JPS5814347B2 - Defect measurement device for the top surface of the rail - Google Patents

Defect measurement device for the top surface of the rail

Info

Publication number
JPS5814347B2
JPS5814347B2 JP55097498A JP9749880A JPS5814347B2 JP S5814347 B2 JPS5814347 B2 JP S5814347B2 JP 55097498 A JP55097498 A JP 55097498A JP 9749880 A JP9749880 A JP 9749880A JP S5814347 B2 JPS5814347 B2 JP S5814347B2
Authority
JP
Japan
Prior art keywords
rail
eddy current
current sensor
sensor
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55097498A
Other languages
Japanese (ja)
Other versions
JPS5722961A (en
Inventor
伊藤宏
今池宏
松橋貫次
城田靖
中村清寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkawa Electric Co Ltd
Original Assignee
Shinkawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkawa Electric Co Ltd filed Critical Shinkawa Electric Co Ltd
Priority to JP55097498A priority Critical patent/JPS5814347B2/en
Publication of JPS5722961A publication Critical patent/JPS5722961A/en
Publication of JPS5814347B2 publication Critical patent/JPS5814347B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明はレール頭頂面の欠陥測定方法の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for measuring defects on the top surface of a rail.

近来、鉄道の高速化、高密度化に伴って軌道構造は強化
され、レールの重量化が進みつゝあるが、レールの偏摩
耗、波状摩耗、溶接継目落ち、あるいは頭頂き裂等は相
変らず発生している。
In recent years, as railways have become faster and more dense, track structures have become stronger and rails have become heavier. It's happening all the time.

従ってレールのこのような各種の欠陥を定期的に、迅速
、かつ正確に検出測定し、データに基くレール頭頂面の
整正管理を行なうことが高速鉄道における今度の軌道保
守管理上強く要請されている。
Therefore, it is strongly required for the upcoming track maintenance management of high-speed railways to regularly, quickly, and accurately detect and measure these various defects in the rails and to perform realignment management of the rail top surface based on the data. There is.

従来、軌道のレール波状摩耗はレールに直接接触するフ
イーラから加速度計により検知したものを二重積分する
という方法によって測定されているが、この方法では、
測定車の高速走行時に加速度を検知するフイーラが衝撃
を拾うので、これをフィルターで除去しなければならな
いが、現状ではせいぜい60km/h程度の速度におけ
るフイーラの衝撃の除去が限度である。
Traditionally, track rail wave wear has been measured by double integrating the data detected by an accelerometer from a feeler that is in direct contact with the rail, but with this method,
Since the feeler that detects acceleration picks up impact when the test vehicle is running at high speed, this must be removed by a filter, but currently the feeler can only remove impact at speeds of about 60 km/h at most.

レール溶接継目落ちも、車両のばね下に装着した加速度
計から同様の方法で測定している。
Rail weld seam drop is also measured using the same method using accelerometers mounted under the vehicle's springs.

一方、レール頭頂面の表面き裂は超音波探傷法によって
検出しているが、従来の超音波測定機はいづれも探傷単
独に用いられるように構成されているので、波状摩耗の
測定と表面き裂の検出を、同時に行ない、それらのデー
タに基いて頭頂面の整正に必要な研削量を推定すること
はできない。
On the other hand, surface cracks on the top surface of the rail are detected using ultrasonic testing, but conventional ultrasonic measuring instruments are configured to be used solely for flaw detection, so they can only be used to measure wavy wear and surface cracks. It is not possible to simultaneously detect fissures and estimate the amount of grinding necessary to correct the parietal surface based on that data.

本発明は、このような現況にかんがみ、波状摩耗の波形
の波長、振幅の他、同時にレールき裂の探傷、測定を測
定車の高速時にも正確に可能とし、従って研削作業に先
立って研削代を推定する上できわめて有効な資料を提供
しうるごとき測定方法を提供しようとするものである。
In view of the current situation, the present invention makes it possible to accurately detect and measure the wavelength and amplitude of the waveform of wave-like wear, as well as rail cracks at the same time, even when the measuring vehicle is at high speed. The aim is to provide a measurement method that can provide extremely effective data for estimating the

本発明を第1図〜第6図に示した実施例に従つて説明す
る。
The present invention will be explained according to the embodiments shown in FIGS. 1 to 6.

第1図および第2図において測定枠6に摩耗測定用渦電
流センサ2および表面き裂深さ測定用渦電流センサ5な
らびに水平基準線検出用渦電流センサ3および横移動検
出用渦電流センサ4を取付ける。
In FIGS. 1 and 2, the measurement frame 6 includes an eddy current sensor 2 for measuring wear, an eddy current sensor 5 for measuring surface crack depth, an eddy current sensor 3 for detecting a horizontal reference line, and an eddy current sensor 4 for detecting lateral movement. Install.

摩耗測定用渦電流センサ2および表面き裂深さ測定用渦
電流センサ5はレール1の頭頂面1aの上方に当該頭頂
面1aと間隔yをへだてゝ対向するように取付けられる
The eddy current sensor 2 for measuring wear and the eddy current sensor 5 for measuring surface crack depth are mounted above the top surface 1a of the rail 1 so as to face the top surface 1a with a distance y between them.

水平基準線検出用渦電流センサ3はレール上首部1cと
間隔xをへだてメ対向するように、又横移動検出用渦電
流センサ4はレール頭部側面1bと、同じく間隔xをへ
だで一対向するように取付けられる。
The eddy current sensor 3 for horizontal reference line detection faces the rail upper neck 1c with a distance x in between, and the eddy current sensor 4 for lateral movement detection faces the rail head side 1b with the same distance x. Installed so that they face each other.

この場合水平基準線検出用渦電流センサ3の下面と横移
動検出用渦電流センサ4の下面との間隔はm、摩耗測定
用渦電流センサ2、表面き裂深さ測定用渦電流センサ5
の下面と水平基準線検出用渦電流センサ3の下面との間
隔はlに設定されている。
In this case, the distance between the lower surface of the horizontal reference line detection eddy current sensor 3 and the lower surface of the lateral movement detection eddy current sensor 4 is m, the wear measurement eddy current sensor 2, and the surface crack depth measurement eddy current sensor 5.
The distance between the lower surface and the lower surface of the horizontal reference line detection eddy current sensor 3 is set to l.

第3図および第4図に示すごとく測定車の車輪Wの軸箱
10に固定された取付腕8の先端には案内車輪7が設け
られており、測定枠6はその軸受内輪と1体として案内
車輪軸上をスライド可能なように構成されている。
As shown in FIGS. 3 and 4, a guide wheel 7 is provided at the tip of the mounting arm 8 fixed to the axle box 10 of the wheel W of the measuring vehicle, and the measuring frame 6 is integrated with the inner ring of the bearing. It is configured to be slidable on the guide wheel shaft.

案内車輪7は、そのフランジ部がばね9によって常にレ
ール1側へ接触するように押圧されているので、センサ
2および5はレール頭頂部1aとy、センサ3はレール
上首部1cと、センサ4はレール頭部側面とxの間隔を
可及的に保持するように構成されている。
Since the guide wheel 7 is pressed so that its flange is always in contact with the rail 1 side by the spring 9, the sensors 2 and 5 are pressed against the rail top portions 1a and y, the sensor 3 is pressed against the rail top neck portion 1c, and the sensor 4 is pressed against the rail top portion 1a and y. is constructed so as to maintain the distance between the side surface of the rail head and x as much as possible.

測定車が走行すると、各センサ2−5はレール1の頭頂
面1a,上首部1cおよび頭部側面1bに沿って一定間
隔を保持しながら非接触状態で走行する。
When the measuring vehicle travels, each sensor 2-5 travels along the top surface 1a, upper neck portion 1c, and head side surface 1b of the rail 1 in a non-contact state while maintaining a constant interval.

走行過程中、公知のごとく各センサは、それぞれの対向
するレール面との間隔の変化に応じて出力電圧が変化す
る。
During the traveling process, the output voltage of each sensor changes in accordance with the change in the distance between each sensor and the opposing rail surface, as is well known.

従ってセンサ2の出力電圧の変化によってレール頭頂面
の凹凸度を検知することができる。
Therefore, the degree of unevenness of the top surface of the rail can be detected by a change in the output voltage of the sensor 2.

センサ3は上首部1cとの間隔の変化に応じた出力電圧
値を出力するが、センサ3が水平および垂直の両方向へ
変位しないとすると、その出力はレール上首部1cの長
手方向線である水平基準線として表わせるから、センサ
2の出力電圧によって、上記水平基準線に対するレール
頭頂面までの寸法t(レール頭頂面が正常のとき)およ
び波状摩耗の波長,波高を検出することができる。
The sensor 3 outputs an output voltage value according to the change in the distance between the sensor 3 and the upper neck part 1c, but if the sensor 3 is not displaced in both the horizontal and vertical directions, the output will be in the horizontal direction, which is the longitudinal line of the upper neck part 1c. Since it can be expressed as a reference line, the output voltage of the sensor 2 can be used to detect the dimension t from the horizontal reference line to the rail top surface (when the rail top surface is normal), as well as the wavelength and wave height of the wavy wear.

もし増付枠6が微小な水平変位をしてセンサ3の上首部
1cとの間隔xが微小変化すると、その変化は頭部側面
1bとセンサ4との間隔xの変化に相当するセンサ4の
出力電圧の変化として表われるので、当該変化量を算出
して、センサ3の出力電圧値から、それが水平変位した
ための出力変化分を加減算してセンサ3の出力電圧値を
補正する。
If the additional frame 6 makes a slight horizontal displacement and the distance x between the sensor 3 and the upper neck portion 1c changes slightly, that change will correspond to the change in the distance x between the head side surface 1b and the sensor 4. Since this appears as a change in the output voltage, the amount of change is calculated, and the output voltage value of the sensor 3 is corrected by adding or subtracting the output change due to the horizontal displacement from the output voltage value of the sensor 3.

もし、取付枠6が微小な垂直変位をすると、センサ2の
出力電圧値はレール頭頂面の凹凸変位とセンサ2の垂直
変位との複合変位による出力変化となるが、当該垂直変
位はセンサ3の出力電圧の変化として表わされるので、
センサ3の垂直変位による出力電圧変化量をセンサ2の
出力電圧値に加減算することによって凹凸変位のみによ
るセンサ2の出力電圧値を演算することができる。
If the mounting frame 6 makes a small vertical displacement, the output voltage value of the sensor 2 will be an output change due to the combined displacement of the uneven displacement of the top surface of the rail and the vertical displacement of the sensor 2. It is expressed as a change in output voltage, so
By adding or subtracting the output voltage change amount due to the vertical displacement of the sensor 3 to the output voltage value of the sensor 2, it is possible to calculate the output voltage value of the sensor 2 due only to the uneven displacement.

このようにセンサ2およびセンサ3,4の、それぞれの
レールの対向面との間隔変化は補正演算されるので、以
下センサが上下左右方向に変位し冫ないものとして述べ
る。
In this way, the changes in the distances between the sensor 2 and the sensors 3 and 4 and the opposing surfaces of the respective rails are corrected and calculated, so the following description will be made assuming that the sensors do not displace in the vertical and horizontal directions.

測定車が第1図におけるAとして示す位置からBの位置
に至った時レール頭頂部に波状摩耗1wがあったとする
It is assumed that when the measuring wheel reaches position B from the position shown as A in FIG. 1, there is wavy wear 1w on the top of the rail head.

しかる時はセンサ2は当該波状摩耗1wの頭頂面との距
離y′をその出力電圧に1よって検出する。
In such a case, the sensor 2 detects the distance y' from the top surface of the corrugated wear 1w by using its output voltage as 1.

センサ2が平担な頭頂面と対向した時の間隔yに相当す
る出力電圧は定っているので、y−y′=aとして波状
摩耗の波高値を検知することができ、かつ水平基準線か
ら谷までの厚さt′も測定できる。
Since the output voltage corresponding to the distance y when the sensor 2 faces the flat crown surface is fixed, the peak value of the wave-like wear can be detected as y-y'=a, and the horizontal reference line The thickness t' from to the valley can also be measured.

a=t−t′(但しtは上首部から平担な頭頂面までの
厚さ)なお、軌道には継目板,ガードレール等が設けら
れている処から測定枠6を上下変位させる必要がある場
合には流体圧又は電気式のリフト機構を付属させてもよ
いし、非測定時にはリフトした上、ロックしておくのが
好ましい。
a = t - t' (where t is the thickness from the upper neck to the flat top of the head) Note that it is necessary to vertically displace the measuring frame 6 from a place where a joint plate, guard rail, etc. are provided on the track. In some cases, a hydraulic or electric lift mechanism may be attached, and it is preferable to lift and lock when not measuring.

上記実施例においてはレールの波状摩耗を検出する場合
の例について述べたが、頭頂面き裂についても全く同様
の方式で測定可能である。
In the above embodiment, an example was described in which wave-like wear of a rail is detected, but cracks on the crown surface can also be measured in exactly the same manner.

第5図および第6図には本発明にかゝる演算記録機構の
一例が示されている。
5 and 6 show an example of an arithmetic recording mechanism according to the present invention.

第5図において渦電流センサ2,3,4および5からの
出力は演算処理部11に入力され、こゝで増幅,演算補
正が行われ、レール頭頂面の波状摩耗量および表面き裂
量を、同時に入力される距離パルス信号13とともに記
録部12に出力し集録テープ14あるいは直接記録紙1
5に記録す句第6図には第5図における演算処理部11
の詳細が示されている。
In Fig. 5, the outputs from the eddy current sensors 2, 3, 4, and 5 are input to the calculation processing unit 11, where they are amplified and subjected to calculation correction to calculate the amount of wave-like wear and surface cracks on the top surface of the rail. , output to the recording section 12 along with the distance pulse signal 13 inputted at the same time, and output to the recording tape 14 or directly to the recording paper 1.
5. The phrase recorded in FIG. 6 shows the arithmetic processing unit 11 in FIG.
details are shown.

点線で囲んで11として示した部分は演算処理部を示し
、12は記録部である。
A portion surrounded by a dotted line and indicated as 11 indicates an arithmetic processing section, and 12 is a recording section.

演算処理部11において、21,31,41および51
は増幅回路、22,32,42および52は公知のリニ
アライザー、13は速度発電機、131はたとえば水晶
発振器を示す。
In the arithmetic processing unit 11, 21, 31, 41 and 51
1 is an amplifier circuit, 22, 32, 42 and 52 are known linearizers, 13 is a speed generator, and 131 is, for example, a crystal oscillator.

センサ3および4の出力電圧は、それぞれ増幅回路31
および41に入力され、増幅回範31の出力は直接、垂
直方向変位量検知回路111に、又増幅回路41の出力
はリニアライザー42で出力に直線性を与えた後、垂直
方向変位量検知回路111に入力され、当該検知回路1
11においてセンサ4の出力電圧からセンサ3の出力電
圧が減算される。
The output voltages of the sensors 3 and 4 are output by an amplifier circuit 31, respectively.
and 41, the output of the amplification circuit 31 is directly sent to the vertical displacement amount detection circuit 111, and the output of the amplification circuit 41 is given linearity to the output by the linearizer 42, and is then input to the vertical displacement amount detection circuit 111. 111, and the corresponding detection circuit 1
At step 11, the output voltage of sensor 3 is subtracted from the output voltage of sensor 4.

センサ3と4について水平方向の変位量を見ると、それ
は同一であり、垂直方向変位による出力電圧の変位はセ
ンサ4について云えば、同一垂直線にあるレール頭部側
面との対向位置内に止まるので、0であるがセンサ3は
レール上首部の対向面を通る垂直変位をするので、垂直
変位に相当する出力電圧の変化が生ずる。
Looking at the amount of displacement in the horizontal direction for sensors 3 and 4, they are the same, and for sensor 4, the displacement in output voltage due to vertical displacement remains within the position facing the side surface of the rail head on the same vertical line. Therefore, since the sensor 3 is vertically displaced passing through the opposing surface of the upper neck of the rail, a change in the output voltage corresponding to the vertical displacement occurs.

従ってセンサ3の出力電圧(垂直変化分十水平変化分)
からセンサ4の水平変化分(センサ3の水平変化分と同
じ)を減算すれば測定枠の垂直変化分が得られる。
Therefore, the output voltage of sensor 3 (vertical change and horizontal change)
By subtracting the horizontal change of the sensor 4 (same as the horizontal change of the sensor 3) from the above, the vertical change of the measurement frame can be obtained.

一方、リニアライザー42の出力は比較器などからなる
水平方向変位量検知回路112にも与えられる。
On the other hand, the output of the linearizer 42 is also given to a horizontal displacement detection circuit 112 comprising a comparator or the like.

水平方向変位量検知回路112にはセンサ4が、レール
頭部側面とxの間隔をへだてゝいる時における当該セン
サ4の標準出力電圧が記録されており、当該標準出力電
圧とリニアライザー42の出力電圧とが比較され、その
差電圧が変位量複合回路113に与えられる。
The horizontal displacement amount detection circuit 112 records the standard output voltage of the sensor 4 when the sensor 4 is separated from the side surface of the rail head by the distance x, and the standard output voltage and the output of the linearizer 42 are recorded. The voltages are compared, and the difference voltage is given to the displacement amount composite circuit 113.

センサ4は垂直および水平変位中、同一垂直面にあるレ
ール頭部側部の対向面との対向位置を保つので、上記差
電圧は測定枠の水平変位量に相当する電圧を示す。
During vertical and horizontal displacement, the sensor 4 maintains a position facing the opposing surface of the side of the rail head which is in the same vertical plane, so the differential voltage indicates a voltage corresponding to the amount of horizontal displacement of the measurement frame.

変位量複合回路113においては垂直方向変位量検知回
路111から出力される垂直方向変位量に相当する電圧
と水平方向変位量検知回路112から出力される水平方
向変位量に相当する電圧を複合して出力し、リニアライ
ザー32を介して演算回路114に与える。
The displacement compound circuit 113 combines the voltage corresponding to the vertical displacement output from the vertical displacement detection circuit 111 and the voltage corresponding to the horizontal displacement output from the horizontal displacement detection circuit 112. It is outputted and given to the arithmetic circuit 114 via the linearizer 32.

一方センサ2および5からの出力電圧は増幅回路21お
よび51で増幅され、リニアライザー22および52で
直線性を与えられて、それぞれ演算回路114に入力さ
れ、当該演算回路114において、それぞれの入力とリ
ニアライザー32から入力される垂直方向変化分と水平
方向変化分とを複合した変化分に相当する電圧とを加減
算することによって、演算回路114からは、当該セン
サ2および5の出力電圧について垂直方向変化分と水平
方向変化分とを補正した電圧が記録部12に入力され、
予め記録されている、平担な頭頂面と対向した時の出力
電圧との関係において記録され、両者の比較によりレー
ル頭頂面の摩耗および表面き裂に相当する電圧を測定す
ることができる。
On the other hand, the output voltages from the sensors 2 and 5 are amplified by the amplifier circuits 21 and 51, given linearity by the linearizers 22 and 52, and input to the arithmetic circuit 114. By adding and subtracting the voltage corresponding to the composite change of the vertical change and the horizontal change input from the linearizer 32, the arithmetic circuit 114 calculates the output voltage of the sensors 2 and 5 in the vertical direction. The voltage corrected for the variation and the horizontal variation is input to the recording section 12,
The relationship is recorded in advance with the output voltage when facing a flat top surface, and by comparing the two, it is possible to measure the voltage corresponding to wear and surface cracks on the rail top surface.

一方、13は車両の車輪に装着され、車輪の一回転毎に
1パルスを発生させて当該車両の走行距離を計測するた
めに用いられる公知の速度発電機で、速度発電機13を
測定車の車輪に設け、その出力をたとえば水晶発振器1
31に入力させる。
On the other hand, reference numeral 13 denotes a known speed generator that is attached to the wheels of a vehicle and is used to generate one pulse per rotation of the wheel to measure the distance traveled by the vehicle. mounted on the wheel, and its output is transmitted to a crystal oscillator 1, for example.
31.

水晶発振器131を、それに入力される速度発電機13
の所定パルス数毎に1パルスを出力するように設定して
おけば、水晶発振器131は測定車の所定走行距離毎に
パルスを演算回路114に出力する。
The crystal oscillator 131 is input to the speed generator 13
If the crystal oscillator 131 is set to output one pulse every predetermined number of pulses, the crystal oscillator 131 outputs a pulse to the arithmetic circuit 114 every predetermined travel distance of the measuring vehicle.

従ってセンサ2,5,3および4による測定開始と同時
に速度発電機13および水晶発振器131を動作として
おけば、演算回路114による測定結果は測定車の走行
距離との対照によってなされることゝなり、記録部12
には測定車の走行距離に対応した測定結果が記録され、
測定後においてレール頭頂面の摩耗個所およびき裂個所
が容易に発見でき、測定後のレールの保修、取替え作業
がきわめて容易となる。
Therefore, if the speed generator 13 and the crystal oscillator 131 are activated at the same time as the measurement by the sensors 2, 5, 3, and 4 is started, the measurement result by the arithmetic circuit 114 is determined by comparing the distance traveled by the measuring vehicle. Recording section 12
The measurement results corresponding to the distance traveled by the measuring vehicle are recorded.
After measurement, worn and cracked areas on the top surface of the rail can be easily found, making maintenance and replacement work of the rail extremely easy after measurement.

本発明によれば、レール頭頂部の波状摩耗、き裂、溶接
継目落ち等の表面欠陥の他、頭部厚さ、頭部削正面の仕
上り状態も検出測定ができるとともに、従来波状摩耗の
測定基準として弦長を基準とした片側3点方式があった
が、本発明では1点式で波状摩耗測定ができるし、かつ
頭頂面摩耗管理に不可欠のデータを提供できる等その技
術的効果は顕著である。
According to the present invention, in addition to surface defects such as wavy wear, cracks, and dropped weld seams on the top of the rail head, it is also possible to detect and measure the head thickness and the finish condition of the head milled surface. There was a three-point method on each side based on chord length as a standard, but the present invention has remarkable technical effects, such as being able to measure wavy wear with a single point method and providing data essential for crown wear management. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す正面図、第2図は第1図
の側面図、第3図は本発明における測定枠の取付機構を
示す正面図、第4図は第3図の側面図、第5図は本発明
の演算記録機構の一例を示すブロック図、第6図は第5
図における演算処理部の詳細を示すブロック図である。 1a・・・・・・レール頭頂面、1b・・・・・・レー
ル頭部側面、1c・・・・・・レール上首部、2・・・
・・・摩耗測定用渦電流センサ、3・・・・・・水平基
準線検出用渦電流センサ、4・・・・・・横移動検出用
渦電流センサ、5・・・・・・表面き裂深さ測定用渦電
流センサ。
FIG. 1 is a front view showing an embodiment of the present invention, FIG. 2 is a side view of FIG. 1, FIG. 3 is a front view showing the mounting mechanism of the measuring frame in the present invention, and FIG. A side view, FIG. 5 is a block diagram showing an example of the calculation and recording mechanism of the present invention, and FIG.
FIG. 2 is a block diagram showing details of the arithmetic processing unit in the figure. 1a...Rail top surface, 1b...Rail head side surface, 1c...Rail top neck, 2...
...Eddy current sensor for wear measurement, 3...Eddy current sensor for horizontal reference line detection, 4...Eddy current sensor for lateral movement detection, 5...Surface Eddy current sensor for crack depth measurement.

Claims (1)

【特許請求の範囲】[Claims] 1 レール頭頂面から所定間隔へだてた上方の対向面に
摩耗測定用渦電流センサ2および表面き裂深さ測定用セ
ンサ5を、レール頭部側面およびレール上首部から所定
間隔へだてた対向面にそれぞれ横移動検出用渦電流セン
サ4および水平基準線検出用渦電流センサ3を固定配置
し、上記水平基準線検出用渦電流センサ3の水平変位に
よる出力電圧を横移動検出用渦電流センサ4の水平変位
による出力電圧の変化によって補正し、又摩耗測定用渦
電流センサ2および表面き裂深さ測定用渦電流センサ5
の垂直変位による出力電圧を水平基準線検出用渦電流セ
ンサ3の垂直変位による出力電圧の変化によって補正す
るようにしたことを特徴とするレール頭頂面の欠陥測定
方法。
1. An eddy current sensor 2 for wear measurement and a sensor 5 for surface crack depth measurement are installed on opposing surfaces above the top surface of the rail at predetermined intervals, and on opposite surfaces extending from the side surface of the rail head and the top neck of the rail at predetermined intervals, respectively. The eddy current sensor 4 for detecting lateral movement and the eddy current sensor 3 for detecting horizontal reference line are fixedly arranged, and the output voltage due to the horizontal displacement of the eddy current sensor 3 for detecting horizontal reference line is applied to the eddy current sensor 4 for detecting lateral movement. It is corrected by changes in output voltage due to displacement, and also includes an eddy current sensor 2 for measuring wear and an eddy current sensor 5 for measuring surface crack depth.
A method for measuring defects on the top surface of a rail, characterized in that the output voltage due to the vertical displacement of the horizontal reference line detection eddy current sensor 3 is corrected by a change in the output voltage due to the vertical displacement of the horizontal reference line detection eddy current sensor 3.
JP55097498A 1980-07-18 1980-07-18 Defect measurement device for the top surface of the rail Expired JPS5814347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55097498A JPS5814347B2 (en) 1980-07-18 1980-07-18 Defect measurement device for the top surface of the rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55097498A JPS5814347B2 (en) 1980-07-18 1980-07-18 Defect measurement device for the top surface of the rail

Publications (2)

Publication Number Publication Date
JPS5722961A JPS5722961A (en) 1982-02-06
JPS5814347B2 true JPS5814347B2 (en) 1983-03-18

Family

ID=14193922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55097498A Expired JPS5814347B2 (en) 1980-07-18 1980-07-18 Defect measurement device for the top surface of the rail

Country Status (1)

Country Link
JP (1) JPS5814347B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111753A (en) * 2006-10-31 2008-05-15 Osaka Univ Rail inspection device
JP2008216091A (en) * 2007-03-06 2008-09-18 Railway Technical Res Inst Device for detecting corrosion in railroad rail bottom
JP2014102197A (en) * 2012-11-21 2014-06-05 Meielec:Kk Magnetic induction rail flow detection method, and magnetic induction rail flow detection device
JP7207148B2 (en) * 2019-05-14 2023-01-18 日本製鉄株式会社 Railroad vehicle track condition evaluation method and railroad vehicle bogie

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533861B2 (en) * 1977-10-29 1980-09-03

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750336Y2 (en) * 1978-08-25 1982-11-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533861B2 (en) * 1977-10-29 1980-09-03

Also Published As

Publication number Publication date
JPS5722961A (en) 1982-02-06

Similar Documents

Publication Publication Date Title
EP1774275B1 (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
US5353512A (en) Measuring arrangement for continuously measuring undulatory irregularities of a rail
JP4134352B2 (en) Rail fastening looseness detection device and detection method
JPH11503520A (en) Method and apparatus for non-contact measurement of road or rail distortion
US20040173033A1 (en) Track monitoring equipment
US3517307A (en) Track profile and gauge measuring system
US20170212142A1 (en) Method And Device For Determining Absolute Speed Of A Rail Vehicle
CN206266964U (en) A kind of rail of subway ripple mill measures sanding apparatus in real time
CN105923015B (en) It is a kind of using vibration reduction platform as the rail undulatory wear traverse measurement method of inertia displacement benchmark
CN104501768A (en) Rail rigidity measuring method based on machine vision
Boronakhin et al. Inertial method of railway track diagnostics incorporating the condition of rolling surfaces of the railcar’s wheels
JPH10339629A (en) Measuring device
JPS5814347B2 (en) Defect measurement device for the top surface of the rail
CN113548068B (en) Rail surface irregularity detection device and detection method
JPH07107245B2 (en) How to check the track condition
US3500186A (en) Apparatus for high-speed measurement of track geometry
JPS62231110A (en) Wavy wear measuring instrument for rail
JPH0642927A (en) Method and device for measuring change of gauge of laid rails
JPH0543247B2 (en)
JPH0349365B2 (en)
Bocz et al. Condition monitoring approach for the inspection of tramway track using rotating wheel mounted inertial sensors
JPH07108933A (en) Travel position correcting method for rolling stock
JPS636645Y2 (en)
SU813114A1 (en) Apparatus for determining raiway wheel and rail working surface profile
JPH07104147B2 (en) Rail wear inspection method and apparatus