JPS6344161B2 - - Google Patents

Info

Publication number
JPS6344161B2
JPS6344161B2 JP56059191A JP5919181A JPS6344161B2 JP S6344161 B2 JPS6344161 B2 JP S6344161B2 JP 56059191 A JP56059191 A JP 56059191A JP 5919181 A JP5919181 A JP 5919181A JP S6344161 B2 JPS6344161 B2 JP S6344161B2
Authority
JP
Japan
Prior art keywords
rail
voltage
distance
comparator
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56059191A
Other languages
Japanese (ja)
Other versions
JPS57173701A (en
Inventor
Yasushi Shirota
Hiroshi Ito
Makio Kamya
Yukio Takino
Kanji Matsuhashi
Hiroshi Imaike
Kyohisa Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Shinkawa Electric Co Ltd
Original Assignee
Railway Technical Research Institute
Shinkawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Shinkawa Electric Co Ltd filed Critical Railway Technical Research Institute
Priority to JP5919181A priority Critical patent/JPS57173701A/en
Publication of JPS57173701A publication Critical patent/JPS57173701A/en
Publication of JPS6344161B2 publication Critical patent/JPS6344161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は渦電流式軌道変位測定方法および装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eddy current track displacement measuring method and apparatus.

鉄道軌道の軌間狂い等の測定は軌道の中心とレ
ール中心のづれを検知することによつてレール内
面間を測定するものであるが、これらの測定は通
常レール上を走行する検測車によつてなされるの
で、レールに非接触で測定することが望ましい。
一方、これらの測定情報は軌道の保守管理上、き
わめて重要なものであるので、高い信頼性が望ま
れている。
Measuring gauge deviations on railway tracks is done by measuring the inner surface of the rail by detecting the deviation between the center of the track and the center of the rail, but these measurements are usually carried out by an inspection vehicle running on the rail. Therefore, it is desirable to measure without contacting the rail.
On the other hand, since this measurement information is extremely important for track maintenance management, high reliability is desired.

従来、これらの測定方法とては(1)ゲージスケー
ル等によつて直接測定する直接法、(2)光学式測定
法および(3)渦電流式測定法がある。(1)の直接法は
高精度な測定は可能であるが、この方法で全軌道
を測定することは実際上、不可能であり、又測定
に時間がかゝり過ぎる。
Conventionally, these measurement methods include (1) a direct method of measuring directly with a gauge scale or the like, (2) an optical measurement method, and (3) an eddy current measurement method. Although the direct method (1) allows highly accurate measurements, it is practically impossible to measure the entire trajectory using this method, and the measurement takes too much time.

(2)の方法は軌道の計測面に塵埃、雨等が付着し
たり、又光線路の障害となる介在物があると精度
が極度に低下して不安定となり、光路に雪等の障
害物がある場合には機能を完全に失つてしまう。
特に、検測車の高速走行中起される風力で、雪等
がまき上げられることによつて起る光路の障害は
著しいものがある。(3)の渦電流式は、レールに検
知コイルを対向させ、検知コイルに共振電流であ
る高周波電流を流すことによつて生ずる高周波磁
束により、レール内に発生する渦電流によるコイ
ルのインダクタンス、渦電流損によるコイルの等
価損失が検知コイルとレール間の距離の関数であ
ることから、検知コイルのインピーダンスを測定
することによつて当該距離を検知するようにした
ものである。この方式は光学式に見られるような
障害は発生せず、構造が簡易で堅牢であるため、
比較的低価格で製造でき、かつ保守が経済的にで
きる等、多くの利点がある。
In method (2), if dust, rain, etc. adhere to the measurement surface of the track, or if there are inclusions that obstruct the optical path, the accuracy will be extremely reduced and become unstable. If there is, the function will be completely lost.
In particular, the light path is seriously obstructed by snow and the like thrown up by the wind generated while the inspection vehicle is running at high speed. In the eddy current method (3), the detection coil is placed opposite the rail, and the high frequency magnetic flux generated by passing a high frequency current (resonant current) through the detection coil causes the coil inductance and eddy current to be generated within the rail. Since the equivalent loss of the coil due to current loss is a function of the distance between the detection coil and the rail, the distance is detected by measuring the impedance of the detection coil. This method does not cause the problems seen with optical methods, and has a simple and robust structure.
It has many advantages, such as being relatively inexpensive to manufacture and economical to maintain.

従来の渦電流式測定法は第1図および第2図に
示すごとき円形の検知コイル1,2か、第3図お
よび第4図に示すごとき長方形状の検知コイル
4,5を、レール3の長手方向中心線31を中心
として左右対称位置でレールと対向するように検
測車の車体下面に装着し、各検知コイルに共振電
流を流し、検知コイル1,2および4,5のそれ
ぞれのインピーダンスを直流電圧に変換し、検知
コイル1,2間もしくは4,5間の出力電圧の差
電圧レールの中心位置の変位量を測定する。
In the conventional eddy current measurement method, circular sensing coils 1 and 2 as shown in FIGS. 1 and 2 or rectangular sensing coils 4 and 5 as shown in FIGS. It is attached to the underside of the vehicle body of the inspection vehicle so as to face the rail at a symmetrical position centering on the longitudinal center line 31, and a resonant current is applied to each detection coil to determine the impedance of each of detection coils 1, 2, 4, and 5. is converted into a DC voltage, and the displacement of the center position of the differential voltage rail between the detection coils 1 and 2 or between the detection coils 4 and 5 is measured.

これらの従来方式の最大の欠点は、検測車の運
行の安全上から、1対の検知コイル1,2もしく
は4,5を含む幅は車輪の幅以内に規正されてい
るため、レール中心に対し、左右対称に配置され
る1対の検知コイルの大きさに制約を受け変位量
の測定距離が短かいものとなることが避けられな
いことである。検知コイルの距離検知能力は、単
にコイルの面積ではなく、有効磁束のパターンに
よつて定まるので、検知コイルを第1図、第2図
に示す円形のものから、第3図第4図に示す長方
形状として面積を増加させても、変位量の測定距
離を大とすることはできないばかりではなく、測
定距離の割に検知コイルの検知感度が増加するこ
とによつて測定車の走行中に生ずる上下振動又は
車輪の直径の変化等に対し、不必要に敏感に応答
して、レール変位量測定上の大きな障害となる。
The biggest drawback of these conventional methods is that the width including the pair of detection coils 1, 2 or 4, 5 is regulated within the width of the wheels for safety reasons of the inspection vehicle. On the other hand, it is inevitable that the distance for measuring the amount of displacement will be short due to restrictions on the size of the pair of sensing coils arranged symmetrically. The distance sensing ability of a sensing coil is determined by the pattern of effective magnetic flux, not simply the area of the coil, so the sensing coil can be changed from the circular one shown in Figures 1 and 2 to the one shown in Figures 3 and 4. Even if the area is increased by using a rectangular shape, it is not only impossible to increase the measurement distance of the displacement amount, but also because the detection sensitivity of the detection coil increases in proportion to the measurement distance. It responds unnecessarily sensitively to vertical vibrations, changes in wheel diameter, etc., and becomes a major hindrance in measuring the amount of rail displacement.

本発明は、従来の渦電流式測定法に存する上述
のような問題点を解消するとともに、さらに進歩
した内容のこの種測定装置を提供しようとするも
のである。
The present invention aims to solve the above-mentioned problems existing in the conventional eddy current measuring method and to provide a more advanced measuring device of this type.

本発明を第5図〜第10図に従つて詳細に説明
する。本発明においては検測車に装着する検知コ
イルとしては、第5図に示すような正三角形状の
コイル6,7を用いる。
The present invention will be explained in detail with reference to FIGS. 5 to 10. In the present invention, equilateral triangular coils 6 and 7 as shown in FIG. 5 are used as the detection coils mounted on the inspection vehicle.

正三角形状コイル6,7は、レール3が正常位
置に敷設されている場合、それぞれの一角がレー
ル3の長手方向中心線31と交叉するとともに、
当該中心線31に対し左右対称に所定間隔をへだ
ててレールに対向するように、かつ上記それぞれ
の一角に対向する辺の外側間の間隔がレール踏面
の巾より大であるように設定して測定車の長手方
向の両側下部に1対ずつ、計2対装着される。正
三角形状コイル6,7の、レール変位量に対する
感知特性は次の式で表わされる。
When the rail 3 is installed in the normal position, one corner of each of the equilateral triangular coils 6 and 7 intersects the longitudinal center line 31 of the rail 3, and
Measurements are made so that they face the rail at a predetermined distance symmetrically with respect to the center line 31, and the distance between the outer sides of the sides facing each of the above corners is larger than the width of the rail tread. A total of two pairs are installed, one pair at the bottom of each side in the longitudinal direction of the car. The sensing characteristics of the equilateral triangular coils 6 and 7 with respect to the amount of rail displacement are expressed by the following equation.

S=K1/√3l2 但しSはレール変位感度、Kは係数、lはレー
ル変位量である。
S=K1/√3l 2 where S is the rail displacement sensitivity, K is the coefficient, and l is the rail displacement amount.

一方、磁界の強さは測定距離の二乗に反比例す
る。正三角形状のコイルは二乗項を含む特性を有
するので、従来方式と比し、レール変位量に対応
する出力電圧の高い直線性をうることができる。
上述した2つのことから、正三角形状状コイル
6,7を第5図のように配置した実施例によれば
従来方式と比し、レールの上下変位および左右変
位を、より大きい範囲で、しかも明確な直線性を
もつて検知可能である。すなわち、本発明者の実
験によれば、第1図〜第4図に示す従来方法にお
いてはレール踏面と検知コイルとのギヤツプが18
mm以内、レールの左右方向のスパーンが±20mm以
内程度の範囲でしか変位を検知できなかつた処、
上記実施例においてはギヤツプは30mm程度、スパ
ーンは±27mm程度の範囲迄明瞭に検知できること
が判明している。
On the other hand, the strength of the magnetic field is inversely proportional to the square of the measurement distance. Since the equilateral triangular coil has a characteristic including a square term, it is possible to obtain high linearity of the output voltage corresponding to the amount of rail displacement compared to the conventional method.
From the above two points, the embodiment in which the equilateral triangular coils 6 and 7 are arranged as shown in FIG. It can be detected with clear linearity. That is, according to the inventor's experiments, in the conventional method shown in FIGS. 1 to 4, the gap between the rail tread and the detection coil is 18.
Where the displacement could only be detected within ±20mm of the span of the rail in the left and right direction,
In the above embodiment, it has been found that the gap can be clearly detected within a range of approximately 30 mm and the span within a range of approximately ±27 mm.

第7図はその実験結果の一部を示すもので、a
は検知コイルとレール踏面間の距離が30mm、レー
ル中心位置の変位量が±30mmである場合における
三角形状コイル6,7の出力電圧とレール変位量
との関係を、bは検知コイルとレール踏面間距離
が18mm、レール中心位置の変位量が±20mmである
場合における長方形状コイルの出力電圧、cは円
形状コイルの出力電圧を示す。
Figure 7 shows some of the experimental results, a
b is the relationship between the output voltage of the triangular coils 6 and 7 and the rail displacement when the distance between the detection coil and the rail tread is 30 mm and the displacement of the rail center position is ±30 mm, and b is the relationship between the detection coil and the rail tread. The output voltage of the rectangular coil when the distance between the rails is 18 mm and the displacement amount of the rail center position is ±20 mm, and c indicates the output voltage of the circular coil.

一方、レール踏面と検知コイルとの距離が変化
すると、レール距離の検知感度が変化する。第8
図はレールの中心線を中心とする左右の変位出力
を示したもので、a,a′はレール踏面と検出コイ
ル間が基準距離である場合の変位出力をn,n′は
基準距離より大きい距離をへだてゝいる場合の変
位出力を、又m,m′は基準距離より小さい距離
をへだてゝいる場合の変位出力を示す。検出コイ
ルとレール踏面との距離が基準距離より大である
場合には検出コイルによるレール変位量の検出感
度は低下し、小である場合は検出感度は高くな
る。
On the other hand, when the distance between the rail tread and the detection coil changes, the rail distance detection sensitivity changes. 8th
The figure shows the left and right displacement outputs centered on the rail center line, where a and a' are the displacement outputs when the distance between the rail tread and the detection coil is the reference distance, and n and n' are greater than the reference distance. m and m' indicate the displacement output when the distance is separated, and m and m' indicate the displacement output when the distance is smaller than the reference distance. When the distance between the detection coil and the rail tread is larger than the reference distance, the detection sensitivity of the rail displacement amount by the detection coil decreases, and when it is small, the detection sensitivity increases.

又、検出コイルの出力電圧はレールの左右変位
量が同一であつて、検出コイルとレール踏面との
距離を一定にセツトしておいたとしても、車輪か
ら伝わる振動や、長期間後、車輪もしくはレール
の摩耗によつて変化する。
Furthermore, even if the amount of left-right displacement of the rail is the same and the distance between the detection coil and the rail tread is set constant, the output voltage of the detection coil will be affected by vibration transmitted from the wheels or after a long period of time. Changes depending on rail wear.

第9図はその一例を示したもので、aは基準距
離の場合の出力電圧を、gは基準距離より大であ
る場合、rは基準距離より小である場合の出力電
圧を示し、1対の検知コイルによるレールの左右
変位量が同一であつても、検出コイルとレール踏
面間の距離が変化することによつて出力電圧はこ
のように変化する。
Figure 9 shows an example of this, where a indicates the output voltage when the reference distance is reached, g indicates the output voltage when the distance is greater than the reference distance, and r indicates the output voltage when the distance is smaller than the reference distance. Even if the amount of horizontal displacement of the rail by the detection coil is the same, the output voltage changes as described above as the distance between the detection coil and the rail tread changes.

しかして、本発明者は検出コイルとレール踏面
間の間隔は1対の検知コイルの変位出力電圧の和
に比例すること、しかも本発明においては正三角
形状の検出コイルを上述したように配置したもの
を用いるので、第8図にd,e,fとして示すご
とく直線性のある電圧で表わされることを見出し
た。第8図においてd=(n+n′)1/2、e=(a
+a′)1/2、f=(m+m′)1/2である。
Therefore, the inventor of the present invention discovered that the distance between the detection coil and the rail tread surface is proportional to the sum of the displacement output voltages of a pair of detection coils, and that in the present invention, the equilateral triangular detection coils are arranged as described above. It has been found that since a voltage is used, it can be expressed as a linear voltage as shown as d, e, and f in FIG. In Figure 8, d=(n+n')1/2, e=(a
+a′)1/2, f=(m+m′)1/2.

従つて、本発明においては第8図におけるe以
外の、たとえばd又はfの信号を受けた時、それ
をe信号に補正演算し、変位電圧m,nを基準設
定特性aになるように補正することによつて、検
出コイルとレール踏面間の間隔が変化しても、当
該間隔を測定する別のセンサーを用いることな
く、レール中心の変位量を高精度、かつ安全巾で
連続的に測定可能である。
Therefore, in the present invention, when a signal other than e in FIG. 8, for example d or f, is received, it is corrected to the e signal, and the displacement voltages m and n are corrected so as to have the reference setting characteristic a. By doing this, even if the distance between the detection coil and the rail tread changes, the amount of displacement at the center of the rail can be continuously measured with high precision and within a safety margin, without using a separate sensor to measure the distance. It is possible.

その補正演算機構の一例を第10図に示す。検
知コイル6,7に図示しない発振器から共振周波
数を流す。検知コイル6,7のインピーダンス
は、それぞれ増幅器8,9で増幅された後、変換
器8′,9′で直流電圧又は直流電流に変換され、
演算回路10に与えられる。当該演算回路10に
おいては、当該直流電圧の差電圧および平均電圧
を演算する。そして、当該平均電圧を、メモリを
有する比較器11に与える。上記比較器11にお
いては当該平均電圧とメモリに記憶されている基
準電圧eとを比較し、もし、その間に差がある時
は、その差電圧を演算回路に与えて上記平均電圧
を補償電圧として、上記差電圧を演算補正する。
An example of the correction calculation mechanism is shown in FIG. A resonant frequency is applied to the detection coils 6 and 7 from an oscillator (not shown). The impedances of the detection coils 6 and 7 are amplified by amplifiers 8 and 9, respectively, and then converted to DC voltage or DC current by converters 8' and 9',
The signal is applied to the arithmetic circuit 10. The calculation circuit 10 calculates the difference voltage and average voltage of the DC voltage. Then, the average voltage is applied to a comparator 11 having a memory. The comparator 11 compares the average voltage with the reference voltage e stored in the memory, and if there is a difference between them, the difference voltage is given to the arithmetic circuit and the average voltage is used as the compensation voltage. , the difference voltage is calculated and corrected.

本発明により、検知コイルとレール踏面間の距
離に変化があつても、それに影響を受けることな
く、従来方式と比し、広いスパーン間およびギヤ
ツプ間で、しかも正確にレール中心位置の検知が
可能となり軌道保守に資する効果はきわめて大で
ある。
According to the present invention, the rail center position can be accurately detected between wider spans and gaps than conventional methods without being affected by changes in the distance between the detection coil and the rail tread. Therefore, the effect of contributing to track maintenance is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の渦電流式レール変位測定用検出
コイルを示す平面図、第2図は第1図のA―A線
断面図、第3図は従来の他の検出コイルを示す平
面図、第4図は第3図のB―B線断面図、第5図
は本発明の実施例を示す平面図、第6図は第5図
のC―C線断面図、第7図は本発明にかゝる三角
形状検出コイルと従来の長方形状検出コイルおよ
び円形状検出コイルとの出力を比較するための線
図、第8図は本発明にかゝる三角形状検出コイル
によるレール中心の左右変位に相当する出力例お
よび、それとレール踏面と検出コイルとの間の距
離との関係を示す線図、第9図は第8図における
左右の変位出力の差を示す線図、第10図は本発
明による出力電圧補正機構の一例を示す回路図で
ある。 3…レール、6,7…検知コイル、31…レー
ル長手方向中心線。
FIG. 1 is a plan view showing a conventional eddy current detection coil for rail displacement measurement, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 3 is a plan view showing another conventional detection coil. 4 is a sectional view taken along line B-B in FIG. 3, FIG. 5 is a plan view showing an embodiment of the present invention, FIG. 6 is a sectional view taken along line C-C in FIG. 5, and FIG. 7 is a sectional view taken along line C--C in FIG. Fig. 8 is a diagram for comparing the outputs of the triangular detection coil and conventional rectangular detection coils and circular detection coils. A diagram showing an example of the output corresponding to displacement and the relationship between it and the distance between the rail tread surface and the detection coil. Figure 9 is a diagram showing the difference between the left and right displacement outputs in Figure 8. Figure 10 is a diagram showing the difference between the left and right displacement outputs in Figure 8. FIG. 3 is a circuit diagram showing an example of an output voltage correction mechanism according to the present invention. 3...Rail, 6,7...Detection coil, 31...Rail longitudinal direction center line.

Claims (1)

【特許請求の範囲】[Claims] 1 2個の正三角形状の検知コイルを、その一角
が、正常位置にあるレールの長手方向中心線と交
叉するとともに、当該中心線に対し左右対称に所
定間隔をへだててレールに対向するようにかつ、
上記それぞれの一角に対向する辺の外側間の間隔
がレール踏面の巾より大であるように設定して測
定車の長手方向の両側下部に1対づつ、計2対装
着し、上記各1対の検知コイルに共振周波数を流
す発振器、上記各1対のそれぞれの検知コイルの
出力インピーダンスを増幅器を介して直流電圧又
は直流電流に変換する変換器、上記変換器から入
力される、上記直流電圧の差電圧および平均電圧
を演算する演算回路、基準電圧を記憶したメモリ
を有する比較器を具え、上記比較器は上記演算回
路から入力される平均電圧と自己が記憶する基準
電圧とを比較して得た差電圧を上記演算回路に出
力するように設定され、上記演算回路は上記比較
器から入力された上記差電圧を、前記平均電圧を
補償電圧として演算補正して、レールの中心位置
の変位を測定するように設定されたことからなる
渦電流式軌道変位測定装置。
1 Two equilateral triangular detection coils are arranged so that one corner intersects the longitudinal center line of the rail in its normal position and faces the rail symmetrically with respect to the center line at a predetermined distance. and,
The distance between the outer sides of the opposite sides of each of the above corners is set to be larger than the width of the rail tread, and one pair is installed at the bottom of both sides in the longitudinal direction of the measuring car, in total, two pairs are attached to each of the above pairs. an oscillator that sends a resonant frequency to the detection coil of the sensor; a converter that converts the output impedance of each of the pair of detection coils into a DC voltage or DC current via an amplifier; The comparator is equipped with an arithmetic circuit that calculates a differential voltage and an average voltage, and a comparator that has a memory that stores a reference voltage, and the comparator obtains the voltage by comparing the average voltage input from the arithmetic circuit with the reference voltage that it stores. The differential voltage input from the comparator is set to be output to the arithmetic circuit, and the arithmetic circuit calculates and corrects the differential voltage input from the comparator using the average voltage as a compensation voltage to calculate the displacement of the center position of the rail. An eddy current track displacement measuring device consisting of a device configured to measure.
JP5919181A 1981-04-21 1981-04-21 Eddy current type device and method for measuring rail displacement Granted JPS57173701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5919181A JPS57173701A (en) 1981-04-21 1981-04-21 Eddy current type device and method for measuring rail displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5919181A JPS57173701A (en) 1981-04-21 1981-04-21 Eddy current type device and method for measuring rail displacement

Publications (2)

Publication Number Publication Date
JPS57173701A JPS57173701A (en) 1982-10-26
JPS6344161B2 true JPS6344161B2 (en) 1988-09-02

Family

ID=13106271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5919181A Granted JPS57173701A (en) 1981-04-21 1981-04-21 Eddy current type device and method for measuring rail displacement

Country Status (1)

Country Link
JP (1) JPS57173701A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124309U (en) * 1983-02-10 1984-08-21 芝浦メカトロニクス株式会社 Rail position detection device
IT1209599B (en) * 1984-11-15 1989-08-30 Siette Spa LEVEL DETECTION SYSTEM FOR VEHICLES.
JPS61250501A (en) * 1985-04-27 1986-11-07 Universal Kiki Kk Apparatus for measuring deflection of third track
JPS648U (en) * 1987-06-20 1989-01-05
FR2621114B1 (en) * 1987-09-28 1991-05-17 Alsthom DEVICE FOR NON-CONTACT MEASUREMENT OF THE POSITION OF A FIRST PART IN RELATION TO A SECOND PART
FR2630204B1 (en) * 1988-04-18 1991-05-10 Alsthom POSITION SENSOR
DE4231346C2 (en) * 1992-09-18 1997-11-20 Siemens Ag Independent wheel control device
DE10025661A1 (en) * 2000-05-24 2001-12-06 Balluff Gebhard Feinmech Position measuring system
JP3572460B2 (en) * 2002-01-17 2004-10-06 マークテック株式会社 Eddy current probe
US6995556B2 (en) * 2002-07-23 2006-02-07 Ensco, Inc. Electromagnetic gage sensing system and method for railroad track inspection
US7719263B2 (en) * 2006-11-22 2010-05-18 Zf Friedrichshafen Ag Inductive position measuring device or goniometer
JP4810480B2 (en) * 2007-03-26 2011-11-09 株式会社日立ハイテクノロジーズ Track inspection car
JP4886566B2 (en) * 2007-03-26 2012-02-29 株式会社日立ハイテクノロジーズ Rail height detection method, rail height detection mechanism, and rail height displacement measuring device
JP5606762B2 (en) * 2010-03-29 2014-10-15 株式会社Nippo Positioning device
CN102928066B (en) * 2012-11-19 2015-01-07 上海海事大学 Bridge amplitude detection device and bridge amplitude detection method based on triangular amplitude detection sensor
JP6210358B2 (en) * 2013-03-26 2017-10-11 Smc株式会社 Displacement sensor
JP6719111B2 (en) * 2016-04-06 2020-07-08 新川センサテクノロジ株式会社 Rail wear measuring method using eddy current sensor and its measuring device
JP6625489B2 (en) * 2016-06-28 2019-12-25 株式会社日立ハイテクファインシステムズ Rail inspection system
JP6896250B2 (en) * 2016-11-17 2021-06-30 新川センサテクノロジ株式会社 Open coil eddy current type sensor and rail displacement measurement method using this
CN113932716B (en) * 2021-11-11 2023-04-28 四川九洲电器集团有限责任公司 Large motor coil detection device and detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4784U (en) * 1970-07-17 1972-02-23
JPS5341982A (en) * 1976-09-29 1978-04-15 Hitachi Ltd Wafer holder for ion implantation processing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4784U (en) * 1970-07-17 1972-02-23
JPS5341982A (en) * 1976-09-29 1978-04-15 Hitachi Ltd Wafer holder for ion implantation processing

Also Published As

Publication number Publication date
JPS57173701A (en) 1982-10-26

Similar Documents

Publication Publication Date Title
JPS6344161B2 (en)
US7278305B2 (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
US3517307A (en) Track profile and gauge measuring system
EP0227661B1 (en) Method and device for detecting wheels with deformed treads in railroad vehicles
CA1159248A (en) Measuring method and device of at least one geometrical characteristic of the head of the rails of a railway track
US4625412A (en) Apparatus and method for measuring the wear of railroad rail
US4200855A (en) Bolt-like railway vehicle wheel detector
JPH01501785A (en) Track reference detection device for wheel contours of passing railway wheels
US4416342A (en) Apparatus and method for weighing rolling railcars
JPH08122042A (en) Device and method for detecting relative position between tracks of rolling stock
JPH10170251A (en) Rail displacement sensing mechanism for simple inspection /measuring vehicle
JP2803963B2 (en) Measurement method for trolley wire height and deflection
JPS63177008A (en) Apparatus for measuring unevenness of tread surface of rail
JPH0416890Y2 (en)
SU920411A1 (en) Device for measuring vertical force of wheel and rail interaction
JPS5828533B2 (en) Axle load measuring device for running vehicles
JPH0611331A (en) Instrument and method for measuring undulating wear of rail
JPH06340258A (en) Gage measuring device
JPS5821504A (en) Device for measuring misalignment of rail
GB1309300A (en) Measurement of the geometrical characteristics of railway track
JPS60114707A (en) Apparatus for measuring flatness of surface of running road
JPS6357722B2 (en)
JPH0371004A (en) Measuring method for geometric disorder of internal cavity cross-section and measuring instrument using the measuring method
JPS62231110A (en) Wavy wear measuring instrument for rail
JPS5814347B2 (en) Defect measurement device for the top surface of the rail