JPS6343971B2 - - Google Patents

Info

Publication number
JPS6343971B2
JPS6343971B2 JP9970179A JP9970179A JPS6343971B2 JP S6343971 B2 JPS6343971 B2 JP S6343971B2 JP 9970179 A JP9970179 A JP 9970179A JP 9970179 A JP9970179 A JP 9970179A JP S6343971 B2 JPS6343971 B2 JP S6343971B2
Authority
JP
Japan
Prior art keywords
temperature
battery
wire
molten
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9970179A
Other languages
Japanese (ja)
Other versions
JPS5625331A (en
Inventor
Kazuma Matsui
Takashi Nakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP9970179A priority Critical patent/JPS5625331A/en
Publication of JPS5625331A publication Critical patent/JPS5625331A/en
Publication of JPS6343971B2 publication Critical patent/JPS6343971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)

Description

【発明の詳細な説明】 本発明は高温型電池装置に関するものである。
高温型電池は、その構成活物質、構成材料、構造
等により、最適作動温度を選定している。その代
表的な例としては、ナトリウム―硫黄電池は約
350℃、リチウム―硫黄電池は約400℃、リチウム
―塩素電池は約600℃である。最適作動温度より
低い場合には、構成活物質の状態(固体もしくは
溶融状態)による活物質拡散域の限定、活物質組
成の限定等の影響から電池作動を充分に行うこと
ができない。又、最適作動温度より高い場合に
は、構成活物質、構成材料の構造に与える影響は
大きく、構成材料の熱膨張による電池構造の歪の
発生、さらに活物質の沸点以上の温度となれば、
電池破壊にもつながる。従つて高温型電池装置に
おいて最適作動温度の維持は重要な問題である。
最適作動温度より高くなる場合には3つの原因が
ある。第1には、作動温度維持に必要な熱を供給
するシステム(熱源、熱交換器、ヒーター、制御
回路等)の故障、第2には高温型電池の内部発熱
(内部抵抗の急激な増加のため、通電々流による
ジユール熱の発生)が著るしい場合、第3には電
池破壊による構成活物質の化学反応熱による場合
である。電池作動時において最適作動温度維持が
困難な場合には、冷却システムの作動により直ち
に電池温度の低下を図ることが大切である。しか
し高温型電池装置は常温型電池装置と異なり、温
度サイクル(温度の上昇、維持、下降)を経るこ
とにより、作動時間の損失、温度再上昇時熱量の
損失が発生し、冷却システムの作動は、熱供給シ
ステムの故障(第1の原因)を除いて、できるだ
け使用をさけた方が望ましい。しかし、著るしい
内部発熱(第2原因)、電池破壊(第3の原因)
が発生し、異常電池を早急に正常電池と交換する
必要のある場合には、冷却システムを作動させる
ことになる。従来の高温型電池装置では、異常熱
が発生した場合、他の正常電池の保護を目的とし
て、冷却システムの作動、及び直ちに通電を停止
することを目的として、感熱素子(バイメタル、
感熱ヒユーズ、等)を採用していた。その結果、
冷却システム、及び感熱素子が作動した場合に
は、電池作動温度が下がり、早急に電力回路を回
復するには時間的損失が大きく、緊急時に連続作
動させることは不可能であつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high temperature battery device.
The optimum operating temperature of a high-temperature battery is selected depending on its constituent active material, constituent materials, structure, etc. As a typical example, a sodium-sulfur battery is approximately
350℃, lithium-sulfur batteries about 400℃, lithium-chlorine batteries about 600℃. If the operating temperature is lower than the optimum operating temperature, the battery cannot operate satisfactorily due to the influence of limitations on the active material diffusion region due to the state (solid or molten state) of the constituent active materials, limitations on the active material composition, and the like. In addition, if the operating temperature is higher than the optimum operating temperature, it will have a large effect on the structure of the constituent active materials and constituent materials, causing distortion of the battery structure due to thermal expansion of the constituent materials, and furthermore, if the temperature exceeds the boiling point of the active material,
It can also lead to battery damage. Therefore, maintaining an optimum operating temperature is an important issue in high-temperature battery devices.
There are three reasons why the temperature may rise above the optimum operating temperature. The first is a failure of the system that supplies the heat necessary to maintain the operating temperature (heat source, heat exchanger, heater, control circuit, etc.), and the second is the internal heat generation of high-temperature batteries (a sudden increase in internal resistance). The third case is the case where the generation of Joule heat due to current flow is significant.The third case is the case where the chemical reaction heat of the constituent active materials is caused by battery destruction. If it is difficult to maintain the optimum operating temperature during battery operation, it is important to immediately lower the battery temperature by operating the cooling system. However, unlike room-temperature battery devices, high-temperature battery devices undergo temperature cycles (increase, maintenance, and decrease in temperature), resulting in loss of operating time and loss of heat when the temperature rises again, and the operation of the cooling system is limited. It is desirable to avoid using it as much as possible, except in the case of a failure of the heat supply system (the first cause). However, significant internal heat generation (second cause) and battery destruction (third cause)
If this occurs and it is necessary to immediately replace the abnormal battery with a normal battery, the cooling system will be activated. In conventional high-temperature battery devices, when abnormal heat occurs, a heat-sensitive element (bimetal,
heat-sensitive fuses, etc.). the result,
When the cooling system and heat-sensitive element were activated, the operating temperature of the battery would drop, and it would take a large amount of time to quickly restore the power circuit, making continuous operation impossible in an emergency.

本発明は、かかる異常電池の発生した緊急時に
おいても連続作動させることを目的としたもの
で、高温型電池の最適作動温度を超える異常熱の
発生した電池と正常な電池との接続体の一部を溶
融させることにより電力回路より切り離すと共
に、溶融した接続体の一部により迂回回路を形成
することを特徴としたものである。
The purpose of the present invention is to enable continuous operation even in an emergency situation in which such an abnormal battery occurs, and is intended to provide a connection body between a battery that has generated abnormal heat exceeding the optimum operating temperature of a high-temperature battery and a normal battery. This is characterized in that it is disconnected from the power circuit by melting the connecting body, and that a detour circuit is formed using the melted part of the connecting body.

本発明一実施例の高温型電池装置の構造を第1
図により説明する。Aは高温型電池を互いに接続
する接続体の側面図であり、X―X′にて切断し
た縦断面図をBに示す。1,3は電池端子と接続
する主接続線、2は異常熱発生により溶融する溶
融接続線、4は主接続線1と接合されている補助
接続線、5は補助接続線4と接続されており、溶
融接続線2と電気的に接触する接触体、6は溶融
して落下した溶融接続線2を収納し、迂回回路用
接続線7と主接続線1とを電気的に接触する接続
函である。迂回回路用接続線7は異常熱の発生し
ていない他の電池端子と接続され、迂回回路が形
成される。8は溶融して落下した溶融接続線2が
接続函6に収納され、接触体5と電気的に接触し
ている時の位置である。
The structure of a high-temperature battery device according to an embodiment of the present invention is shown in the first example.
This will be explained using figures. A is a side view of a connecting body that connects high-temperature batteries to each other, and B is a longitudinal cross-sectional view taken along the line X-X'. 1 and 3 are main connection wires connected to the battery terminals, 2 is a melting connection wire that melts due to abnormal heat generation, 4 is an auxiliary connection wire joined to the main connection wire 1, and 5 is connected to the auxiliary connection wire 4. 6 is a connection box that stores the melted and fallen melted connection wire 2 and electrically contacts the bypass circuit connection wire 7 and the main connection wire 1; It is. The detour circuit connecting wire 7 is connected to other battery terminals in which no abnormal heat is generated, thereby forming a detour circuit. Reference numeral 8 indicates the position when the melted connecting wire 2 that has melted and fallen is stored in the connecting box 6 and is in electrical contact with the contact body 5.

本発明の高温型電池装置の作動を第2図により
説明する。9,10,11を高温型電池とし、主
接続線1,3とこの主接続線間に介在された溶融
接続線2とからなる接続体により直列に接続され
ている。12は異常熱による類焼を防止する断熱
壁である。電池10において異常熱が発生した
時、溶融接続線2が異常熱の感知により溶融して
落下し、主接続線1,3(電池9の陰極、電池1
0の陽極)は絶縁状態となるとともに溶融した溶
融接続線2が接続函6に収納され、主接続線1と
迂回回路用接続線7(電池9の陰極、電池11の
陽極)とが電気的に接触状態となり、電池10を
電力回路から切り離し、電池9,11の直列回路
が迂回回路として形成され、電力回路は連続作動
する。
The operation of the high temperature battery device of the present invention will be explained with reference to FIG. High-temperature batteries 9, 10, and 11 are connected in series by a connecting body consisting of main connecting wires 1 and 3 and a fusion connecting wire 2 interposed between the main connecting wires. Reference numeral 12 denotes a heat insulating wall to prevent further fires caused by abnormal heat. When abnormal heat occurs in the battery 10, the melting connection wire 2 melts and falls due to the detection of the abnormal heat, and the main connection wires 1 and 3 (the cathode of the battery 9, the battery 1
The anode of battery 9) becomes insulated and the molten connection wire 2 is stored in the connection box 6, and the main connection wire 1 and the bypass circuit connection wire 7 (cathode of battery 9, anode of battery 11) are electrically connected. The battery 10 is disconnected from the power circuit, a series circuit of the batteries 9 and 11 is formed as a detour circuit, and the power circuit operates continuously.

本発明装置は、高温型電池を並列接続した並列
回路にも応用することができる。第3図にこの使
用例を示すと、正電池13に補助電池14を複数
個使用し、正電池13に異常熱が発生しても接続
函15の作用により補助電池14に接続されて迂
回回路が形成されるように構成されるものであ
る。また並列回路に使用した場合には、通常の通
電停止を目的として使用することも可能である。
The device of the present invention can also be applied to a parallel circuit in which high-temperature batteries are connected in parallel. An example of this usage is shown in FIG. 3. A plurality of auxiliary batteries 14 are used in conjunction with the positive battery 13, and even if abnormal heat occurs in the positive battery 13, it is connected to the auxiliary battery 14 by the action of the connection box 15, and a bypass circuit is established. It is constructed so that the following is formed. Furthermore, when used in a parallel circuit, it can also be used for the purpose of stopping normal energization.

本発明の高温型電池装置の接続体材料などは、
溶融接続線2以外はすべて同材料でよく、高温型
電池の最適作動温度で決定され、たとえば銅、
鉄、ニツケル、アルミニウム、各種ステンレス及
びこれらの複合材料等が使用出来る。しかし、溶
融接続線2は、高温型電池の最適作動温度下では
固体で電導性を有し、最適作動温度を超える異常
熱により容易に溶融、落下して異常熱の発生した
電池が切り離されるとともに最適作動温度に低下
しても溶融状態で、電導性を有していることが必
要である。低温域(200〜400℃)では各種はん
だ、高温域(500〜1000℃)では、各種アレミニ
ウムろう、銀ろう、黄銅ろう、金ろう、リン銅ろ
う、等が使用できる。例えば、JIS BAg―5番
の銀ろうでは、溶融開始温度は約670℃、流動温
度は約740℃である。また、銀ろうの主成分であ
るAg―Cu―Znの成分を変えることにより、溶融
開始温度が約670〜870℃、流動温度は約740〜約
930℃の間で選定することが出来る。
The connecting body material of the high-temperature battery device of the present invention is as follows:
All parts other than the molten connection wire 2 may be made of the same material, which is determined by the optimum operating temperature of the high-temperature battery, such as copper,
Iron, nickel, aluminum, various types of stainless steel, and composite materials thereof can be used. However, the melt-connecting wire 2 is solid and conductive under the optimum operating temperature of a high-temperature battery, and it easily melts and falls due to abnormal heat exceeding the optimum operating temperature, causing the abnormally heated battery to be disconnected. It is necessary that the material remains molten and electrically conductive even when the temperature drops to its optimum operating temperature. Various solders can be used in the low temperature range (200 to 400°C), and various types of solder can be used in the high temperature range (500 to 1000°C), such as aleminium solder, silver solder, brass solder, gold solder, phosphorous copper solder, etc. For example, JIS BAg No. 5 silver solder has a melting start temperature of about 670°C and a flow temperature of about 740°C. In addition, by changing the composition of Ag-Cu-Zn, which is the main component of silver solder, the melting start temperature is approximately 670 to 870℃, and the flow temperature is approximately 740 to approximately
It can be selected between 930℃.

実施例 1 本発明の高温型電池装置として高温型電池にリ
チウム―塩素電池を使用して第2図により試作、
構成し、高温熱風電気炉にて作動温度を600℃に
維持した。電池は5単位電池を直列に接続し、電
池電圧を記録した。単位電池の1つは通電により
異常熱の発生が起こるように内部抵抗の著しく高
い電池を使用した。接続体材料は全てニツケルを
使用し、溶融接続線2は銀ろう(JIS BAg―5
番)を採用し、電池構造等の関係から安全最高温
度を750℃と設定した。各単位電池の温度(通電
開始時の電池側面中央部温度600℃)と接続体の
温度(通電開始時の溶融接続体側面温度600℃)
を測定しながら、通電(1時間率放電)を開始し
た。その結果、通電開始後20分にて内部抵抗の著
しく高い電池の温度は680℃まで達したが、接続
体温度は670℃であつた。さらに放電を続けたと
ころ、この電池の温度が750℃、接続体の温度が
740℃に達したところで直列総電圧値が低下した
が放電は継続できた。低下した電圧値は異常熱の
発生した電池の端子電圧値と等しく、本発明の接
続体によりこの電池の切り離しが行われ、さらに
迂回回路用接続線により迂回回路が形成されたこ
とが確認できた。この時の電池温度と接続体温度
との間の温度差は10℃程度で、溶融接続線の成分
を変えることにより、温度差だけ低い溶融温度で
作動させることは容易に行うことができる。又、
異常熱による類焼を防止する断熱壁の効果は良好
で、異常熱の発生した電池の外側温度は最高650
℃であつた。断熱壁としては、セラミツクウール
の厚み3mmを使用したが、その他の温度により、
グラスウール、ロツクウール、ケイ酸カルシウム
ボードの使用が可能である。
Example 1 As a high-temperature battery device of the present invention, a lithium-chlorine battery was used as a high-temperature battery, and a prototype was produced as shown in Fig. 2.
The operating temperature was maintained at 600℃ in a high-temperature hot air electric furnace. Five unit batteries were connected in series, and the battery voltage was recorded. One of the unit batteries used was a battery with extremely high internal resistance so that abnormal heat would be generated when energized. The connecting body material is all nickel, and the fused connecting wire 2 is made of silver solder (JIS BAg-5
), and the maximum safe temperature was set at 750℃ due to battery structure and other factors. Temperature of each unit battery (temperature at the center of the side of the battery at the start of energization: 600°C) and temperature of the connected body (temperature at the side of the melted connector at the start of energization: 600°C)
While measuring, current application (1 hour rate discharge) was started. As a result, 20 minutes after the start of energization, the temperature of the battery with extremely high internal resistance reached 680°C, but the temperature of the connected body was 670°C. When the battery continued to discharge, the temperature of the battery reached 750℃, and the temperature of the connected body increased to 750℃.
When the temperature reached 740°C, the total series voltage value decreased, but the discharge was able to continue. The decreased voltage value was equal to the terminal voltage value of the battery in which abnormal heat occurred, and it was confirmed that the battery was disconnected by the connecting body of the present invention and that a detour circuit was formed by the detour circuit connecting wire. . The temperature difference between the battery temperature and the connection body temperature at this time is about 10°C, and by changing the components of the fusion connection wire, it is easy to operate at a melting temperature that is lower by the temperature difference. or,
The effect of the insulation wall to prevent further fire due to abnormal heat is good, and the outside temperature of the battery where abnormal heat has occurred is up to 650℃.
It was warm at ℃. We used ceramic wool with a thickness of 3 mm as the heat insulating wall, but depending on the temperature,
Glass wool, rock wool, calcium silicate board can be used.

実施例 2 異常熱の発生量が著しく小さい場合でも、本発
明の効果を試す構造を試作し、試験を行つた。そ
の構造は、第4図に示す如く異常熱の発生による
温度上昇により溶融する溶融接続線2の内部に高
温型電池の作動温度下にて常時溶融状態にある良
電気伝導体16を挿入し、さらに溶融接続線2の
縦側面17の厚みを0.1〜0.5mmとした。著しく小
さい異常熱が発生した場合、縦側面が容易に溶融
することにより、直ちに溶融状態の良電気伝導体
16が落下し、異常熱の発生した電池を電力回路
から切り離すと共に、迂回回路を形成することが
できる。このような高温型電池の作動温度下にて
常時溶融状態の良電気伝導体16としては鉛系は
んだ等が良好である。さらに溶融接続線2と縦側
面17とを別の材料により構成し、その溶融温度
差を次のような関係とすれば、一層効果を上げる
ことができる。
Example 2 A structure was prototyped to test the effects of the present invention even when the amount of abnormal heat generated was extremely small, and tests were conducted. As shown in FIG. 4, the structure is such that a good electrical conductor 16, which is always in a molten state at the operating temperature of a high-temperature battery, is inserted into a molten connection wire 2 that melts due to temperature rise due to abnormal heat generation. Further, the thickness of the vertical side surface 17 of the fusion connecting wire 2 was set to 0.1 to 0.5 mm. When extremely small abnormal heat is generated, the vertical side surface easily melts, and the molten good electrical conductor 16 immediately falls, disconnecting the battery in which abnormal heat has occurred from the power circuit and forming a detour circuit. be able to. As a good electrical conductor 16 that is always in a molten state at the operating temperature of such a high-temperature battery, lead-based solder or the like is suitable. Furthermore, if the melting connection wire 2 and the vertical side surface 17 are made of different materials and the melting temperature difference between them is set to the following relationship, the effect can be further improved.

T16<TC<T17<T2(℃) T16:作動温度下にて溶融状態にある良電気
伝導体 TC:高温型電池作動温度 T17:縦側面材料の溶融温度 T2:溶融接続線材料の溶融温度(℃) この時縦側面17の溶融温度T17と溶融接続線
材料の溶融温度T2との温度差は約10〜30℃程度
が良く、この温度差が著しく大きい場合(高温型
電池作動温度TCと非常に近い場合)には、電池
作動にほとんど影響のない局部熱により溶融する
こともある。従つて各溶融温度は使用する電池、
構造、位置により検討して決める必要がある。
T 16 <T C <T 17 <T 2 (℃) T 16 : Good electrical conductor in molten state at operating temperature T C : High temperature battery operating temperature T 17 : Melting temperature of vertical side material T 2 : Melting temperature of the molten connection wire material (℃) At this time, the temperature difference between the melting temperature T 17 of the vertical side surface 17 and the melting temperature T 2 of the fusion connection wire material is preferably about 10 to 30℃, and this temperature difference is extremely large. In some cases (very close to the operating temperature of high-temperature batteries, T C ), they may melt due to localized heat that has little effect on battery operation. Therefore, each melting temperature depends on the battery used,
It is necessary to consider and decide based on the structure and location.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高温型電池接続体の側面図A
及びX―X′線縦断面図B、第2図は作動原理に
示す側面図、第3図は本発明の高温型電池接続体
の使用状態を示す側面図、第4図は本発明の他の
実施例の側面図である。 1,3…主接続線、2…溶融接続線、4…補助
接続線、5…接触体、6,15…接続函、7…迂
回回路用接続線、16…良電気伝導体、17…縦
側面。
Figure 1 is a side view A of the high temperature battery connector of the present invention.
2 is a side view showing the operating principle, FIG. 3 is a side view showing the state of use of the high-temperature battery connector of the present invention, and FIG. 4 is a longitudinal cross-sectional view along line X-X'. FIG. 3 is a side view of the embodiment of FIG. 1, 3...Main connection line, 2...Fusing connection line, 4...Auxiliary connection line, 5...Contact body, 6,15...Connection box, 7...Detour circuit connection line, 16...Good electrical conductor, 17...Vertical side.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の高温型電池が直並列に接続されてな
る高温型電池装置において、各高温型電池間を接
続する主接続線間に、高温型電池の最適作動温度
を超える異常熱で溶融落下して前記主接続線間を
電気的に不導通にする溶融接続線を介在させ、か
つ前記主接続線の一方から垂下させた接触体を電
気的に接触させないで内在せしめるとともに、前
記溶融落下した溶融接続線を収納する接続函を設
け、この接続函に他の高温型電池に接続される迂
回回路用接続線を接続し、前記溶融落下した溶融
接続線が接続函に収納されて前記接触体と接続函
とが電気的に接触して迂回回路が形成されること
を特徴とする高温型電池装置。
1. In a high-temperature battery device in which multiple high-temperature batteries are connected in series and parallel, abnormal heat that exceeds the optimum operating temperature of the high-temperature batteries may melt and fall between the main connecting wires connecting each high-temperature battery. A molten connection wire is interposed to make the main connection wires electrically non-conductive, and a contact body hanging down from one of the main connection wires is internalized without electrical contact, and the molten metal that has melted and fallen is A connecting box for storing the connecting wire is provided, and a bypass circuit connecting wire to be connected to another high-temperature battery is connected to this connecting box, and the molten connecting wire that has melted and fallen is stored in the connecting box and connected to the contact body. A high-temperature battery device characterized in that a detour circuit is formed by electrically contacting a connection box.
JP9970179A 1979-08-03 1979-08-03 High temperature type battery connector Granted JPS5625331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9970179A JPS5625331A (en) 1979-08-03 1979-08-03 High temperature type battery connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9970179A JPS5625331A (en) 1979-08-03 1979-08-03 High temperature type battery connector

Publications (2)

Publication Number Publication Date
JPS5625331A JPS5625331A (en) 1981-03-11
JPS6343971B2 true JPS6343971B2 (en) 1988-09-02

Family

ID=14254351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9970179A Granted JPS5625331A (en) 1979-08-03 1979-08-03 High temperature type battery connector

Country Status (1)

Country Link
JP (1) JPS5625331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042039A1 (en) * 1997-03-17 1998-09-24 Hitachi, Ltd. Sodium-sulfur cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500956B2 (en) * 1991-06-03 1996-05-29 日本碍子株式会社 Faulty battery detection method and disconnection method
WO1998010478A1 (en) * 1996-09-06 1998-03-12 Hitachi, Ltd. SYSTEM FOR OPERATING, MAINTAINING AND MANAGING Na/MOLTEN SALT CELL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042039A1 (en) * 1997-03-17 1998-09-24 Hitachi, Ltd. Sodium-sulfur cell

Also Published As

Publication number Publication date
JPS5625331A (en) 1981-03-11

Similar Documents

Publication Publication Date Title
US4533896A (en) Fuse for thick film device
US4224656A (en) Fused electrolytic capacitor assembly
JP4341085B2 (en) Temperature fuse with resistor
JPH0666406B2 (en) Diode switch that is activated by heat and shorts
JPS6343971B2 (en)
JP2003217416A5 (en)
US3423567A (en) Electrically heated bedcovering
JP2016110742A (en) Protection element and electronic apparatus
JP3742502B2 (en) Power terminal block
JP2012129124A (en) Circuit protective element and battery pack device using the same
JP4943359B2 (en) Protective element
JP2006190595A (en) Heat sensitive wire and apparatus protection method
JP4757895B2 (en) Protective element
JP2009212007A (en) Protection element
CN101527224B (en) Protecting element
JP3889855B2 (en) Substrate type temperature fuse
JP2799996B2 (en) Temperature sensor
CN204498393U (en) A kind of anti-dry thick film heater and a kind of soy bean milk making machine
JP3173086B2 (en) Fusible alloy type thermal fuse
JPH08234619A (en) Abnormal temperature preventing device of fixing device
CN209447738U (en) Thermal protector with thermal sensitive ceramics
JPH086354Y2 (en) Alloy type thermal fuse
JP3051475B2 (en) Sodium sulfur battery module
JPS593016B2 (en) temperature fuse
JPH11339615A (en) Substrate type resistor thermal fuse