区画の音
速の推定より得た値であり、相対的なものである
ため、必要ならば、水深に応じた音深分布の変化
等を加味した補正計算を行ない、さらに正確な水
温分布とすることも可能である。ただし、漁業資
源探査等で、水温の分布状態を知る場合などにつ
いては、補正計算を要さずとも充分に実用に耐え
得る。
As mentioned above, the water temperature for each section is obtained, but since these water temperature values are obtained from the estimation of the speed of sound in each section and are relative, if necessary, It is also possible to perform correction calculations that take into account changes in sound depth distribution depending on water depth, etc., to obtain a more accurate water temperature distribution. However, in cases where the water temperature distribution state is known in fishery resource exploration, etc., it can be put to practical use without the need for correction calculations.

効 果 この発明は以上説明したように、多数組の超音
波発信受波装置により水底反射波の時間差等を測
定するだけで、当該超音波発信受波装置の数に応
じて区画した水中の水温分布を知ることが出来、
従つて区画数を多くするほど、正確な水中の水温
分布が知ることが可能となり、また、CRTなど
により、水温の分布状態を、いわば断層写真のよ
うに表示することも可能となる。また、水温の分
布状態を知るためには、各超音波発信、受信装置
を一周回作動させれば良いので、迅速に測定が行
なえ、航走中の船舶上からでもその測定が可能で
あるほか、潮目など水温の分布状況が刻々と変化
する場合であつても、これを追跡観測することも
可能となるのである。
Effects As explained above, this invention can measure the water temperature in water divided according to the number of ultrasonic transmitting/receiving devices by simply measuring the time difference of waves reflected from the water bottom using multiple sets of ultrasonic transmitting/receiving devices. You can know the distribution,
Therefore, the larger the number of sections, the more accurate the water temperature distribution in the water can be known, and it is also possible to display the water temperature distribution state like a tomographic photograph using a CRT or the like. In addition, in order to know the state of water temperature distribution, it is only necessary to operate each ultrasonic transmitting and receiving device once, so measurements can be carried out quickly, and measurements can be taken even from a ship in transit. This makes it possible to track and observe even when the distribution of water temperature changes from moment to moment, such as with tides.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はこの発明の方法の作用説明
図、第3図はこの発明の方法を実施するための装
置の概念図、第4図はこの発明の方法により得ら
れる水温分布状態図である。 1A……指向性超音波発信装置、1B……無指
向性超音波受波装置、Nij……区画。
Figures 1 and 2 are explanatory diagrams of the operation of the method of this invention, Figure 3 is a conceptual diagram of an apparatus for carrying out the method of this invention, and Figure 4 is a diagram of water temperature distribution obtained by the method of this invention. It is. 1A...Directional ultrasound transmitter, 1B...Omnidirectional ultrasound receiver, Nij...Division.

Claims (1)

【特許請求の範囲】[Claims] 1 垂直下方の指向性超音波発信装置、及び無指
向性超音波受波装置を一組とし、該一組の超音波
発信、受波装置を水中に一定間隔毎水平方向に複
数組配置し、前記すべての超音波発信装置から超
音波を発射し、該超音波の水底反射波及び直接到
来波を前記すべての超音波受波装置で、各超音波
発信装置毎に受信し、かくして得られた超音波の
水中伝播時間を基にして超音波発信、受波装置の
配列方向を含む水中の垂直面内を前記超音波発
信、受波装置の組数に応じ、縦横同数に区画し、
この区画した水塊毎の超音波の水中伝播の累積と
して、該水塊一個毎についての音速を連立方程式
により解き、得られた各水塊毎の音速より、音速
と水温との相関を利用して各水塊の水温を算出す
ることを特徴とする水温の垂直分布測定方法。
1. A vertically downward directional ultrasonic transmitter and a non-directional ultrasonic receiver are set as one set, and a plurality of sets of the ultrasonic transmitter and receiver are arranged horizontally at regular intervals underwater; Ultrasonic waves are emitted from all of the ultrasonic transmitting devices, and the underwater reflected waves and direct arriving waves of the ultrasonic waves are received by all of the ultrasonic receiving devices for each ultrasonic transmitting device. Based on the underwater propagation time of the ultrasonic waves, the underwater vertical plane including the arrangement direction of the ultrasonic transmitting and receiving devices is divided into the same numbers vertically and horizontally according to the number of sets of the ultrasonic transmitting and receiving devices,
As the accumulation of underwater propagation of ultrasonic waves for each divided water mass, the sound speed for each water mass is solved by simultaneous equations, and from the obtained sound velocity for each water mass, the correlation between the sound speed and water temperature is used. A water temperature vertical distribution measuring method characterized by calculating the water temperature of each water mass.
JP25799784A 1984-12-05 1984-12-05 Vertical distribution measuring method of water temperature Granted JPS61134639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25799784A JPS61134639A (en) 1984-12-05 1984-12-05 Vertical distribution measuring method of water temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25799784A JPS61134639A (en) 1984-12-05 1984-12-05 Vertical distribution measuring method of water temperature

Publications (2)

Publication Number Publication Date
JPS61134639A JPS61134639A (en) 1986-06-21
JPH0376852B2 true JPH0376852B2 (en) 1991-12-06

Family

ID=17314098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25799784A Granted JPS61134639A (en) 1984-12-05 1984-12-05 Vertical distribution measuring method of water temperature

Country Status (1)

Country Link
JP (1) JPS61134639A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181778A (en) * 1991-09-30 1993-01-26 Eg&G Idaho, Inc. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium
SE0100379D0 (en) * 2001-02-07 2001-02-07 Siemens Elema Ab Arrangement for and method of acoustic determination of fluid temperature
GB2379743B (en) * 2001-07-04 2005-05-25 Amersham Pharm Biotech Uk Ltd A method, a measuring cell and a system for measuring very small heat changes in a sample
WO2014083790A1 (en) * 2012-11-27 2014-06-05 日本電気株式会社 Environment measuring system and environment measuring method

Also Published As

Publication number Publication date
JPS61134639A (en) 1986-06-21

Similar Documents

Publication Publication Date Title
CN110146895B (en) Acoustic velocity profile inversion method based on inverted multi-beam echometer
US7366056B2 (en) Depth sounding by acoustic pingers in a seismic spread
Siderius et al. Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array
EP2435806B1 (en) Method and system for remote sound speed measurement
US20130058194A1 (en) Multi-state beamforming array
CN107132520A (en) A kind of sound ray modification method and system based on underwater sound ultra short baseline locating system
CN108089155A (en) Single hydrophone sound source Passive Location under a kind of abyssal environment
CN103217706B (en) The method and apparatus of the acoustical behavior of acoustics meshed network along the acoustics wire antenna arrangement of towing for the management
GB2116714A (en) Marine cable location method
US4104912A (en) System for taking current-metering measurements
Châtillon et al. SAMI: A low-frequency prototype for mapping and imaging of the seabed by means of synthetic aperture
CN108398690B (en) Submarine backscattering intensity measuring method
Morgunov et al. Studies of spatiotemporal structure of the acoustic field formed in deep water by a broadband pulsed signal source on the shelf of the Sea of Japan
JP5704327B2 (en) Horizontal distance calculation system and horizontal distance calculation method for calculating horizontal distance to underwater object
RU2548596C1 (en) Method of determining iceberg submersion
RU2541435C1 (en) Method of determining iceberg immersion
RU75061U1 (en) ACTIVE HYDROLOCATOR
JPH0376852B2 (en)
RU2510608C1 (en) Method of measuring thickness of ice from underwater vehicle
JPH0385476A (en) Sea bottom searching apparatus
Stubbs et al. Telesounding, a method of wide swathe depth measurement
JPH04357487A (en) Side looking sonar
JP2001330659A (en) Method and apparatus for detection of position of object in sea
RU2660292C1 (en) Method for determining object immersion depth
SU1762128A1 (en) Method of sound wave velocity measuring in naval sediment