JPS60131436A - Measuring device of water temperature - Google Patents

Measuring device of water temperature

Info

Publication number
JPS60131436A
JPS60131436A JP24028883A JP24028883A JPS60131436A JP S60131436 A JPS60131436 A JP S60131436A JP 24028883 A JP24028883 A JP 24028883A JP 24028883 A JP24028883 A JP 24028883A JP S60131436 A JPS60131436 A JP S60131436A
Authority
JP
Japan
Prior art keywords
water
water temperature
temperature
ultrasonic
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24028883A
Other languages
Japanese (ja)
Other versions
JPH0374778B2 (en
Inventor
Kiyomi Minohara
箕原 喜代美
Hiroshi Nakai
弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP24028883A priority Critical patent/JPS60131436A/en
Publication of JPS60131436A publication Critical patent/JPS60131436A/en
Publication of JPH0374778B2 publication Critical patent/JPH0374778B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/24Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To measure water temperature speedily over a wide range with an ultrasonic wave by utilizing the fixed relation among the propagation speed of the ultrasonic wave, refraction in water, and water temperature. CONSTITUTION:The 1st ultrasonic wave transmitter and receiver 1 sends an ultrasonic wave S1 downward vertically and receives a reflected wave from the bottom of water in the direction to detect the echo time, and the 2nd ultrasonic wave transmitter and receiver 2 sends an ultrasonic wave S2 slantingly at a specific angle to a horizontal plane and receives a reflected wave from the bottom of water in the direction to detect the echo time. Further, the surface layer temperature on the water surface is measured by a temperature detecting element 3. Said echo time data and surface layer temperature are inputted to an arithmetic circuit 4, which utilizes the specific correlation among the underwater propagation speed of the ultrasonic waves, refractive index, and water temperature to calculate the water temperature near the bottom of the water, which is displayed on a display device 5.

Description

【発明の詳細な説明】 この発明は水中の水温測定装置に関し、詳しくは水中に
おける超音波の伝播速度及び屈折と水温との関係を利用
して間接的に水底付近の水温を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an underwater water temperature measuring device, and more particularly to a device that indirectly measures the water temperature near the bottom of the water by utilizing the relationship between the propagation velocity and refraction of ultrasonic waves in the water and the water temperature.

海洋計測、漁業資源の探査のため海中、特に海底付近の
水温を測定する場合、従来にあっては目的の深度まで検
温素子を潜降させ、直接的に海水源等を測定することが
行われていたが、かかる手段は、検温素子近傍の温度の
測定しか行い得す、広範囲にわたる温度の分布又は変化
状況を迅速に知ることが困難である欠点があった。
When measuring the water temperature in the sea, especially near the seabed, for ocean measurement and exploration of fishery resources, conventional methods have involved lowering a thermometer to the desired depth and directly measuring the seawater source. However, such means have the disadvantage that they can only measure the temperature in the vicinity of the temperature measuring element, and that it is difficult to quickly know the distribution or change of temperature over a wide range.

この発明は上記欠点に鑑み、水中における超音波の伝播
速度及び屈折と水温との間に一定の関係が存在すること
に着目し、水中の水温を超音波を利用して、迅速に、か
つ、広範囲にわたり水温を測定し得る水中の水温測定装
置を提供することを目的としてなされたものである。
In view of the above drawbacks, this invention focuses on the fact that there is a certain relationship between the propagation speed and refraction of ultrasonic waves in water and water temperature, and uses ultrasonic waves to quickly and The purpose of this invention is to provide an underwater water temperature measuring device that can measure water temperature over a wide range.

この発明は水平面に対し垂直下方へと超音波を発射し、
この方向での水底反射波を受信する第1の超音波送受波
器と、水平面に対し一定角度の傾斜した方向へ超音波を
発射しこの方向での水底反射波を受信する第2の超音波
送受波器と、水面の表層温度を測定する検温素子と、前
記第1及び第2の超音波送受波器より得たそれぞれあ反
響時間と前記検温素子よりの温度情報が入力され、これ
らより水中における超音波の伝播速度及び屈折率と水温
との間における一定の相関より水底付近の水温を算出す
る演算回路と算出水温値を表示する表示装置とから構成
されたことを特徴とするものである。
This invention emits ultrasonic waves vertically downward from the horizontal plane,
A first ultrasonic transducer receives waves reflected from the bottom in this direction, and a second ultrasonic transducer emits ultrasonic waves in a direction inclined at a certain angle with respect to the horizontal plane and receives waves reflected from the bottom in this direction. The reverberation time obtained from the transducer, the temperature measuring element that measures the surface temperature of the water surface, the first and second ultrasonic transducers, and the temperature information from the temperature measuring element are input, and from these the temperature information is input into the water. It is characterized by being comprised of an arithmetic circuit that calculates the water temperature near the water bottom based on a certain correlation between the propagation velocity and refractive index of the ultrasonic wave and the water temperature, and a display device that displays the calculated water temperature value. .

以下、この発明を実施例により説明する。This invention will be explained below with reference to Examples.

第1図はこの発明の詳細な説明図、第2図は実施例の作
用説明図である。
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 is an explanatory diagram of the operation of the embodiment.

□1 この発明の水中の水温測定装置Aは、船舶Vの船底に設
けられており、水平面Wに対し垂直下方へと超音波S1
を発射し、この方向での水底反射音波を受信する第1の
超音波送受波器1と、水面Wに対し一定角度θ1(例え
ばθ1−45°)の傾斜した方向へ超音波S2を発射し
、この方向での水底反射音波を受信する第2の超音波送
受波器2と、水面Wの表層温度を測定する検温素子3と
、第1及び第2の送受波器1.2により得たそれぞれの
超音波sl 、 s2の反響時間t1 、 tzと検温
素子よりの温度情報T CC)が人力され、これらより
水中における超音波の伝播速度01.02及び屈折率と
水温との間における一定の相関関係より水底W]3付近
の水温を算出する演算回路4と、この演算回路4の算出
水温値を表示する表示装置5、例えばデジタル表示装置
とから構成されている。
□1 The underwater water temperature measuring device A of the present invention is installed on the bottom of a ship V, and emits ultrasonic waves S1 vertically downward with respect to the horizontal plane W.
a first ultrasonic transducer 1 that emits and receives sound waves reflected from the water bottom in this direction; and a first ultrasonic transducer 1 that emits ultrasonic waves S2 in a direction inclined at a constant angle θ1 (for example, θ1-45°) with respect to the water surface W. , a second ultrasonic transducer 2 that receives bottom-reflected sound waves in this direction, a temperature measuring element 3 that measures the surface temperature of the water surface W, and the first and second transducers 1.2. The reverberation times t1 and tz of the respective ultrasonic waves sl and s2 and the temperature information TCC) from the temperature measuring element are manually input, and from these, the propagation velocity of the ultrasonic waves in water is 01.02, and a constant relationship between the refractive index and the water temperature is calculated. It is comprised of an arithmetic circuit 4 that calculates the water temperature near the water bottom W] 3 from a correlation, and a display device 5, for example, a digital display device, that displays the water temperature value calculated by the arithmetic circuit 4.

上記実施例において、第1及び第2の超音波送受波器1
.2はいずれも測定精度向上のため、指向性を有したも
のが望ましく、例えば超音波送受波器1,2の送波器に
は、ペンシルビームの送波振動子を用いたものが使用さ
れる。
In the above embodiment, the first and second ultrasonic transducers 1
.. In order to improve measurement accuracy, both of 2 are preferably directional, and for example, the transmitters of ultrasonic transducers 1 and 2 use pencil beam transducers. .

又、検温素子としてはサーミスタなどが使用される。Further, a thermistor or the like is used as the temperature measuring element.

次に、この発明の作用について説明する。Next, the operation of this invention will be explained.

まず、第1及び第2の送受波器1.2を作動させると、
それぞれにおける超音波の水底WBよりの反響時間t1
. tz (秒)が演算回路4に入力さか、同時に、表
層水温T (:C)も入力される。
First, when the first and second transducers 1.2 are activated,
Reverberation time t1 of the ultrasonic wave from the water bottom WB in each case
.. tz (seconds) is input to the arithmetic circuit 4, and at the same time, the surface water temperature T (:C) is also input.

演算回路4における演算過程については以下の論理によ
り演算される。
The calculation process in the calculation circuit 4 is performed using the following logic.

即ち、一般に音波の水中伝播速度は塩分や圧力によって
変化するが水深・200〜300mより浅い場合その量
は僅かであり無視することかで゛きる。従って、水中で
の水深H(m)における音速C(m/s)は、水温をT
 CC)とすると、実験式より0=1449.22+4
.6233T−5,a5sbx162ぜ+’1.605
’i8X’lδ輌として、水温の関数F (T>として
表わせることができる。
That is, in general, the underwater propagation speed of sound waves changes depending on salinity and pressure, but when the water depth is shallower than 200 to 300 m, the amount is small and can be ignored. Therefore, the speed of sound C (m/s) at the depth H (m) underwater is equal to the water temperature T
CC), then from the empirical formula 0=1449.22+4
.. 6233T-5, a5sbx162ze+'1.605
'i8X'lδ vehicle, it can be expressed as a function of water temperature F (T>).

ところで、通常水中の水温の変化はきわめて複雑であり
、」ニ記関数も水深を変数として考慮すればさらに複雑
となるが説明の簡略化のため水中の水温Tて0が第2図
に示すように深さ1mで層状に変化しているものと仮定
し、上層における水温をT1’rQs下層における水温
をT2[(E)とし、それぞれ水温T1 、 T2にお
ける水中音速を01(m/’1)。
By the way, changes in water temperature in water are usually extremely complicated, and the function described in "2" becomes even more complicated if water depth is considered as a variable. However, to simplify the explanation, the water temperature in water T0 is shown in Figure 2. The water temperature in the upper layer is T1'rQs, the water temperature in the lower layer is T2[(E), and the underwater sound speed at water temperatures T1 and T2 is 01(m/'1). .

02(m/s)とすると、第1の超音波送受波器1の反
響時間t1との関係は、 となり、又、第2の超音波送受波器2の反響時間t2と
の関係は、 ・・・・・・・■ (但し、02□は氷温変化層における超音波S2の屈折
角を示t)となる。
02 (m/s), the relationship with the reverberation time t1 of the first ultrasonic transducer 1 is as follows, and the relationship with the reverberation time t2 of the second ultrasonic transducer 2 is as follows. ......■ (However, 02□ indicates the refraction angle of the ultrasonic wave S2 in the ice temperature change layer t).

一方、超音波の水練゛変化層における屈折角θ、。On the other hand, the refraction angle θ of the ultrasonic wave in the water-induced change layer.

θしと音速a1 、 ’c2との間には、スネルの公式
よりの関係がある。
There is a relationship between θ and the sound speeds a1 and 'c2 based on Snell's formula.

□上□記■、■、■式において、tl、tzは第1及び
第2の超音波送φ波器1,2により既知であり、C1も
水面付近の温度TてOより算出可能で既知として扱え、
さらにθ1は第2の超音波送受波器2の取□付角であり
、□定数として扱えるので、未知数はC2、θ2 +’
 Hの三つとなり、式の数と−致するため上式は連立方
程式として解くことができる。
□ In the above □ formulas ■, ■, and ■, tl and tz are known from the first and second ultrasonic wave transmitters 1 and 2, and C1 is also known and can be calculated from the temperature Tte near the water surface. Treat it as
Furthermore, θ1 is the angle of the second ultrasonic transducer 2 and can be treated as a constant, so the unknowns are C2, θ2 +'
The number of H is three, which matches the number of equations, so the above equation can be solved as simultaneous equations.

例えばC2について解けば、 0式より ■°、■゛を0式に代入して、 従って、 とあられせる。For example, if you solve for C2, From type 0 Substitute ■°, ■゛ into the 0 formula, Therefore, I will make a hail.

これを解いてC2がまれば水深(H/2〜H)における
水温T2【0は、 F (T2) −02−1449,,22−4,623
3T2+5.4585 X l02T2となり1.F(
T2)=Oを解けば水底における水温T(Oが判明する
のである。なお、F(T2)の解は二つあるが2分法で
解けば解の範囲を現実的な例えばO”0〜50°Cなど
と限定できる。
If C2 is calculated by solving this, the water temperature T20 at the water depth (H/2~H) is F (T2) -02-1449,,22-4,623
3T2+5.4585 X l02T2 and 1. F(
By solving T2)=O, the water temperature T(O) at the bottom of the water can be found.There are two solutions for F(T2), but if you solve it using the bisection method, you can reduce the range of solutions to a realistic one, for example, O"0~ It can be limited to 50°C, etc.

上記理論式は、単純化した二層モデルについてのもので
あり、実際上においては、第1図に示したように水温の
複雑な分布により音波の伝播経路は非直線的となる。従
って、上記理論式により得た値は水底付近における平均
的な水温の水面付近に、対する値との相対値となり、こ
のため実測によって予め水底水温と複層モデルを想定し
て得た理論式でめた水温との比較により各種の補正値を
得ておき、これを基に演算回路4で各種の補正をも行い
最終的に水底の水温T2TC1を表示器に表示するので
ある。
The above theoretical formula is for a simplified two-layer model, and in reality, the propagation path of the sound wave becomes non-linear due to the complex distribution of water temperature as shown in FIG. Therefore, the value obtained using the above theoretical formula is a relative value to the average water temperature near the water surface near the water surface. Various correction values are obtained by comparison with the stored water temperature, and based on these, various corrections are made in the arithmetic circuit 4, and finally the bottom water temperature T2TC1 is displayed on the display.

この発明は以上のように構成されているから、二種類の
超音波送受波器の俯角及び指向性を設定し、かつ、表層
水温を測定するのみで、その ;水域における水底の水
温を測定することが可能であり、又、移動する船舶上よ
り連続的な水温測定も可能であるから、広範囲の水底水
温の測定が短時間にかつ容易に測定することが可能とな
るのである。
Since this invention is configured as described above, by simply setting the depression angle and directivity of two types of ultrasonic transducers and measuring the surface water temperature, the bottom water temperature in the water area can be measured. It is also possible to measure water temperature continuously from a moving ship, making it possible to easily measure bottom water temperatures over a wide range of areas in a short period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明図、第2図は実施例の作
用説明図である。 A・・・水中の水温測定装置、V・・・船舶、W・・・
水平面、Sj 、 s2・・・超音波、1・・・第1の
超音波送受波器、2・・・第2の超音波送受波器、3・
・・検温素子、4・・・演算回路、5・・・表示装置。
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 is an explanatory diagram of the operation of the embodiment. A... Underwater water temperature measuring device, V... Ship, W...
Horizontal plane, Sj, s2... Ultrasonic wave, 1... First ultrasonic transducer, 2... Second ultrasonic transducer, 3.
...Thermometer element, 4... Arithmetic circuit, 5... Display device.

Claims (1)

【特許請求の範囲】[Claims] (1)水平面に対し垂直下方へと超音波を発射し、この
方向での水底反射波を受信する第1の超音波送受波器と
、水平面に対し一定角度の傾斜した方向へ超音波を発射
しこの方向での水底反射波を受信する第2の超音波送受
波器と、水面の表層温度を測定する検温素子と、前記第
1及び第2の超音波送受波器より得たそれぞれの反響時
間と前記検温素子よりの温度情報が人力され、これらよ
り水中における超音波の伝播速度及び屈折率と水温との
間における一定の相関より水底付近の水温を算出する演
算回路と算出水温値を表示する表示装置とから構成され
たことを特徴とする水中の水温測定装置。
(1) A first ultrasonic transducer that emits ultrasonic waves perpendicularly downward to the horizontal plane and receives reflected waves from the bottom in this direction, and a first ultrasonic transducer that emits ultrasonic waves in a direction inclined at a certain angle to the horizontal plane. a second ultrasonic transducer that receives waves reflected from the water bottom in this direction; a thermometer that measures the surface temperature of the water surface; and respective echoes obtained from the first and second ultrasonic transducers. The time and temperature information from the thermometer are manually input, and a calculation circuit that calculates the water temperature near the water bottom based on a certain correlation between the propagation velocity of ultrasonic waves in the water, the refractive index, and the water temperature, and the calculated water temperature value are displayed. 1. An underwater water temperature measuring device comprising: a display device for measuring water temperature;
JP24028883A 1983-12-19 1983-12-19 Measuring device of water temperature Granted JPS60131436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24028883A JPS60131436A (en) 1983-12-19 1983-12-19 Measuring device of water temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24028883A JPS60131436A (en) 1983-12-19 1983-12-19 Measuring device of water temperature

Publications (2)

Publication Number Publication Date
JPS60131436A true JPS60131436A (en) 1985-07-13
JPH0374778B2 JPH0374778B2 (en) 1991-11-28

Family

ID=17057246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24028883A Granted JPS60131436A (en) 1983-12-19 1983-12-19 Measuring device of water temperature

Country Status (1)

Country Link
JP (1) JPS60131436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726359B2 (en) * 2000-11-06 2004-04-27 Siemens Building Technologies Ag Apparatus and method of detecting the room temperature by means of sound waves
WO2014083790A1 (en) * 2012-11-27 2014-06-05 日本電気株式会社 Environment measuring system and environment measuring method
JP2016099129A (en) * 2014-11-18 2016-05-30 三菱電機株式会社 Water temperature measurement apparatus and water temperature measurement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821129A (en) * 1981-07-29 1983-02-07 Furuno Electric Co Ltd Measuring apparatus for temperature of water
JPS58184525A (en) * 1982-04-22 1983-10-28 Furuno Electric Co Ltd Device for measuring temperature in water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821129A (en) * 1981-07-29 1983-02-07 Furuno Electric Co Ltd Measuring apparatus for temperature of water
JPS58184525A (en) * 1982-04-22 1983-10-28 Furuno Electric Co Ltd Device for measuring temperature in water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726359B2 (en) * 2000-11-06 2004-04-27 Siemens Building Technologies Ag Apparatus and method of detecting the room temperature by means of sound waves
WO2014083790A1 (en) * 2012-11-27 2014-06-05 日本電気株式会社 Environment measuring system and environment measuring method
JPWO2014083790A1 (en) * 2012-11-27 2017-01-05 日本電気株式会社 Environmental measurement system and environmental measurement method
US9702973B2 (en) 2012-11-27 2017-07-11 Nec Corporation Environment measurement system and environment measurement method
JP2016099129A (en) * 2014-11-18 2016-05-30 三菱電機株式会社 Water temperature measurement apparatus and water temperature measurement method

Also Published As

Publication number Publication date
JPH0374778B2 (en) 1991-11-28

Similar Documents

Publication Publication Date Title
CN107132520B (en) Sound ray correction method and system based on underwater sound ultra-short baseline positioning system
CN110146895A (en) Sound speed profile inversion method based on inversion type multi-beam echometer
JPS60131436A (en) Measuring device of water temperature
WO2021111468A1 (en) System and method for measuring various parameters of riverine/ canal water flow
JP6029124B1 (en) Sound source position estimating apparatus, method, and program
JP2004219339A (en) Processing method for sonar-receiving sound, sonar system, simulation method, simulator and program for simulation
JP2001330659A (en) Method and apparatus for detection of position of object in sea
JP2007085795A (en) Wave characteristic measuring method and its device
JPH0720230A (en) Sonar depression angle controller
JPS60131484A (en) Measuring device for submarine water depth and water temperature
JPH0376852B2 (en)
CN105891541B (en) The surface layer ADCP blind area flow velocity evaluation method based on layer dependencies
JPS58184525A (en) Device for measuring temperature in water
Weidner et al. Broadband acoustic characterization of backscattering from a rough stratification interface
JPS60181625A (en) Underwater temperature measuring apparatus
CN116400101B (en) Near-surface ocean current data credibility judging method
JP7429448B2 (en) underwater detection device
Duda et al. Evaluation of an acoustic remote sensing method for frontal-zone studies using double-diffusive instability microstructure data and density interface data from intrusions
SU811168A1 (en) Method of determining elastic wave propagation speed in basin bottom ground
JP4033025B2 (en) Multistatic underwater sound velocity measurement method and method
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
JPH08334321A (en) Ultrasonic distance-measuring apparatus
Liang et al. An Ice Thickness Measurement Method based on Up-looking Sonar
JPS59230165A (en) Measuring method of current speed and current direction by ultrasonic current and direction meter
JPS63266376A (en) Acoustic wave positioning system