JP2007085795A - Wave characteristic measuring method and its device - Google Patents

Wave characteristic measuring method and its device Download PDF

Info

Publication number
JP2007085795A
JP2007085795A JP2005272768A JP2005272768A JP2007085795A JP 2007085795 A JP2007085795 A JP 2007085795A JP 2005272768 A JP2005272768 A JP 2005272768A JP 2005272768 A JP2005272768 A JP 2005272768A JP 2007085795 A JP2007085795 A JP 2007085795A
Authority
JP
Japan
Prior art keywords
pressure
wave
water
obtaining
hull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005272768A
Other languages
Japanese (ja)
Other versions
JP4899176B2 (en
Inventor
Koichiro Matsumoto
光一郎 松本
Masaru Tsujimoto
辻本  勝
Mitsuyasu Nagahama
光泰 長浜
Toshio Tanaka
寿夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Universal Shipbuilding Corp
Original Assignee
National Maritime Research Institute
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute, Universal Shipbuilding Corp filed Critical National Maritime Research Institute
Priority to JP2005272768A priority Critical patent/JP4899176B2/en
Publication of JP2007085795A publication Critical patent/JP2007085795A/en
Application granted granted Critical
Publication of JP4899176B2 publication Critical patent/JP4899176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine ship speed from a measured value by a pressure gage installed on the bow, and to determine a wave characteristic by analyzing pressure fluctuation. <P>SOLUTION: A. A plurality of characteristic curves relative to pressure measured values by a plurality of pressure gages and inflow angles in each draft and each inflow angle are determined by a water tank test using a model ship or theoretical calculation. B. Ship speed through the water is determined based on the pressure measured values of an actual ship wherein the plurality of pressure gages are arranged on a position approximately on the hull center line on the hull outer plate surface under the bow water surface of the actual ship and on a position approximately at equal interval from the hull center line of the port and the starboard, a water density, and the plurality of characteristic curves. C. Relative water level fluctuation is determined based on the measured values by the pressure gages. D. A vertical displacement amount is determined based on outputs from upper and lower accelerometers arranged on the actual ship, and absolute water level fluctuation is determined based on the vertical displacement amount and the relative water level fluctuation. E. An encountered wave spectrum is determined based on the absolute water level fluctuation. F. A wave spectrum is determined based on the encountered wave spectrum, the ship speed through the water, and a wave encounter angle determined separately. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は波浪特性測定方法及びその装置に関し、特に、船体の船首に設置された圧力計の計測値に基づいて船速を求めるとともに、圧力変動を解析することにより波浪特性を求めるための演算処理に関する。   The present invention relates to a method for measuring wave characteristics and a device therefor, and in particular, arithmetic processing for obtaining wave characteristics by obtaining a ship speed based on a measured value of a pressure gauge installed at the bow of a hull and analyzing pressure fluctuations. About.

従来、波高等の波浪特性を計測する装置としては、例えば「船首の上下加速度センサ1の信号に基づき船首の上下変位を演算する装置3と、同装置3からの信号と波高計2からの信号を受けて絶対波高を演算する装置4と、同装置4からの信号を一定時間蓄積してパワースペクトラムを演算する装置5と、自船の方位から波向を設定することにより波出会い角を演算する装置6と、同装置6で演算された出会波角を用いて、パワースペクトラム演算装置5から得られた出会周波数ベースのパワースペクトラムを波周波数ベースに変換する装置7と、同装置7からの出力信号を受けて有義波高および平均波周波数を同定する装置8と、同装置8からの信号に基づき、平均波々長、スペクトラムピークの波長および周波数を演算する最終演算装置9とをそなえて構成される。」ものが提案されている(特許文献1参照)。
特開平06−273198号公報(要約、図1)
Conventionally, as a device for measuring wave characteristics such as wave height, for example, “a device 3 that calculates the vertical displacement of the bow based on a signal from the vertical acceleration sensor 1 of the bow, a signal from the device 3, and a signal from the wave height meter 2” Receiving device 4 for calculating the absolute wave height, device 5 for calculating the power spectrum by accumulating signals from the device 4 for a certain period of time, and calculating the wave encounter angle by setting the wave direction from the ship's direction The device 6 for converting the power spectrum based on the encounter frequency obtained from the power spectrum calculation device 5 into the wave frequency base using the encounter wave angle calculated by the device 6, and the device 7 A device 8 for identifying a significant wave height and an average wave frequency in response to an output signal from the signal, and a final calculation device for calculating an average wave length, a wavelength and a frequency of a spectrum peak based on the signal from the device 8 Constructed equipped and. "It has been proposed (see Patent Document 1).
Japanese Patent Laid-Open No. 06-273198 (Summary, FIG. 1)

上記の従来技術(特許文献1)では、波高計と上下加速度計から求めた波高計位置における上下動揺から絶対波高の波スペクトルを求めており、これに波向と船速の値を与えることによって波スペクトルを求めているが、ここで船速は別に何らかの方法で求めて入力する必要がある、という問題点があった。   In the above prior art (Patent Document 1), the wave spectrum of the absolute wave height is obtained from the vertical fluctuation at the wave height meter position obtained from the wave height meter and the vertical accelerometer, and by giving the value of the wave direction and the ship speed to this The wave spectrum is calculated, but there is a problem that the ship speed must be calculated and input by some other method.

本発明は、このような問題点を解決するためになされたものであり、船体の船首に設置された圧力計による計測値に基づいて船速を求めるとともに、圧力変動を解析することにより波浪特性を求めることを可能にした波浪特性測定方法及びその装置を提供することを目的とする。   The present invention has been made in order to solve such a problem, and obtains a ship speed based on a measurement value obtained by a pressure gauge installed at the bow of a hull and analyzes a pressure fluctuation to thereby obtain a wave characteristic. It is an object of the present invention to provide a wave characteristic measuring method and apparatus capable of obtaining the above.

本発明に係る波浪特性測定方法は、船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求める工程と、船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された実船の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を求める工程と、前記圧力計の計測値に基づいて相対水位変動を求める工程と、前記実船に配置された上下加速度計の出力に基づいて上下変位を求め、前記上下変位と、前記相対水位変動とに基づいて絶対水位変動を求める工程と、前記絶対水位変動に基づいて出会波スペクトルを求める工程と、前記出会波スペクトルと、前記対水船速と、別途求められた波出会角とに基づいて波スペクトルを求める工程とを備えたものである。   In the wave characteristic measuring method according to the present invention, a plurality of pressure gauges are provided at a position on the hull center line below the bow water surface on a substantially hull center line, and at positions that are substantially equidistant from the hull center line on the port and starboard. A step of obtaining a plurality of characteristic curves related to pressure measurement values of the plurality of pressure gauges and the inflow angle for each draft and for each inflow angle by a tank test or theoretical calculation using the arranged model ship; The pressure measurement value of a pressure gauge of an actual ship in which a plurality of pressure gauges are arranged at a position on the hull center line of the hull outer plate surface at a position substantially equidistant from the hull center line on the port side and starboard side. , A step of obtaining a water speed based on the density of water and the plurality of characteristic curves, a step of obtaining a relative water level fluctuation based on a measurement value of the pressure gauge, and a vertical acceleration disposed on the actual ship Calculate the vertical displacement based on the output of the meter, A step of obtaining an absolute water level fluctuation based on the vertical displacement and the relative water level fluctuation; a step of obtaining an encounter wave spectrum based on the absolute water level fluctuation; the encounter wave spectrum; And a step of obtaining a wave spectrum based on a separately obtained wave meeting angle.

本発明に係る波浪特性測定方法は、船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求める工程と、船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された実船の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を求める工程と、前記圧力計の計測値に基づいて出会圧力スペクトルを求める工程と、前記対水船速及び別途求められた波出会角を関数とする圧力周波数応答関数と前記出会圧力スペクトルとに基づいて出会波スペクトルを求める工程と、前記出会波スペクトルと、前記対水船速と、前記波出会角とに基づいて波スペクトルを求める工程とを備えたものである。   In the wave characteristic measuring method according to the present invention, a plurality of pressure gauges are provided at a position on the hull center line below the bow water surface on a substantially hull center line, and at positions that are substantially equidistant from the hull center line on the port and starboard. A step of obtaining a plurality of characteristic curves related to pressure measurement values of the plurality of pressure gauges and the inflow angle for each draft and for each inflow angle by a tank test or theoretical calculation using the arranged model ship; The pressure measurement value of a pressure gauge of an actual ship in which a plurality of pressure gauges are arranged at a position on the hull center line of the hull outer plate surface at a position substantially equidistant from the hull center line on the port side and starboard side. Determining the ship speed based on the density of water and the plurality of characteristic curves; determining the encounter pressure spectrum based on the measured value of the pressure gauge; and determining the ship speed and the water separately. Pressure frequency as a function of measured wave angle Obtaining an encounter wave spectrum based on a response function and the encounter pressure spectrum, obtaining a wave spectrum based on the encounter wave spectrum, the speed of the water vessel, and the wave encounter angle; It is equipped with.

本発明に係る波浪特性測定方法は、船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求める工程と、船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された実船の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を求める工程と、前記ほぼ船体中心線上の位置に配置された圧力計の計測値と、前記実船の左舷及び右舷にそれぞれ配置された複数の圧力計の計測値とに基づいて圧力クロススペクトルを求める工程と、前記対水船速を関数とする圧力周波数応答関数と、前記圧力クロススペクトルとに基づいて方向波スペクトルを求める工程とを備えたものである。   In the wave characteristic measuring method according to the present invention, a plurality of pressure gauges are provided at a position on the hull center line below the bow water surface on a substantially hull center line, and at positions that are substantially equidistant from the hull center line on the port and starboard. A step of obtaining a plurality of characteristic curves related to pressure measurement values of the plurality of pressure gauges and the inflow angle for each draft and for each inflow angle by a tank test or theoretical calculation using the arranged model ship; The pressure measurement value of a pressure gauge of an actual ship in which a plurality of pressure gauges are arranged at a position on the hull center line of the hull outer plate surface at a position substantially equidistant from the hull center line on the port side and starboard side. Determining the speed of the watercraft based on the density of the water and the plurality of characteristic curves, the measured value of the pressure gauge disposed substantially on the center line of the hull, and the port side and starboard side of the actual ship. Measured values of multiple pressure gauges arranged respectively A step of determining the pressure cross spectrum based, pressure frequency response function as a function of the ship's speed relative to the water, in which a step of obtaining the direction wave spectrum on the basis of said pressure cross spectrum.

本発明に係る波浪特性測定装置は、船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに配置された複数の圧力計と、船首水面下の船体外板表面のほぼ船体中心線上の位置に配置された上下加速度計と、模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求め、前記複数の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を求める処置と、前記圧力計の計測値に基づいて相対水位変動を求める処理と、前記実船に配置された上下加速度計の出力に基づいて上下変位を求め、前記上下変位と、前記相対水位変動とに基づいて絶対水位変動を求める処理と、前記絶対水位変動に基づいて出会波スペクトルを求める処理と、前記出会波スペクトルと、前記対水船速と、別途求められた波出会角とに基づいて波スペクトルを求める処理とを行う制御部とを備えたものである。   The wave characteristic measuring apparatus according to the present invention includes a plurality of hull outer plate surfaces below the bow surface at positions substantially on the hull center line and positions at substantially equal intervals from the hull center line on the port and starboard. The pressure gauge, the vertical accelerometer placed almost on the hull centerline on the surface of the hull skin below the bow, and the tank test or theoretical calculation using a model ship, A plurality of characteristic curves relating to the pressure measurement value of the pressure gauge and the inflow angle are obtained, and the speed of the water vessel is determined based on the pressure measurement value of the pressure gauges, the density of water, and the plurality of characteristic curves. Processing to determine, processing for determining relative water level fluctuation based on the measured value of the pressure gauge, vertical displacement based on the output of the vertical accelerometer arranged on the actual ship, the vertical displacement and the relative water level fluctuation The absolute water level fluctuation is calculated based on A wave spectrum is obtained based on the process of obtaining the encounter wave spectrum based on the absolute water level fluctuation, the encounter wave spectrum, the speed of the water vessel, and the separately obtained wave encounter angle. And a control unit that performs processing.

本発明に係る波浪特性測定装置は、船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに配置された複数の圧力計と、模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求め、前記複数の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を求める処置と、前記圧力計の計測値に基づいて出会圧力スペクトルを求める処理と、前記対水船速及び別途求められた波出会角を関数とする圧力周波数応答関数と前記出会圧力スペクトルとに基づいて出会波スペクトルを求める処理と、前記出会波スペクトルと、前記対水船速と、前記波出会角とに基づいて波スペクトルを求める処理とを行う制御部とを備えたものである。   The wave characteristic measuring apparatus according to the present invention includes a plurality of hull outer plate surfaces below the bow surface at positions substantially on the hull center line and positions at substantially equal intervals from the hull center line on the port and starboard. A plurality of characteristic curves relating to pressure measurement values and the inflow angles of the plurality of pressure gauges are obtained for each draft and for each inflow angle by a water tank test or theoretical calculation using a pressure gauge and a model ship, and the plurality of pressures A process for obtaining a water speed based on the pressure measurement value of the gauge, a density of water, and the plurality of characteristic curves, a process for obtaining an encounter pressure spectrum based on the measurement value of the pressure gauge, A process of obtaining an encounter wave spectrum based on a pressure frequency response function having a function of a water vessel speed and a separately obtained wave encounter angle and the encounter pressure spectrum, the encounter wave spectrum, and the anti-water vessel Based on the speed and the wave meeting angle There are those comprising a control unit that performs a process for obtaining the wave spectrum.

本発明に係る波浪特性測定装置は、船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに配置された第1の複数の圧力計と、船の左舷及び右舷にそれぞれ配置された第2複数の圧力計と、模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記第1の複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求め、前記複数の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を求める処置と、前記第1の複数の圧力計の内、前記ほぼ船体中心線上の位置に配置された圧力計の計測値と、前記第2の複数の圧力計の計測値とに基づいて圧力クロススペクトルを求める処理と、前記対水船速を関数とする圧力周波数応答関数と、前記圧力クロススペクトルとに基づいて方向波スペクトルを求める処理とを行う制御部とを備えたものである。   The wave characteristic measuring apparatus according to the present invention is arranged at a position on the hull center line below the bow surface substantially on the hull center line, and at a position substantially equidistant from the hull center line on the port side and starboard side. A plurality of pressure gauges, a second plurality of pressure gauges arranged on the port side and the starboard side of the ship, and a tank test or a theoretical calculation using a model ship, for each draft and inflow angle, A plurality of characteristic curves relating to the pressure measurement value of the pressure gauge and the inflow angle are obtained, and the speed of the water vessel is determined based on the pressure measurement value of the pressure gauges, the density of water, and the plurality of characteristic curves. A pressure cross based on a desired treatment, a measured value of a pressure gauge arranged substantially at a position on the center line of the hull among the first plurality of pressure gauges, and a measured value of the second plurality of pressure gauges Processing for obtaining a spectrum and pressure as a function of the speed of the watercraft A frequency response function, in which a control unit that performs a process of determining the direction wave spectrum on the basis of said pressure cross spectrum.

以上のように、本発明においては、船体の船首に設置された圧力計による計測値に基づいて船速を求めるとともに、圧力変動を解析することにより波スペクトルを求めることを可能にしており、船速を別途求める必要がなく、装備の簡素化が図られる。   As described above, in the present invention, it is possible to obtain the ship's speed based on the measured value by the pressure gauge installed at the bow of the hull, and to obtain the wave spectrum by analyzing the pressure fluctuation, There is no need to obtain a separate speed, and the equipment can be simplified.

発明者らは、船首に複数の圧力計を設置し、それらの圧力計測値を解析することによって船体に流入する対水流速(=対水船速)/流向を求める測定方法を開発した。船舶は実海域では波浪中を航行することになるので、計測される圧力も波浪及びそれによる船体動揺によって時間的に変動する。船速はこれら変動量の平均値から求めることになるが、圧力変動量そのものから逆にその原因となる波浪を解析することが可能となる。波浪の解析が可能になると、平均(対水)船速と同時に入射波を確定することができる。   The inventors have developed a measurement method for obtaining a water flow velocity (= water vessel speed) / flow direction flowing into the hull by installing a plurality of pressure gauges at the bow and analyzing their pressure measurement values. Since the ship navigates in the waves in the actual sea area, the measured pressure also fluctuates with time due to the waves and the hull motion caused by the waves. The ship speed is obtained from the average value of these fluctuation amounts, but it is possible to analyze the waves that cause the pressure fluctuation amount on the contrary. When wave analysis becomes possible, the incident wave can be determined simultaneously with the average (vs. water) ship speed.

ところで、ここで求まる波浪の波周期は船速の影響を受けた出会いの波周期である。例えば向波の場合には、船速の影響によって、出会いの波周期は短くなる。これを出会波周期と言う。また、この出会波周期に対応する波浪の不規則変動分布を出会波スペクトルという。実際に求めたいのは船舶が遭遇している(船舶に入射してくる)波浪のスペクトル(船速影響が入らない状態の波スペクトル)であり、これは出会波周期、波出会角、対水船速が分かれば求めることができる。本発明によれば、出会波周期、対水船速を求めることができるので、これらを用いて船舶が遭遇している波浪(波スペクトル)を特定することが可能になる。   By the way, the wave period of waves found here is the wave period of encounters affected by ship speed. For example, in the case of a direction wave, the wave period of encounter is shortened due to the influence of the ship speed. This is called the encounter wave cycle. In addition, the irregular fluctuation distribution of waves corresponding to this encounter wave period is called an encounter wave spectrum. What we really want is the spectrum of waves that the ship encounters (enters the ship) (the wave spectrum without the effect of ship speed), which is the encounter wave period, wave encounter angle, It can be determined if the ship speed is known. According to the present invention, since the encounter wave cycle and the speed of the ship against water can be obtained, it is possible to specify the waves (wave spectrum) encountered by the ship using these.

以下の説明においては、本発明の基礎となっている圧力計の計測値に基づいて船速を求る例を実施形態1とし、その船速を利用して波スペクトル等を求める例を実施形態2〜4として説明する。   In the following description, an example in which the ship speed is obtained based on the measurement value of the pressure gauge that is the basis of the present invention is referred to as Embodiment 1, and an example in which the wave spectrum is obtained by using the ship speed is described as an embodiment. It demonstrates as 2-4.

実施形態1.
本発明は、船体の船首に設置された圧力計による計測値に基づいて船速を求めることができるようになったということに基づいてなされたものであり、本発明の波浪特性計測装置の内、船速の測定に着目してそれを実施形態1として説明する。
Embodiment 1. FIG.
The present invention has been made based on the fact that the ship speed can be obtained based on the measured value by the pressure gauge installed at the bow of the hull. Focusing on the measurement of ship speed, it will be described as Embodiment 1.

図1は本発明の基礎になっている船速測定装置の構成を示すブロック図である。この船速測定装置は、圧力センサ11〜13、制御部2、記憶部3、表示部4及び操作部5から構成されている。なお、図1には上下加速度計6が図示されているが、これは後述の実施形態2において用いられるものであり、本実施形態1においては無視するものとする。 FIG. 1 is a block diagram showing the configuration of a ship speed measuring apparatus which is the basis of the present invention. This ship speed measuring device is composed of pressure sensors 1 1 to 1 3 , a control unit 2, a storage unit 3, a display unit 4 and an operation unit 5. Although the vertical accelerometer 6 is illustrated in FIG. 1, this is used in the second embodiment described later, and is ignored in the first embodiment.

圧力センサ11〜13は、例えば、外形がステンレス製の埋め込み型や、圧電素子等の電子式のものからなり、それぞれ圧力計測値Pc、Pp及びPsを制御部2に供給する。圧力センサ11〜13の容量は、例えば、船速が10m/s(約20ノット相当)の場合、よどみ圧が約5.1maq=約50kpaであるので、約100kpa(1気圧相当でよどみ圧換算の船速約27ノット)であれば良い。図2に示すように、圧力センサ11は船首水面下の船体中心線(図2の破線参照)の近傍位置の船体外板表面に配置し、圧力センサ12及び13はそれぞれ船首水面下の左舷及び右舷の船体中心線からほぼ等間隔となる船体外板表面に配置する。 The pressure sensor 1 1 to 1 3 supplies, for example, external implantable or stainless is made from those electronic such as a piezoelectric element, each pressure measurement P c, the P p and P s to the control unit 2 . Capacity of the pressure sensor 1 1 to 1 3, for example, when the boat speed is 10 m / s (about 20 knots or equivalent), since the stagnation pressure is about 5.1Maq = about 50 kPa, stagnation in equivalent about 100 kPa (1 atm It is sufficient if the boat speed is about 27 knots in terms of pressure. As shown in FIG. 2, the pressure sensor 1 1 is bow underwater hull center line disposed hull surface near the position (see a broken line in FIG. 2), the pressure sensor 1 2 and 1 3 are bow under water respectively Are arranged on the hull outer plate surface which is almost equidistant from the hull center line of the port and starboard.

制御部2は、CPU(中央処理装置)、デジタルシグナルプロセッサ(DSP)、シーケンサ等からなり、記憶部3に記憶されている、特性曲線作成プログラム、船速測定プログラム等に基づいて、特性曲線作成処理、船速測定処理等を実行することにより、船速測定装置の全体を制御する。すなわち、例えば、特性曲線作成プログラムが読み出されると、制御部2に読み込まれ、制御部2の動作を制御する。制御部2は、特性曲線作成プログラムが起動されると、特性曲線作成プログラムの制御により、後述する特性曲線作成処理を実行するのである。   The control unit 2 includes a CPU (Central Processing Unit), a digital signal processor (DSP), a sequencer, and the like. Based on a characteristic curve creation program, a ship speed measurement program, and the like stored in the storage unit 3, the characteristic curve creation is performed. The entire ship speed measuring device is controlled by executing processing, ship speed measuring process, and the like. That is, for example, when the characteristic curve creation program is read out, it is read into the control unit 2 and controls the operation of the control unit 2. When the characteristic curve creating program is started, the control unit 2 executes a characteristic curve creating process described later under the control of the characteristic curve creating program.

記憶部3は、RAM、ROM、あるいはフラッシュメモリ等の半導体メモリ、FD(フロッピー(登録商標)・ディスク)が装着されるFDドライブ、HD(ハード・ディスク)が装着されるHDドライブ、MO(光磁気)ディスクが装着されるMOディスクドライブ、あるいはCD(コンパクト・ディスク)−ROM、CD−R(Recordable)、CD−RW(ReWritable)やDVD−ROM、DVD−R、DVD−RW等が装着されるCD/DVDドライブ等からなる。記憶部3は、上記した制御部2が実行すべき特性曲線作成プログラム、船速測定プログラムその他の各種プログラムが予め記憶されているとともに、制御部2が上記した特性曲線作成プログラム、船速測定プログラムその他の各種プログラムを実行する際に作業用として用いられる。表示部4は、CRTディスプレイ、液晶ディスプレイ(LCD;Liquid Crystal Display)、エレクトロルミネセンス(EL:Electro Luminescence)ディスプレイ、あるいはプラズマディスプレイパネル(PDP;Plasma Display Panel)等からなる。操作部5は、テンキー、エンターキー、あるいはファンクションキー等からなるキーボードや、マウス、タッチパッド、あるいはペンデバイス等のポインティングデバイスなどを有する。   The storage unit 3 includes a semiconductor memory such as a RAM, a ROM, or a flash memory, an FD drive to which an FD (floppy (registered trademark) disk) is mounted, an HD drive to which an HD (hard disk) is mounted, and an MO (optical MO disk drive to which a magnetic disk is mounted, or CD (compact disk) -ROM, CD-R (Recordable), CD-RW (ReWritable), DVD-ROM, DVD-R, DVD-RW, etc. CD / DVD drive. The storage unit 3 stores in advance a characteristic curve creation program to be executed by the control unit 2, a ship speed measurement program, and other various programs, and the control unit 2 performs the above-described characteristic curve creation program and ship speed measurement program. Used for work when executing various other programs. The display unit 4 includes a CRT display, a liquid crystal display (LCD), an electroluminescence (EL) display, a plasma display panel (PDP), or the like. The operation unit 5 includes a keyboard including a numeric keypad, an enter key, or a function key, a pointing device such as a mouse, a touch pad, or a pen device.

次に、上記の船速測定装置の動作について説明する。まず、この例の船速測定装置を模型船に実装した水槽試験を予め実施することにより、この例の船速測定装置を実船に実装した際に用いる特性曲線を作成する。なお、船速測定装置を模型船に実装するとは、ここでは船速測定装置の内、圧力センサを実装することを意味し、他の機器は必ずしも搭載する必要はない。以下、上記した特性曲線の作成について、図3に示すフローチャートを参照して説明する。この例の船速測定装置が特性曲線作成モードに設定されると、制御部2は、喫水を変化させるべき回数である喫水変更数n(nは自然数)を設定するとともに、喫水変更数nをカウントするための変数kに1をセットする。また、検査者が操作部5を操作して入力した対水船速Uを記憶部3の所定の記憶領域に記憶する(ステップSP1)。ここで、喫水を変化させるのは、圧力センサ11〜13から出力される圧力計測値Pc、Pp及びPsが船舶の喫水変化による影響を受けるので、各喫水ごとの特性曲線を作成する必要があるためである。また、対水船速Uを設定するのは、制御部2が後述する特性曲線を作成する際に必要となるからである。 Next, the operation of the above ship speed measuring device will be described. First, by conducting a water tank test in which the ship speed measurement device of this example is mounted on a model ship, a characteristic curve used when the ship speed measurement device of this example is mounted on an actual ship is created. Here, mounting the ship speed measuring device on the model ship means mounting the pressure sensor in the ship speed measuring device, and other devices are not necessarily mounted. Hereinafter, the creation of the above characteristic curve will be described with reference to the flowchart shown in FIG. When the ship speed measuring device of this example is set to the characteristic curve creation mode, the control unit 2 sets the draft change number n (n is a natural number), which is the number of times to change the draft, and sets the draft change number n. Set 1 to a variable k for counting. Further, the speed V against water input by the inspector operating the operation unit 5 is stored in a predetermined storage area of the storage unit 3 (step SP1). Here, to change the draft, the pressure measurement P c which is output from the pressure sensor 1 1 to 1 3, since P p and P s is affected by draft changes in the vessels, the characteristic curve of each draft This is because it needs to be created. Moreover, the reason for setting the anti-watercraft speed U is that it is necessary when the control unit 2 creates a characteristic curve described later.

次に、水槽において、その船首水面下の船体外板表面に図2に示されるように圧力センサ11〜13が最適配置位置に配置された模型船を斜航角をつけて一定速度で曳航する。斜航角は流入角度βに相当し、速度はステップSP1で設定した対水船速Uに相当する。これにより、圧力センサ11〜13から圧力計測値Pc、Pp及びPsが供給されるので、制御部2は、記憶部3の所定の記憶領域に記憶するとともに、表示部4に表示する(ステップSP2)。作成すべき特性曲線は、後述するように、流入角度βの関数であるため、斜航角を、例えば、−30度から+30度まで5度おきに変化させて上記した模型船を一定速度で曳航する。したがって、制御部2は、各斜航角ごと、すなわち、各流入角度βごとの圧力センサ11〜13からの圧力計測値Pc、Pp及びPsを記憶部3の所定の記憶領域に記憶するとともに、表示部4に表示する。 Then, the water tank, the bow underwater hull pressure sensor as shown in FIG. 2 to the surface 1 1 to 1 3 model ship arranged in the optimum position with the oblique Wataru angle at a constant rate Towing. The skew angle corresponds to the inflow angle β, and the speed corresponds to the watercraft speed U set in step SP1. Thus, pressure measurement values P c from the pressure sensor 1 1 to 1 3, since P p and P s is supplied, the control section 2 stores in a predetermined storage area of the storage unit 3, the display unit 4 Display (step SP2). Since the characteristic curve to be created is a function of the inflow angle β, as will be described later, the model ship is changed at a constant speed by changing the skew angle, for example, every 5 degrees from -30 degrees to +30 degrees. Towing. Accordingly, the control unit 2, each oblique Wataru angle, i.e., a predetermined storage area of the pressure measurement values P c, P p and P s to the storage unit 3 from the pressure sensor 1 1 to 1 3 of each inflow angle β And displayed on the display unit 4.

圧力センサ11〜13から各流入角度βごとの圧力計測値Pc、Pp及びPsがすべて供給されると、制御部2は、記憶部3の所定の記憶領域から各流入角度βごとの圧力計測値Pc、Pp及びPsと、対水船速Uとを読み出し、各流入角度βごとの値(Pp−Ps)/(Pc−Ps)及び値(Pc−Ps)/ρU2を算出した後、記憶部3の所定の記憶領域に記憶するとともに、表示部4に表示する(ステップSP3)。ρは水槽に満たされた水の密度である。値(Pp−Ps)/(Pc−Ps)は、この例の船速測定装置を実装した実船の実際の流入角度βを算出するためのパラメータである。例えば、左舷からの流れに対しては値Pp>Psとなり、(Pp−Ps)>0であるのに対し、右舷からの流れに対してはPp<Psとなり、(Pp−Ps)<0である。また、値(Pc−Ps)/ρU2は、この例の船速測定装置を実装した実船の実際の対水船速Uを算出するためのパラメータである。なお、値(Pp−Ps)/(Pc−Ps)及び値(Pc−Ps)/ρU2は、いずれも無次元(dimensionless)であるので、ある船舶が他の船舶と大きさは異なるが形状が同一である相似形である場合には、同一の値を用いることができる。 The pressure measurement P c of each inflow angle β from the pressure sensor 1 1 to 1 3, the P p and P s is supplied all, the control unit 2, the inflow angle β from a predetermined storage area of the storage unit 3 The pressure measurement values P c , P p and P s for each and the speed V of the watercraft are read out, and the values (P p −P s ) / (P c −P s ) and values (P c− P s ) / ρU 2 is calculated and then stored in a predetermined storage area of the storage unit 3 and displayed on the display unit 4 (step SP3). ρ is the density of water filled in the aquarium. The value (P p −P s ) / (P c −P s ) is a parameter for calculating the actual inflow angle β of the actual ship on which the ship speed measuring device of this example is mounted. For example, the value P p > P s for the flow from the starboard and (P p −P s )> 0, whereas P p <P s for the flow from the starboard (P p− P s ) <0. Further, the value (P c −P s ) / ρU 2 is a parameter for calculating the actual water speed U of the actual ship on which the ship speed measuring device of this example is mounted. Note that the value (P p −P s ) / (P c −P s ) and the value (P c −P s ) / ρU 2 are both dimensionless. In the case of similar shapes having different sizes but the same shape, the same value can be used.

次に、制御部2は、流入角度βと値(Pp−Ps)/(Pc−Ps)との第1特性曲線を作成した後に、記憶部3の所定の記憶領域に記憶するとともに、表示部4に表示する(ステップSP4)。すなわち、制御部2は、記憶部3の所定の記憶領域から流入角度βとそれに対応した値(Pp−Ps)/(Pc−Ps)とを読み出し、グラフの横軸に流入角度βを、縦軸に値(Pp−Ps)/(Pc−Ps)を置点し、各点を接続することにより、図4に曲線aで示す第1特性曲線を作成する。次に、制御部2は、流入角度βと値(Pc−Ps)/ρU2との第2特性曲線を作成した後、記憶部3の所定の記憶領域に記憶するとともに、表示部4に表示する(ステップSP5)。すなわち、制御部2は、記憶部3の所定の記憶領域から流入角度βとそれに対応した値(Pc−Ps)/ρU2とを読み出し、グラフの横軸に流入角度βを、縦軸に値(Pc−Ps)/ρU2を置点し、各点を接続することにより、図4に曲線bで示す第2特性曲線を作成する。 Next, the control unit 2 creates a first characteristic curve of the inflow angle β and the value (P p −P s ) / (P c −P s ), and then stores it in a predetermined storage area of the storage unit 3. At the same time, it is displayed on the display unit 4 (step SP4). That is, the control unit 2 reads the inflow angle β and the corresponding value (P p −P s ) / (P c −P s ) from a predetermined storage area of the storage unit 3, and the inflow angle is plotted on the horizontal axis of the graph. A first characteristic curve indicated by a curve a in FIG. 4 is created by placing β and placing the value (P p −P s ) / (P c −P s ) on the vertical axis and connecting the points. Next, the control unit 2 creates a second characteristic curve of the inflow angle β and the value (P c −P s ) / ρU 2, and then stores the second characteristic curve in a predetermined storage area of the storage unit 3 and the display unit 4. (Step SP5). That is, the control unit 2 reads the inflow angle β and the corresponding value (P c −P s ) / ρU 2 from a predetermined storage area of the storage unit 3, A value (P c −P s ) / ρU 2 is placed on and connected to create a second characteristic curve indicated by a curve b in FIG.

次に、制御部2は、変数kに1をインクリメントした(ステップSP6)後、変数kが喫水変更数nより大きいか否か判断する。この判断結果が「NO」の場合には、制御部2は、ステップSP2へ戻り、上記したステップSP2〜SP6の処理を繰り返す。そして、変数kが喫水変更数nより大きくなると、ステップSP7の判断結果が「YES」となり、制御部2は、一連の処理を終了する。以上説明したステップSP2〜SP5の処理がn回繰り返されることにより、各喫水ごとの第1特性曲線及び第2特性曲線が作成され、それぞれが記憶部3の所定の記憶領域に記憶されるとともに、表示部4に表示される。なお、第1特性曲線及び第2特性曲線は、多項式に当てはめることにより数式で表現することは可能である。   Next, after incrementing the variable k by 1 (step SP6), the control unit 2 determines whether the variable k is greater than the draft change number n. If the determination result is “NO”, the control unit 2 returns to Step SP2 and repeats the processing of Steps SP2 to SP6 described above. And if the variable k becomes larger than the draft change number n, the judgment result of step SP7 will be "YES", and the control part 2 will complete | finish a series of processes. By repeating the processing of steps SP2 to SP5 described above n times, a first characteristic curve and a second characteristic curve for each draft are created, and each is stored in a predetermined storage area of the storage unit 3, It is displayed on the display unit 4. Note that the first characteristic curve and the second characteristic curve can be expressed by mathematical formulas by applying them to polynomials.

ここで、第1特性曲線及び第2特性曲線を作成する根拠について説明する。先端が球のような鈍い形状をした物体が水等の流れの中におかれると、水等の流れと真正面にある点では圧力が最も大きく、その点から離れるに従って急激に圧力が低下していくことが知られている。水等の流れと物体に加えられる圧力との関係は、球体のように構造的に単純な形状の物体の場合は理論的に数式で表すことができるが、船首の形状のような一般の形状の物体では理論的に数式で表すことができない。そこで、実験又は数値解析的手法を用いて、水等の流れと物体に加えられる圧力との関係がどのような特性曲線の傾向を示すかについて調査しておく必要がある。第1特性曲線及び第2特性曲線は、微少な流入角度βの変化でも大きくかつ単調に変化する傾向(例えば、流入角度βの変化に対してほぼ直線的に変化し、かつその勾配が大きいこと)にあることが望ましい。   Here, the basis for creating the first characteristic curve and the second characteristic curve will be described. When an object with a blunt shape, such as a sphere, is placed in a flow of water or the like, the pressure is greatest at a point directly in front of the flow of water or the like, and the pressure drops rapidly as the point moves away from the point. It is known to go. The relationship between the flow of water and the pressure applied to the object can be expressed theoretically in the case of an object with a structurally simple shape such as a sphere, but it can be represented by a general shape such as the shape of a bow. This object cannot theoretically be expressed by mathematical formulas. Therefore, it is necessary to investigate what characteristic curve tendency the relationship between the flow of water or the like and the pressure applied to the object shows by using an experiment or a numerical analysis method. The first characteristic curve and the second characteristic curve tend to change greatly and monotonously even with a slight change in the inflow angle β (for example, change almost linearly with respect to the change in the inflow angle β and have a large gradient). ) Is desirable.

特性曲線の傾向の良否は、実船で計測される流入角度β及び対水船速Uの精度に影響を与えるため、望ましい特性曲線となるような圧力センサの配置(最適配置)を予め検討しておく必要がある。圧力センサの最適配置については、上記したように、第1特性曲線及び第2特性曲線の傾向が流入角度βの変化に対してほぼ直線的に変化し、かつその勾配が大きいことが望ましいので、例えば、ヘス・スミス(Hess & Smith)法を用いた事前の計算でそのような位置を探索しておくことが望ましく、それが満たされた位置が最適な配置位置となる。圧力センサの最適な配置位置は、船舶の形状ごとに異なるので、一般的な数値として喫水線から何mの深さで左右の配置位置は船体中心線から何m離れたところと限定することはできない。また、距離が離れていても平行な位置関係に配置したのでは特性曲線の傾向が良好とはならないので、各圧力センサの配置位置の法線がなるべく大きな角度で交差するように各圧力センサを配置したほうが良い。ここで、ヘス・スミス(Hess & Smith)法とは、流体力学において、流れの中に物体が存在するとき、その物体が流れを排除する効果を流体力学的特異点の1つである吹き出し分布で置き換え、この強さを数値解析で求めることにより、流れを解析する方法である。   The quality of the characteristic curve tends to affect the accuracy of the inflow angle β and water speed U measured on the actual ship. It is necessary to keep. As for the optimal arrangement of the pressure sensor, as described above, it is desirable that the tendency of the first characteristic curve and the second characteristic curve changes substantially linearly with respect to the change of the inflow angle β, and the gradient thereof is large. For example, it is desirable to search for such a position by a prior calculation using the Hess & Smith method, and a position where the position is satisfied is an optimum arrangement position. Since the optimal placement position of the pressure sensor differs depending on the shape of the ship, as a general numerical value, the depth of the left and right placement positions cannot be limited to how many meters away from the hull center line. . In addition, even if the distance is long, the characteristic curves tend not to be good if they are arranged in parallel, so each pressure sensor should be arranged so that the normals of the arrangement positions of the pressure sensors intersect at as large an angle as possible. It is better to place it. Here, the Hess-Smith method (Hess & Smith) is a flow distribution that is one of the hydrodynamic singularities in fluid mechanics when an object is present in a flow. This is a method for analyzing the flow by obtaining the strength by numerical analysis.

次に、この例の船速測定装置を実船に実装した場合の対水船速U及び流入角度βの測定について、図5に示すフローチャートを参照して説明する。その船首水面下の船体外板表面に図2に示すように圧力センサ11〜13が最適配置位置に配置された実船を海上等において航走させる。これにより、圧力センサ11〜13から圧力計測値Pc、Pp及びPsが供給されるので、制御部2は、記憶部3の所定の記憶領域に記憶するとともに、表示部4に表示する。また、制御部2は、図示せぬ密度計により計測された海水密度ρが供給され、記憶部3の所定の記憶領域に記憶するとともに、例えば、ブリッジに設置された表示部4に表示する(ステップSP11)。なお、海水密度ρは、計測された水温や塩水濃度から換算した値であっても良いし、検査者が操作部5を操作して入力しても良い。 Next, the measurement of the water speed U and the inflow angle β when the ship speed measuring device of this example is mounted on an actual ship will be described with reference to the flowchart shown in FIG. As the bow underwater hull surface of the pressure sensor 1 1 to 1 3 as shown in FIG. 2 cruising make at sea like the actual ship arranged in the optimum position. Thus, pressure measurement values P c from the pressure sensor 1 1 to 1 3, since P p and P s is supplied, the control section 2 stores in a predetermined storage area of the storage unit 3, the display unit 4 indicate. Further, the control unit 2 is supplied with the seawater density ρ measured by a density meter (not shown) and stores it in a predetermined storage area of the storage unit 3 and displays it on the display unit 4 installed in the bridge, for example ( Step SP11). The seawater density ρ may be a value converted from the measured water temperature or salt water concentration, or may be input by operating the operation unit 5 by the inspector.

次に、制御部2は、記憶部3の所定の記憶領域から圧力計測値Pc、Pp及びPsを読み出し、値(Pp−Ps)/(Pc−Ps)を算出した後、記憶部3の所定の記憶領域に記憶する(ステップSP12)。次に、制御部2は、記憶部3の所定の記憶領域から値(Pp−Ps)/(Pc−Ps)と、第1特性曲線とを読み出し、図4に示すように、値(Pp−Ps)/(Pc−Ps)を取るときの第1特性曲線における流入角度βを求めた後、記憶部3の所定の記憶領域に記憶するとともに、表示部4に表示する(ステップSP13)。 Next, the control unit 2 reads the pressure measurement values P c , P p and P s from the predetermined storage area of the storage unit 3 and calculates the value (P p −P s ) / (P c −P s ). Thereafter, it is stored in a predetermined storage area of the storage unit 3 (step SP12). Next, the control unit 2 reads the value (P p −P s ) / (P c −P s ) and the first characteristic curve from the predetermined storage area of the storage unit 3, and as shown in FIG. After obtaining the inflow angle β in the first characteristic curve when taking the value (P p −P s ) / (P c −P s ), the inflow angle β is stored in a predetermined storage area of the storage unit 3 and displayed on the display unit 4. Display (step SP13).

次に、制御部2は、記憶部3の所定の記憶領域から値βと、第2特性曲線とを読み出し、図4に示すように、値βを取るときの第2特性曲線における値(Pc−Ps)/ρU2(これを値Aとする。)を求めた後、記憶部3の所定の記憶領域に記憶する(ステップSP14)。値(Pc−Ps)/ρU2と値Aとは等しいので、(式1)が成り立つ。次に、制御部2は、記憶部3の所定の記憶領域から圧力計測値Pc及びPsと、海水密度ρとを読み出し、(式1)を変形した(式2)に代入することにより、対水船速Uを算出した後、一連の処理を終了する(ステップSP15)。
(Pc−Ps)/ρU2=A ・・・(式1)
U={ρA/(Pc−Ps)}1/2 ・・・(式2)
Next, the control unit 2 reads the value β and the second characteristic curve from a predetermined storage area of the storage unit 3, and as shown in FIG. 4, the value (P c− P s ) / ρU 2 (this value is assumed to be A) and then stored in a predetermined storage area of the storage unit 3 (step SP14). Since the value (P c −P s ) / ρU 2 is equal to the value A, (Equation 1) holds. Next, the control unit 2 reads out the pressure measurement values P c and P s and the seawater density ρ from the predetermined storage area of the storage unit 3 and substitutes (Equation 1) into the modified (Equation 2). After calculating the ship speed U against water, a series of processing is terminated (step SP15).
(P c −P s ) / ρU 2 = A (Equation 1)
U = {ρA / (P c −P s )} 1/2 (Expression 2)

このように、この実施の形態では、圧力センサ11を船首水面下のほぼ船体中心線上の船体外板表面に配置し、圧力センサ12及び13はそれぞれ船首水面下の左舷及び右舷の船体中心線からほぼ等間隔となる船体外板表面に配置するとともに、第1特性曲線及び第2特性曲線を模型を使った水槽試験で予め求め、実船に実装した場合には、圧力センサ11〜13からの圧力計測値Pc、Pp及びPsと、密度計からの海水密度ρと、上記第1特性曲線及び第2特性曲線とに基づいて、船舶が航走している際の対水船速U及び流入角度βを算出している。上記第1特性曲線及び第2特性曲線を模型船を使った水槽試験で精度良く作成することができるので、これに基づく実船における対水船速U及び流入角度βも精度良く算出することができる。 Thus, in this embodiment, substantially the hull center line disposed hull surface, port and starboard hull bow underwater Each pressure sensor 1 2 and 1 3 under bow water pressure sensor 1 1 When placed on the surface of the hull skin that is approximately equidistant from the center line, the first characteristic curve and the second characteristic curve are obtained in advance by a tank test using a model, and when mounted on an actual ship, the pressure sensor 1 1 a pressure measurement value P c, P p and P s from to 1 3, a sea water density ρ from density meter, based on the first characteristic curve and the second characteristic curve, when the ship is sailing The ship's speed U and the inflow angle β are calculated. Since the first characteristic curve and the second characteristic curve can be created with high accuracy by a tank test using a model ship, the water speed U and the inflow angle β of the actual ship based on this can be calculated with high accuracy. it can.

なお、上記の説明では、第1特性曲線及び第2特性曲線を模型を使った水槽試験で求める例を示したが、本発明はこれに限定するものではない。例えば、第1特性曲線及び第2特性曲線を数値解析手法を用いた理論計算により求めても良い。数値解析手法としては、例えば、ポテンシャル流理論に基づく上記したヘス・スミス(Hess & Smith)法や、流れの運動方程式を数値的に解く数値流体力学(CFD;Computational Fluid Dynamics)シミュレーションがある。また第1特性曲線及び第2特性曲線の式の形式も前述のものに限る必要はなく、β,Uが精度良く求まる形になっていれば良い。   In the above description, an example in which the first characteristic curve and the second characteristic curve are obtained by a water tank test using a model is shown, but the present invention is not limited to this. For example, the first characteristic curve and the second characteristic curve may be obtained by theoretical calculation using a numerical analysis method. Examples of the numerical analysis method include the above-mentioned Hess & Smith method based on the potential flow theory and a computational fluid dynamics (CFD) simulation for numerically solving a flow equation of motion. Further, the forms of the first characteristic curve and the second characteristic curve need not be limited to those described above, and it is sufficient that β and U can be obtained with high accuracy.

以上の説明により圧力センサ(圧力計)の測定値を用いることにより対水船速の測定が可能であることが明らかになったところで、次に、圧力センサ(圧力計)の測定値に基づいて波スペクトル等(波浪特性)を求める波浪特性測定装置の実施形態を、実施形態2〜4として説明する。   From the above explanation, it became clear that the measurement of the speed of the watercraft was possible by using the measured value of the pressure sensor (pressure gauge). Next, based on the measured value of the pressure sensor (pressure gauge) Embodiments of a wave characteristic measuring apparatus for obtaining a wave spectrum or the like (wave characteristics) will be described as Embodiments 2 to 4.

実施形態2.
図6は本発明の実施形態2に係る波浪特性測定装置の演算処理の過程を示したフローチャートであり、図7はその説明図である。なお、波浪特性測定装置の構成は図1に示されたものと基本的に同一であり、本実施形態2では図1の船速測定装置に上下加速度計6が付加されたものが、波浪特性測定装置として用いられる。そして、制御部2が後述の各演算を行う(このことは後述の実施形態3、4においても同様である。)
Embodiment 2. FIG.
FIG. 6 is a flowchart showing a process of calculation processing of the wave characteristic measuring apparatus according to the second embodiment of the present invention, and FIG. 7 is an explanatory diagram thereof. The configuration of the wave characteristic measuring apparatus is basically the same as that shown in FIG. 1. In the second embodiment, the wave speed measuring apparatus shown in FIG. Used as a measuring device. And the control part 2 performs each calculation mentioned later (this is the same also in Embodiment 3 and 4 mentioned later).

ここで、対水船速を計測した部位(圧力センサ11の位置)Pによる計測圧力をp(t)とする。ここで(t)は時間変動値であることを表す。圧力値がほぼ水頭に等しいとみなすと、相対水位変動Zr(t)は次の(式3)で求められる。 Here, the measurement pressure by site measured ship's speed relative to the water (the position of the pressure sensor 1 1) P and p (t). Here, (t) represents a time variation value. Assuming that the pressure value is almost equal to the head, the relative water level fluctuation Z r (t) is obtained by the following (Equation 3).

Figure 2007085795
Figure 2007085795

また、部位Pの位置における上下変位Zp(t)は、上下加速度計6により計測される上下加速度を2回積分して、次の(式4)により求められる。 Further, the vertical displacement Z p (t) at the position P is obtained by integrating the vertical acceleration measured by the vertical accelerometer 6 twice and by the following (formula 4).

Figure 2007085795
Figure 2007085795

また、部位Pの水面からの高さをh0とすると、相対水位変動Zr(t)と絶対水位変動ζ(t)との間には次の(式5)の関係があるので、相対水位変動Zr(t)、高さh0及び上下変位Zp(t)から(式6)のように絶対水位変動ζ(t)を求めることができる。h0は、喫水及び部位Pの船底からの取り付け高さが分かっているので、両者の差より求めることができる。 Further, if the height of the part P from the water surface is h 0 , the relationship between the relative water level fluctuation Z r (t) and the absolute water level fluctuation ζ (t) has the following relationship (Equation 5). From the water level fluctuation Z r (t), the height h 0 and the vertical displacement Z p (t), the absolute water level fluctuation ζ (t) can be obtained as shown in (Expression 6). h 0 can be obtained from the difference between the draft and the mounting height of the part P from the ship bottom.

Figure 2007085795
Figure 2007085795
Figure 2007085795
Figure 2007085795

ここで得られた絶対水位変動ζ(t)は、パワースペクトル演算により出会波スペクトルS(ωe)に変換される。パワースペクトル演算にはBlackman-Tukey法、FFT法、MEM法など種々の方法が提案され用いられているが、例えば次の(式7)に示すように、 The absolute water level fluctuation ζ (t) obtained here is converted into an encounter wave spectrum S (ω e ) by power spectrum calculation. Various methods such as Blackman-Tukey method, FFT method, and MEM method have been proposed and used for power spectrum calculation. For example, as shown in the following (Equation 7),

Figure 2007085795
Figure 2007085795

により自己相関関数C(τ)を求め、そのフーリエ変換を行うことにより出会波スペクトルを求めることができる。 Thus, the autocorrelation function C (τ) is obtained, and the encounter wave spectrum can be obtained by performing the Fourier transform.

Figure 2007085795
Figure 2007085795

さらに以下の演算により波スペクトルS(ω)に変換される。   Further, it is converted into a wave spectrum S (ω) by the following calculation.

Figure 2007085795
Figure 2007085795

出会波周波数ωeと波周波数ωの関係は次のように与えられる。

Figure 2007085795
Figure 2007085795
Figure 2007085795
The relationship between the encounter wave frequency ωe and the wave frequency ω is given as follows.
Figure 2007085795
Figure 2007085795
Figure 2007085795

ここで、Uは船速であり上記の実施形態1に示された対水船速測定により計測される。またλは波長、χは船と波との出会角である。この波出会角χは、船首正面から入射する時をχ=0°として、斜め方向から入射する時の角度である。例えば横波がχ=90°、追波がχ=180°となる。この波出会角χは例えば、船上で目視観察によって確定する、船上のレーダー画像を画像処理することによって波向きを求める、気圧配置/風速・風向分布から、波浪推算によって波向きを推定する、等の方法により別途求めるものとする。   Here, U is the ship speed, and is measured by the water speed measurement shown in the first embodiment. Λ is the wavelength, and χ is the encounter angle between the ship and the wave. This wave meeting angle χ is an angle when entering from an oblique direction with χ = 0 ° when entering from the front of the bow. For example, the transverse wave is χ = 90 ° and the following wave is χ = 180 °. The wave meeting angle χ is determined by visual observation on the ship, for example, the wave direction is obtained by image processing of the radar image on the ship, and the wave direction is estimated by wave estimation from the atmospheric pressure arrangement / wind speed / wind direction distribution. It shall be obtained separately by such methods.

求められた波スペクトルより、遭遇波浪の有義波高H、平均波周期Tは(式13)により求められる。 From the obtained wave spectrum, the significant wave height H and the average wave period T of the encounter wave are obtained by (Equation 13).

Figure 2007085795
Figure 2007085795
Figure 2007085795
Figure 2007085795

実施形態3.
図8は本発明の実施形態3に係る波浪特性測定装置の演算処理の過程を示したフローチャートである。なお、波浪特性測定装置の構成は図1に示されたものと同一である。上記の実施形態2の場合と同様に、部位Pにおける計測圧力より圧力変動p(t)を求め、この圧力p(t)に対してパワースペクトル演算を行うことにより、船体動揺の影響を含めた圧力のスペクトルSp(ωe)を求める。この圧力のスペクトルSp(ωe)より、出会波のスペクトルは次式で求めることができる。
Embodiment 3. FIG.
FIG. 8 is a flowchart showing a process of calculation processing of the wave characteristic measuring apparatus according to the third embodiment of the present invention. The configuration of the wave characteristic measuring apparatus is the same as that shown in FIG. As in the case of the second embodiment, the pressure fluctuation p (t) is obtained from the measured pressure at the site P, and the power spectrum calculation is performed on the pressure p (t) to include the influence of the hull fluctuation. A pressure spectrum S pe ) is obtained. From this pressure spectrum S pe ), the spectrum of the encounter wave can be obtained by the following equation.

Figure 2007085795
Figure 2007085795

ここに、Hp(ωe;U,χ)は圧力計位置における圧力の周波数応答関数であり、船速U及び波出会角χをパラメータとして理論計算あるいは模型試験により求めることができる。現実的には事前にいくつかの船速及び波出会角波をパラメータとして圧力周波数応答関数をデータベースとして準備しておき、実際の船速、波向で補間して求めるのが好ましい。実際の船速は本装置から求まる対水船速を用い、波出会角については上記の実施形態2と同様に何らかの方法により求める。得られた出会波スペクトルから波スペクトルを求め、それより遭遇波浪の有義波高、平均波周期等の波浪パラメータを求める手法については、上記の実施の形態2と同様である。本実施形態3では、船体動揺影響を除去するための上下加速度計の設置が不要となる。 Here, H pe ; U, χ) is a frequency response function of pressure at the pressure gauge position, and can be obtained by theoretical calculation or model test using the ship speed U and the wave meeting angle χ as parameters. Practically, it is preferable to prepare a pressure frequency response function as a database by using several ship speeds and wave meeting angle waves as parameters in advance, and interpolate with the actual ship speed and wave direction. The actual ship speed is obtained from the water speed obtained from this apparatus, and the wave meeting angle is obtained by some method as in the second embodiment. The method for obtaining the wave spectrum from the obtained encounter wave spectrum and obtaining the wave parameters such as the significant wave height and the average wave period of the encounter wave is the same as in the second embodiment. In the third embodiment, it is not necessary to install a vertical accelerometer for removing the hull shaking effect.

実施形態4.
図9は本発明の実施形態4に係る波浪特性測定装置の演算処理の過程を示したフローチャートであり、図10はその説明図である。本実施形態4では、対水流速計の圧力計(船首に設置)及びそこから十分に離れた距離に設置した圧力計(例えば船体中央部付近の左右舷に設置)のそれぞれ(合計三箇所以上)の圧力変動計測値を用いて、波スペクトルを求める。いま、圧力計をP1,…,PMのM箇所に設置するものとして、それぞれの圧力計で計測される圧力変動をpm(t), m=1,…,Mとする。これらの圧力変動計測値より、クロススペクトル演算により圧力のクロススペクトルSmn(ωe),m,n=1,…Mを求める。クロススペクトルSmn(ωe)と方向波スペクトルE(ω,χ)との間には次の関係がある。
Embodiment 4 FIG.
FIG. 9 is a flowchart showing a process of calculation processing of the wave characteristic measuring apparatus according to the fourth embodiment of the present invention, and FIG. 10 is an explanatory diagram thereof. In the fourth embodiment, each of the pressure gauges for water velocimeters (installed at the bow) and the pressure gauges installed at a distance sufficiently away from the pressure gauges (for example, installed at the left and right side of the ship near the center of the hull) ) Is used to obtain the wave spectrum. Now, P 1 a pressure gauge, ..., as installed in M positions of the P M, p m (t) the pressure fluctuations measured by the respective pressure gauge, m = 1, ..., a M. From these pressure fluctuation measurement values, the cross spectrum S mne ), m, n = 1 ,. The following relationship exists between the cross spectrum S mne ) and the directional wave spectrum E (ω, χ).

Figure 2007085795
Figure 2007085795

ここに、Hpm(ω,χ)は圧力計mにおける圧力周波数応答関数であり、上記の実施形態3と同様に船速Vと波出会角χをパラメータとして求めることができる。またH* pm(ω,χ)はHpm(ω,χ)の共役複素数である。上記の(式16)の関係を用いると、クロススペクトルSmn(ωe)より出会いの方向波スペクトルE(ωe,χ)を求めることができる。この解析には、従来パラメータ法、拡張最大エントロピー法、拡張最尤法、ベイズ法、非線形計画法等の各種手法が提案されている。上述の(式16)はその一例である。また、出会いの方向波スペクトルE(ωe,χ)から方向波スペクトルE(ω,χ)は(式9)を用いて求めることができる。求められた方向波スペクトルE(ω,χ)は波向成分を含んでいることから、波出会角の主方向を求めることができる。また、この方向波スペクトルより、遭遇波浪の有義波高H、平均波周期Tは(式13)を用いて求めることができる。但し、この場合には、 Here, H pm (ω, χ) is a pressure frequency response function in the pressure gauge m, and the ship speed V and the wave encounter angle χ can be obtained as parameters as in the third embodiment. H * pm (ω, χ) is a conjugate complex number of Hpm (ω, χ). Using the relationship of (Equation 16) above, the directional wave spectrum E (ω e , χ) of the encounter can be obtained from the cross spectrum S mne ). Various methods such as a conventional parameter method, an extended maximum entropy method, an extended maximum likelihood method, a Bayes method, and a nonlinear programming method have been proposed for this analysis. The above (Formula 16) is an example. Further, the directional wave spectrum E (ω, χ) can be obtained from the directional wave spectrum E (ω e , χ) of the encounter using (Equation 9). Since the obtained directional wave spectrum E (ω, χ) includes a wave direction component, the main direction of the wave encounter angle can be obtained. Further, from this directional wave spectrum, the significant wave height H and the average wave period T of the encounter wave can be obtained using (Equation 13). However, in this case,

Figure 2007085795
である。この演算方法では、船体動揺影響を除去するための上下加速度計6の設置が不要になる。また、波出会角χも自動的に求めることができる。
Figure 2007085795
It is. In this calculation method, it is not necessary to install the vertical accelerometer 6 for removing the influence of the hull shaking. In addition, the wave meeting angle χ can be automatically obtained.

なお、本実施形態4の場合には、対水流速計用の船首圧力計以外に、船体中央部付近に圧力計を追設する必要があるが、追加の圧力計位置と船首圧力計位置との距離は、遭遇波浪の波長の解像精度から特定すればよい。また、船体中央部付近に設置する場合には、船体中央部には既設の、喫水計として使用されている圧力計で計測されるデータを使用することも可能である。   In the case of the fourth embodiment, it is necessary to additionally install a pressure gauge in the vicinity of the center of the hull in addition to the bow pressure gauge for the water velocimeter, but the additional pressure gauge position, the bow pressure gauge position, The distance may be specified from the resolution accuracy of the wavelength of the encounter wave. Moreover, when installing in the hull center vicinity, it is also possible to use the data measured with the existing pressure gauge used as a draft meter in the hull center part.

本発明の実施の形態1である船速測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the ship speed measuring apparatus which is Embodiment 1 of this invention. 圧力センサの配置の一例を示す概念図である。It is a conceptual diagram which shows an example of arrangement | positioning of a pressure sensor. 制御部の特性曲線作成処理を説明するためのフローチャートである。It is a flowchart for demonstrating the characteristic curve creation process of a control part. 特性曲線の一例を示す図である。It is a figure which shows an example of a characteristic curve. 制御部の船速測定処理を説明するためのフローチャートである。It is a flowchart for demonstrating the ship speed measurement process of a control part. 本発明の実施形態2に係る波浪特性測定装置の演算処理の過程を示したフローチャートである。It is the flowchart which showed the process of the arithmetic processing of the wave characteristic measuring apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態2の説明図である。It is explanatory drawing of Embodiment 2 of this invention. 本発明の実施形態3に係る波浪特性測定装置の演算処理の過程を示したフローチャートである。It is the flowchart which showed the process of the arithmetic processing of the wave characteristic measuring apparatus which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る波浪特性測定装置の演算処理の過程を示したフローチャートである。It is the flowchart which showed the process of the arithmetic processing of the wave characteristic measuring apparatus which concerns on Embodiment 4 of this invention. 本発明の実施形態4の説明図である。It is explanatory drawing of Embodiment 4 of this invention.

符号の説明Explanation of symbols

1〜13 圧力センサ、2 制御部、3 記憶部、4 表示部、5 操作部、6 上下加速度計。
1 1 to 1 3 Pressure sensor, 2 control unit, 3 storage unit, 4 display unit, 5 operation unit, 6 vertical accelerometer.

Claims (6)

船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求める工程と、
船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された実船の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を算出する工程と、
前記圧力計の計測値に基づいて相対水位変動を求める工程と、
前記実船に配置された上下加速度計の出力に基づいて上下変位量を求め、前記上下変位量と前記相対水位変動とに基づいて絶対水位変動を求める工程と、
前記絶対水位変動に基づいて出会波スペクトルを求める工程と、
前記出会波スペクトルと、前記対水船速と、別途求められた波出会角とに基づいて波スペクトルを求める工程と
を備えたことを特徴とする波浪特性測定方法。
Aquarium test using a model ship in which multiple pressure gauges are arranged at a position on the hull center line on the hull outer plate surface below the bow water surface and at a position that is substantially equidistant from the hull center line on the port side and starboard side Alternatively, by theoretical calculation, for each draft and each inflow angle, obtaining a plurality of characteristic curves related to the pressure measurement values of the plurality of pressure gauges and the inflow angle;
Pressure of the pressure gauge of an actual ship in which a plurality of pressure gauges are arranged at a position on the hull center line on the hull outer plate surface below the bow water surface and a position that is substantially equidistant from the hull center line on the port side and starboard side. Calculating the speed of the watercraft based on the measured value, the density of water, and the plurality of characteristic curves;
Obtaining a relative water level fluctuation based on the measured value of the pressure gauge;
Obtaining a vertical displacement amount based on an output of a vertical accelerometer disposed on the actual ship, and obtaining an absolute water level variation based on the vertical displacement amount and the relative water level variation;
Obtaining an encounter wave spectrum based on the absolute water level fluctuation;
A wave characteristic measurement method comprising: a step of obtaining a wave spectrum based on the encounter wave spectrum, the speed with respect to the water vessel, and a separately obtained wave encounter angle.
船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求める工程と、
船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された実船の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を算出する工程と、
前記圧力計の計測値に基づいて出会圧力スペクトルを求める工程と、
前記対水船速及び別途求められた波出会角を関数とする圧力周波数応答関数と前記出会圧力スペクトルとに基づいて出会波スペクトルを求める工程と、
前記出会波スペクトルと、前記対水船速と、前記波出会角とに基づいて波スペクトルを求める工程と
を備えたことを特徴とする波浪特性測定方法。
Aquarium test using a model ship in which multiple pressure gauges are arranged at a position on the hull center line on the hull outer plate surface below the bow water surface and at a position that is substantially equidistant from the hull center line on the port side and starboard side Alternatively, by theoretical calculation, for each draft and each inflow angle, obtaining a plurality of characteristic curves related to the pressure measurement values of the plurality of pressure gauges and the inflow angle;
Pressure of the pressure gauge of an actual ship in which a plurality of pressure gauges are arranged at a position on the hull center line on the hull outer plate surface below the bow water surface and a position that is substantially equidistant from the hull center line on the port side and starboard side. Calculating the speed of the watercraft based on the measured value, the density of water, and the plurality of characteristic curves;
Obtaining an encounter pressure spectrum based on the measurement value of the pressure gauge;
Obtaining an encounter wave spectrum based on the pressure frequency response function and the encounter pressure spectrum as a function of the vessel speed and the separately obtained wave encounter angle;
A wave characteristic measurement method comprising: a step of obtaining a wave spectrum based on the encounter wave spectrum, the speed with respect to water, and the wave encounter angle.
船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求める工程と、
船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに複数の圧力計が配置された実船の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を算出する工程と、
前記ほぼ船体中心線上の位置に配置された圧力計の計測値と、前記実船の左舷及び右舷にそれぞれ配置された複数の圧力計の計測値とに基づいて圧力クロススペクトルを求める工程と、
前記対水船速を関数とする圧力周波数応答関数と、前記圧力クロススペクトルとに基づいて方向波スペクトルを求める工程と
を備えたことを特徴とする波浪特性測定方法。
Aquarium test using a model ship in which multiple pressure gauges are arranged at a position on the hull center line on the hull outer plate surface below the bow water surface and at a position that is substantially equidistant from the hull center line on the port side and starboard side Alternatively, by theoretical calculation, for each draft and each inflow angle, obtaining a plurality of characteristic curves related to the pressure measurement values of the plurality of pressure gauges and the inflow angle;
Pressure of the pressure gauge of an actual ship in which a plurality of pressure gauges are arranged at a position on the hull center line on the hull outer plate surface below the bow water surface and a position that is substantially equidistant from the hull center line on the port side and starboard side. Calculating the speed of the watercraft based on the measured value, the density of water, and the plurality of characteristic curves;
A step of obtaining a pressure cross spectrum based on a measurement value of a pressure gauge disposed substantially at a position on the center line of the hull and a plurality of pressure gauges disposed on the port side and starboard side of the actual ship; and
A wave characteristic measuring method, comprising: a step of obtaining a directional wave spectrum based on a pressure frequency response function that is a function of the ship speed against water and the pressure cross spectrum.
船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに配置された複数の圧力計と、
船首水面下の船体外板表面のほぼ船体中心線上の位置に配置された上下加速度計と、
模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求め、前記複数の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を求める処置と、前記圧力計の計測値に基づいて相対水位変動を求める処理と、前記実船に配置された上下加速度計の出力に基づいて上下変位量を求め、前記上下変位量と前記相対水位変動とに基づいて絶対水位変動を求める処理と、前記絶対水位変動に基づいて出会波スペクトルを求める処理と、前記出会波スペクトルと、前記対水船速と、別途求められた波出会角とに基づいて波スペクトルを求める処理とを行う制御部と
を備えたことを特徴とする波浪特性測定装置。
A plurality of pressure gauges arranged at a position on the hull center line of the hull skin plate surface below the bow water surface and at a position that is substantially equidistant from the hull center line on the port and starboard;
A vertical accelerometer arranged at a position on the hull centerline on the hull skin surface below the bow water surface;
By a water tank test or a theoretical calculation using a model ship, a plurality of characteristic curves related to the pressure measurement values and the inflow angles of the plurality of pressure gauges are obtained for each draft and each inflow angle, and the pressure measurements of the plurality of pressure gauges are obtained. Disposed on the actual ship, a treatment for obtaining the water speed based on the value, the density of water, and the plurality of characteristic curves, a process for obtaining the relative water level fluctuation based on the measurement value of the pressure gauge, and A process for obtaining a vertical displacement amount based on the output of the vertical accelerometer, a process for obtaining an absolute water level fluctuation based on the vertical displacement quantity and the relative water level fluctuation, and a process for obtaining an encounter wave spectrum based on the absolute water level fluctuation. A wave characteristic measuring device comprising: a control unit that performs a process for obtaining a wave spectrum based on the encounter wave spectrum, the speed with respect to water, and a separately obtained wave encounter angle .
船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに配置された複数の圧力計と、
模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求め、前記複数の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を求める処置と、前記圧力計の計測値に基づいて出会圧力スペクトルを求める処理と、前記対水船速及び別途求められた波出会角を関数とする圧力周波数応答関数と前記出会圧力スペクトルとに基づいて出会波スペクトルを求める処理と、前記出会波スペクトルと、前記対水船速と、前記波出会角とに基づいて波スペクトルを求める処理とを行う制御部と
を備えたことを特徴とする波浪特性測定装置。
A plurality of pressure gauges arranged at a position on the hull center line of the hull skin plate surface below the bow water surface and at a position that is substantially equidistant from the hull center line on the port and starboard;
By a water tank test or a theoretical calculation using a model ship, a plurality of characteristic curves related to the pressure measurement values and the inflow angles of the plurality of pressure gauges are obtained for each draft and each inflow angle, and the pressure measurements of the plurality of pressure gauges are obtained. A process for obtaining a ship speed against water based on a value, a density of water, and the plurality of characteristic curves; a process for obtaining an encounter pressure spectrum based on a measurement value of the pressure gauge; A process for obtaining an encounter wave spectrum based on a pressure frequency response function that is a function of a separately obtained wave encounter angle and the encounter pressure spectrum, the encounter wave spectrum, the speed against water, and the A wave characteristic measuring apparatus comprising: a control unit that performs processing for obtaining a wave spectrum based on a wave encounter angle.
船首水面下の船体外板表面の、ほぼ船体中心線上の位置と、左舷及び右舷の前記船体中心線からほぼ等間隔となる位置とに配置された第1の複数の圧力計と、
船の左舷及び右舷にそれぞれ配置された第2複数の圧力計と、
模型船を用いた水槽試験又は理論計算により、喫水ごと及び流入角度ごとに、前記第1の複数の圧力計の圧力計測値と前記流入角度とに関する複数の特性曲線を求め、前記複数の圧力計の圧力計測値と、水の密度と、前記複数の特性曲線とに基づいて対水船速を求める処置と、前記第1の複数の圧力計の内、前記ほぼ船体中心線上の位置に配置された圧力計の計測値と、前記第2の複数の圧力計の計測値とに基づいて圧力クロススペクトルを求める処理と、前記対水船速を関数とする圧力周波数応答関数と、前記圧力クロススペクトルとに基づいて方向波スペクトルを求める処理とを行う制御部と
を備えたことを特徴とする波浪特性測定装置。
A first plurality of pressure gauges disposed at a position on the hull center line of the hull skin plate surface below the bow water surface and at a position that is substantially equidistant from the hull center line of port and starboard;
A second plurality of pressure gauges disposed respectively on the port and starboard of the ship;
A plurality of characteristic curves relating to pressure measurement values and the inflow angles of the first plurality of pressure gauges are obtained for each draft and for each inflow angle by a tank test or a theoretical calculation using a model ship, and the plurality of pressure gauges Of the water pressure based on the measured pressure value, the water density, and the plurality of characteristic curves, and the first plurality of pressure gauges are arranged at a position substantially on the center line of the hull. A process for obtaining a pressure cross spectrum based on the measured values of the pressure gauges and the measured values of the second plurality of pressure gauges, a pressure frequency response function using the water speed as a function, and the pressure cross spectrum And a control unit that performs a process for obtaining a directional wave spectrum based on the wave characteristic measurement apparatus.
JP2005272768A 2005-09-20 2005-09-20 Wave characteristic measuring method and apparatus Expired - Fee Related JP4899176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272768A JP4899176B2 (en) 2005-09-20 2005-09-20 Wave characteristic measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272768A JP4899176B2 (en) 2005-09-20 2005-09-20 Wave characteristic measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2007085795A true JP2007085795A (en) 2007-04-05
JP4899176B2 JP4899176B2 (en) 2012-03-21

Family

ID=37972925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272768A Expired - Fee Related JP4899176B2 (en) 2005-09-20 2005-09-20 Wave characteristic measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4899176B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806594A (en) * 2010-04-23 2010-08-18 中国海洋石油总公司 Array type wave monitoring device and wave measurement method thereof
CN101813476A (en) * 2010-03-19 2010-08-25 天津大学 Three-dimensional real-time monitoring system for offshore wave parameters
CN108286962A (en) * 2018-01-31 2018-07-17 中国科学院遥感与数字地球研究所 A kind of method for building up and system of water environment library of spectra

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928496A (en) * 2016-04-08 2016-09-07 盐城师范学院 Method for measuring wave velocity and wavelength of ocean waves

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161413A (en) * 1985-01-11 1986-07-22 Mitsui Eng & Shipbuild Co Ltd Wave estimating method using hull motion
JPS61254814A (en) * 1985-05-08 1986-11-12 Shipbuild Res Assoc Japan Wave detector
JPS62217113A (en) * 1986-03-19 1987-09-24 Kokuritsu Bosai Kagaku Gijutsu Center Measurement processing system for wave meter for ship
JPH06273198A (en) * 1993-03-16 1994-09-30 Mitsubishi Heavy Ind Ltd Wave characteristic extractor
JP2002013923A (en) * 2000-06-29 2002-01-18 Kawasaki Heavy Ind Ltd Method and device for measuring wave information by large floating body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161413A (en) * 1985-01-11 1986-07-22 Mitsui Eng & Shipbuild Co Ltd Wave estimating method using hull motion
JPS61254814A (en) * 1985-05-08 1986-11-12 Shipbuild Res Assoc Japan Wave detector
JPS62217113A (en) * 1986-03-19 1987-09-24 Kokuritsu Bosai Kagaku Gijutsu Center Measurement processing system for wave meter for ship
JPH06273198A (en) * 1993-03-16 1994-09-30 Mitsubishi Heavy Ind Ltd Wave characteristic extractor
JP2002013923A (en) * 2000-06-29 2002-01-18 Kawasaki Heavy Ind Ltd Method and device for measuring wave information by large floating body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813476A (en) * 2010-03-19 2010-08-25 天津大学 Three-dimensional real-time monitoring system for offshore wave parameters
CN101806594A (en) * 2010-04-23 2010-08-18 中国海洋石油总公司 Array type wave monitoring device and wave measurement method thereof
CN108286962A (en) * 2018-01-31 2018-07-17 中国科学院遥感与数字地球研究所 A kind of method for building up and system of water environment library of spectra
CN108286962B (en) * 2018-01-31 2019-11-05 中国科学院遥感与数字地球研究所 A kind of method for building up and system of water environment library of spectra

Also Published As

Publication number Publication date
JP4899176B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
Muste et al. Practical aspects of ADCP data use for quantification of mean river flow characteristics; part I: moving-vessel measurements
CN102749622B (en) Multiwave beam-based depth-sounding joint inversion method for sound velocity profile and seafloor topography
Aberle et al. Experimental hydraulics: Methods, instrumentation, data processing and management: Volume ii: Instrumentation and measurement techniques
CN110096734B (en) Analysis method and system for resistance and flow field characteristics of large ship in shallow water
Naaijen et al. Limits to the extent of the spatio-temporal domain for deterministic wave prediction
Mathur et al. Internal wave beam propagation in non-uniform stratifications
Stone et al. Evaluating velocity measurement techniques in shallow streams
RU2349910C1 (en) Method of sea water testing for saltiness and density
KR102340167B1 (en) Methods and systems for optimizing the operation of ships
JP2020158072A (en) Vessel performance estimation method and vessel performance estimation system by assimilation of data
Olivieri et al. Scars and vortices induced by ship bow and shoulder wave breaking
Inoue et al. Comparison of three different methods for assessing in situ friction velocity: A case study from Loch Etive, Scotland
JP4899176B2 (en) Wave characteristic measuring method and apparatus
Luznik et al. Distribution of energy spectra, Reynolds stresses, turbulence production, and dissipation in a tidally driven bottom boundary layer
Reimers et al. Microelectrode velocity effects and aquatic eddy covariance measurements under waves
EP3428655B1 (en) Meter for ship speed relative to water and method for correcting measurement values of meter for ship speed relative to water
JP5420378B2 (en) River flow measurement method and river flow measurement device
Murai et al. Turbulent bubbly channel flow investigated by ultrasound velocity profiler
Schultz et al. Potential energy in steep and breaking waves
Lopardo Extreme velocity fluctuations below free hydraulic jumps
Balagopalan et al. Manoeuvring prediction of a container ship in shallow water using numerical planar motion mechanism
Rognebakke et al. Experimental approaches for determining sloshing loads in LNG tanks
JP2020032744A (en) GM calculation system, method and program
JP6043026B1 (en) Flow field measuring device and flow field measuring method
Sykes et al. A hydrodynamic study of a floating circular OWC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Ref document number: 4899176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees