JP4757895B2 - Protective element - Google Patents

Protective element Download PDF

Info

Publication number
JP4757895B2
JP4757895B2 JP2008120841A JP2008120841A JP4757895B2 JP 4757895 B2 JP4757895 B2 JP 4757895B2 JP 2008120841 A JP2008120841 A JP 2008120841A JP 2008120841 A JP2008120841 A JP 2008120841A JP 4757895 B2 JP4757895 B2 JP 4757895B2
Authority
JP
Japan
Prior art keywords
resistor
overcurrent
melting point
low melting
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008120841A
Other languages
Japanese (ja)
Other versions
JP2009238719A (en
Inventor
嘉明 田中
喜巳郎 金田
尚 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2008120841A priority Critical patent/JP4757895B2/en
Publication of JP2009238719A publication Critical patent/JP2009238719A/en
Application granted granted Critical
Publication of JP4757895B2 publication Critical patent/JP4757895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は高容量二次電池、例えば高容量リチウムイオン二次電池に対し、過電流を遮断し、過充電時や過放電時に充電や放電を停止するのに有用な保護素子に関するものである。   The present invention relates to a protective element useful for interrupting overcurrent and stopping charging and discharging at the time of overcharge and overdischarge for a high capacity secondary battery, for example, a high capacity lithium ion secondary battery.

二次電池、例えばリチウムイオン二次電池においては、過充電または過放電に対し、二次電池を負荷または充電電源から遮断することが要求され、かかる要求を満たす保護素子として、低融点合金型温度ヒューズと抵抗器とを熱的に近接させて一括したものが知られている。
図7は二次電池保護回路の一例を示している。
図7において、Eは二次電池を、Lは負荷を、Sは充電電源を、swはスイッチ例えばトランジスターを、Tは二次電池の過充電または過放電を検知しスイッチオン信号を発信するIC回路をそれぞれ示し、過電流が流れると、保護素子A’の低融点合金ヒューズ30’を溶断させて負荷Lと二次電池Eとの間を遮断し、また、二次電池Eの過放電に対し、IC回路Tによりスイッチswをオンさせ、保護素子A’の抵抗器8’を二次電池Eによって通電発熱させ、その発生熱で保護素子A’の低融点合金ヒューズ30’を溶断させて二次電池Eと負荷Lとの間を遮断している。
更に、過充電に対し、IC回路Tによりスイッチswをオンさせ、保護素子A’の抵抗器8’を二次電池E若しくは充電電源Sで通電発熱させ、その発生熱で低融点合金ヒューズ30’を溶断させて二次電池Eと充電電源Sとの間を遮断している。
In secondary batteries, for example, lithium ion secondary batteries, it is required to shut off the secondary battery from a load or a charging power source against overcharge or overdischarge. A device in which a fuse and a resistor are brought close together thermally is known.
FIG. 7 shows an example of a secondary battery protection circuit.
In FIG. 7, E is a secondary battery, L is a load, S is a charging power supply, sw is a switch such as a transistor, and T is an IC that detects a overcharge or overdischarge of the secondary battery and issues a switch-on signal. When each circuit is shown and an overcurrent flows, the low melting point alloy fuse 30 ′ of the protective element A ′ is blown to cut off the load L and the secondary battery E, and the secondary battery E is overdischarged. On the other hand, the switch sw is turned on by the IC circuit T, the resistor 8 ′ of the protection element A ′ is energized and heated by the secondary battery E, and the low melting point alloy fuse 30 ′ of the protection element A ′ is blown by the generated heat. The secondary battery E is disconnected from the load L.
Further, for overcharge, the switch sw is turned on by the IC circuit T, the resistor 8 ′ of the protective element A ′ is energized and heated by the secondary battery E or the charging power source S, and the low melting point alloy fuse 30 ′ is generated by the generated heat. Is disconnected from the secondary battery E and the charging power source S.

本発明者等においては、Bi系低融点合金やSb系低融点合金等の低融点合金ヒューズに長時間、直流電流を流すと、そのヒューズ両端の電極のうち、陽極側の電極と低融点合金ヒューズとの界面の合金にマイグレーションが発生し、クラックが生じて低融点合金ヒューズが本来の動作に至るまえに、破断する事実を認識している。   In the present inventors, when a direct current is passed through a low melting point alloy fuse such as a Bi based low melting point alloy or an Sb based low melting point alloy for a long time, among the electrodes at both ends of the fuse, the anode side electrode and the low melting point alloy It recognizes the fact that migration occurs in the alloy at the interface with the fuse, cracks occur and the low melting point alloy fuse breaks before it reaches its original operation.

この低融点合金ヒューズのマイグレーションの発生理由は、次のように推定できる。
低融点合金には、共晶型合金、固溶体型合金、金属間化合物型合金があり、これらはミクロ的に見ると、二種以上の金属原子が混合して新しい原子配列の結晶格子を造り、格子点のイオン化原子が平衡状態にあると言える。しかしながら、Bi原子やSb原子は平衡位置から飛び出し易く課電によリエネルギーを与えられて格子点から飛び出し、転位原子となって結晶格子内を放浪し、直流の場合は、その転位原子が陰極側に移動し、陰極界面に析出していく。転位原子が飛び出した跡の空孔においては、あたかも、満員の観覧席で或る席が空いたとすると、その空席の隣の客が一人づつ移動して新たな空席をうめていくようにして、移動して陽極界面に至り、その界面で空孔同士が合体してクラックを発生するに至ると推定できる。
The reason for the migration of the low melting point alloy fuse can be estimated as follows.
Low melting point alloys include eutectic type alloys, solid solution type alloys, and intermetallic compound type alloys. From a microscopic viewpoint, these two types of metal atoms are mixed to create a crystal lattice with a new atomic arrangement. It can be said that the ionized atoms at the lattice points are in an equilibrium state. However, Bi atoms and Sb atoms are likely to jump out of the equilibrium position, and are given energy by the applied voltage, jump out of the lattice points, dislodge in the crystal lattice as a dislocation atom, and in the case of direct current, the dislocation atom is a cathode. Moves to the side and deposits at the cathode interface. In the vacancies where the dislocation atoms jumped out, as if a certain seat was vacant in the crowded seat, the passengers next to the vacant seat moved one by one and filled in new vacancies, It can be presumed that it moves to the anode interface, and the pores coalesce at the interface to generate cracks.

Bi系低融点合金ヒューズやSb系低融点合金ヒューズのマイグレーションの例を示せば次の通りである。
57重量%Bi−残部Sn,直径1mmφ,長さ5mmの低融点合金片の両端に直径1mmφの銅リード導体を溶接し、直流15アンペアを5000時間通電したところ、陰極側の銅リード導体の端面に接して厚み約200μmのBi金属層が析出され、陽極側の銅リード導体の端面に接して厚み約30μmの空隙が形成された。
また、5重量%Sb−残部Sn,直径2mmφ,長さ7mmの低融点合金片の両端に直径2mmφの銅リード導体を溶接し、直流60アンペアを5000時間通電したところ、陰極側の銅リード導体の端面に接して厚み約50μmのSb金属層が析出され、陽極側の銅リード導体の端面に接して厚み約20μmの空隙が形成された。
Examples of migration of Bi-based low melting point alloy fuses and Sb-based low melting point alloy fuses are as follows.
A copper lead conductor with a diameter of 1 mmφ was welded to both ends of a 57 wt% Bi-remainder Sn, 1 mmφ diameter, 5 mm long low melting point alloy piece, and a 15 ampere direct current was applied for 5000 hours. The end face of the copper lead conductor on the cathode side A Bi metal layer having a thickness of about 200 μm was deposited in contact with the electrode, and a gap having a thickness of about 30 μm was formed in contact with the end face of the copper lead conductor on the anode side.
Also, a copper lead conductor with a diameter of 2 mmφ was welded to both ends of a 5 wt% Sb-remainder Sn, a diameter of 2 mmφ and a length of 7 mm and a copper lead conductor with a diameter of 2 mmφ was energized for 5000 hours. An Sb metal layer having a thickness of about 50 μm was deposited in contact with the end surface of the copper, and a void having a thickness of about 20 μm was formed in contact with the end surface of the copper lead conductor on the anode side.

図7において、符合A’で示した「低融点合金ヒューズと抵抗器とを一括した保護素子」は周知である(例えば、特許文献1、特許文献2等)   In FIG. 7, “a protective element in which a low melting point alloy fuse and a resistor are collectively” indicated by reference numeral A ′ is well known (for example, Patent Document 1, Patent Document 2, etc.).

実開昭62−024451号公報Japanese Utility Model Publication No. 62-024451 実開昭58−157943号公報Japanese Utility Model Publication No. 58-157943

而るに、図7において、低融点合金ヒューズ30’の両端電極の極性が、充電時、放電時の度に変わるが、時間当たりに掛かる電力量は充電時の方が放電時よりも多くなるから、前記低融点合金ヒューズのマイグレーションは避け難い。   Thus, in FIG. 7, the polarity of the both end electrodes of the low melting point alloy fuse 30 ′ changes at the time of charging and discharging, but the amount of electric power per time is larger at the time of charging than at the time of discharging. Therefore, migration of the low melting point alloy fuse is difficult to avoid.

本発明の目的は、直流加電のもとで使用しても、低融点合金のマイグレーションを排除して過電流遮断を適確に行い得る保護素子を提供することにある。
本発明の更なる目的は、直流下で使用する被保護機器を、低融点合金のマイグレーションを排除して過充電以外の異常に対し適確に保護し得る抵抗器付き保護素子を提供することにある。
An object of the present invention is to provide a protective element that can accurately perform overcurrent interruption by eliminating migration of a low melting point alloy even when used under direct current application.
It is a further object of the present invention to provide a protective element with a resistor that can protect a device to be protected used under a direct current with respect to abnormalities other than overcharge by eliminating migration of a low melting point alloy. is there.

請求項1に係る保護素子は、一対のピン電極を有し、抵抗器本体の両端にリード導体が取付けられてなる抵抗器を有し、この抵抗器本体が前記のピン電極に並設され、過電流の通電により発熱される過電流発熱性片が抵抗器の一方のリード導体に挿通された状態で前記一対のピン電極間にまたがって配設され、各ピン電極と過電流発熱性片との間が低融点可溶材で接合され、前記過電流発熱性片と抵抗器本体との間において圧縮コイルバネが前記抵抗器の一方のリード導体に通され、該リード導体とバネ及び過電流発熱性片との間並びにバネと抵抗器本体端面との間の直接接触を防止するための絶縁体が付加され、抵抗器の両リード導体間に被保護機器の異常時に抵抗器本体を通電発熱させて前記低融点可溶材を溶融させる抵抗器通電発熱回路が接続されることを特徴とする。
請求項2に係る保護素子は、請求項1の保護素子において、過電流発熱性片とバネ一端との間またはバネ他端と抵抗器本体端との間の少なくとも一方に絶縁体を介在させたことを特徴とする。
請求項3に係る保護素子は、一対のピン電極を有し、抵抗器本体の両端にリード導体が取付けられてなる抵抗器を有し、この抵抗器本体が前記のピン電極に並設され、過電流の通電により発熱される過電流発熱性片が抵抗器の一方のリード導体に挿通された状態で前記一対のピン電極間にまたがって配設され、各ピン電極に圧縮コイルバネが挿通され、各ピン電極と過電流発熱性片との間が低融点可溶材で接合され、前記抵抗器の一方のリード導体と過電流発熱性片との間との直接接触を防止するための絶縁体が付加され、抵抗器の両リード導体間に被保護機器の異常時に抵抗器本体を通電発熱させて前記低融点可溶材を溶融させる抵抗器通電発熱回路が接続されることを特徴とする。
請求項4に係る保護素子は、一対のピン電極を有し、抵抗器本体の両端にリード導体が取付けられてなる抵抗器を有し、この抵抗器本体が前記のピン電極に並設され、過電流の通電により発熱される過電流発熱性片が抵抗器の一方のリード導体に挿通された状態で前記一対のピン電極間にまたがって配設され、各ピン電極と過電流発熱性片との間が低融点可溶材で接合され、前記抵抗器の一方のリード導体と過電流発熱性片との間との直接接触を防止するための絶縁体が付加され、過電流発熱性片をピン電極とは反対側に引っ張る引っ張りバネが設けられ、抵抗器の両リード導体間に被保護機器の異常時に抵抗器本体を通電発熱させて前記低融点可溶材を溶融させる抵抗器通電発熱回路が接続されることを特徴とする。
請求項5に係る保護素子は、請求項1〜4何れかの保護素子において、過電流発熱性片の各端部が各ピン電極の上面を越えており、それらの各端部裏面と各ピン電極の外側隅が低融点可溶材で接合されていることを特徴とする。
請求項6に係る保護素子は、請求項1〜5何れかの保護素子において、ケースに収容されていることを特徴とする。
請求項7に係る保護素子は、請求項6の保護素子において、抵抗器本体の発熱で変色される絶縁層が抵抗器本体及びピン電極にわたって被覆され、ケースが透視可能とされていることを特徴とする。
請求項8に係る保護素子は、請求項6または7の保護素子において、両ピン電極にケースより引き出された脚部が設けられていることを特徴とする。
請求項9に係る保護素子は、請求項6または7の保護素子において、一方のピン電極にケースより引き出された脚部が設けられ、他方のピン電極に可撓性の引出線が接続されていることを特徴とする。
請求項10に係る保護素子は、請求項1〜9何れかの保護素子において、二次電池の保護用であり、異常時が二次電池の過充電時または過放電時であり、過電流が二次電池放電時での過電流であることを特徴とする。
請求項11に係る保護素子は、請求項1〜10何れかの保護素子において、低融点可溶材が合金であることを特徴とする。
請求項12に係る保護素子は、請求項10の保護素子において、総合的に陽極側となる方のピン電極と過電流発熱性片とを接合する低融点合金可溶材の量が他方のピン電極と過電流発熱性片とを接合する低融点合金可溶材の量よりも多くされていることを特徴とする。
請求項13に係る保護素子は、請求項1〜12何れかの保護素子において、バネに、低融点可溶材の融点よりも低く、かつ常温よりも高い温度で原形に復帰する形状記憶合金バネを使用したことを特徴とする。
The protection element according to claim 1 has a pair of pin electrodes, a resistor having lead conductors attached to both ends of the resistor body, and the resistor body is arranged in parallel with the pin electrode. An overcurrent exothermic piece that generates heat when energized with an overcurrent is disposed across the pair of pin electrodes in a state of being inserted into one lead conductor of the resistor, and each pin electrode and the overcurrent exothermic piece Between the overcurrent exothermic piece and the resistor body, a compression coil spring is passed through one lead conductor of the resistor, the lead conductor and the spring, and overcurrent exothermicity. An insulator is added to prevent direct contact between the piece and between the spring and the end face of the resistor body, and the resistor body is energized and heated between the two lead conductors of the resistor when the protected device is abnormal. Resistor energization heat generation times to melt the low melting point soluble material Wherein the but are connected.
The protection element according to claim 2 is the protection element according to claim 1, wherein an insulator is interposed between at least one of the overcurrent exothermic piece and one end of the spring or between the other end of the spring and the end of the resistor body. It is characterized by that.
The protection element according to claim 3 has a pair of pin electrodes, a resistor having lead conductors attached to both ends of the resistor body, and the resistor body is arranged in parallel with the pin electrode. An overcurrent exothermic piece that generates heat when energized with overcurrent is disposed across the pair of pin electrodes in a state of being inserted into one lead conductor of the resistor, and a compression coil spring is inserted into each pin electrode, An insulator for preventing direct contact between one lead conductor of the resistor and the overcurrent exothermic piece is bonded between each pin electrode and the overcurrent exothermic piece with a low melting point soluble material. In addition, a resistor energization heat generation circuit is connected between both lead conductors of the resistor to cause the resistor body to generate heat and melt the low melting point soluble material when the protected device is abnormal.
The protection element according to claim 4 has a pair of pin electrodes, a resistor having lead conductors attached to both ends of the resistor body, and the resistor body is arranged in parallel with the pin electrode. An overcurrent exothermic piece that generates heat when energized with an overcurrent is disposed across the pair of pin electrodes in a state of being inserted into one lead conductor of the resistor, and each pin electrode and the overcurrent exothermic piece Is bonded with a low melting point fusible material, and an insulator is added to prevent direct contact between one lead conductor of the resistor and the overcurrent exothermic piece, and the overcurrent exothermic piece is pinned. A tension spring that pulls on the opposite side of the electrode is provided, and a resistor energization heating circuit that melts the low-melting-point soluble material by energizing and heating the resistor body when the protected device is abnormal is connected between the lead conductors of the resistor It is characterized by being.
The protection element according to claim 5 is the protection element according to any one of claims 1 to 4, wherein each end portion of the overcurrent exothermic piece exceeds the upper surface of each pin electrode, and the back surface of each end portion and each pin The outer corners of the electrodes are joined with a low melting point soluble material.
According to a sixth aspect of the present invention, in the protective element according to any one of the first to fifth aspects, the protective element is housed in a case.
The protective element according to claim 7 is the protective element according to claim 6, wherein an insulating layer that is discolored by heat generation of the resistor body is covered over the resistor body and the pin electrode, and the case can be seen through. And
According to an eighth aspect of the present invention, there is provided the protective element according to the sixth or seventh aspect, characterized in that both pin electrodes are provided with legs drawn out from the case.
The protection element according to claim 9 is the protection element according to claim 6 or 7, wherein a leg portion led out from the case is provided on one pin electrode, and a flexible lead wire is connected to the other pin electrode. It is characterized by being.
The protective element according to claim 10 is for protecting the secondary battery in the protective element according to any one of claims 1 to 9, wherein the abnormal time is overcharge or overdischarge of the secondary battery, and the overcurrent is It is an overcurrent at the time of secondary battery discharge .
The protective element according to claim 11 is the protective element according to any one of claims 1 to 10, characterized in that the low melting point soluble material is an alloy.
The protection element according to claim 12 is the protection element according to claim 10, wherein the amount of the low-melting-point alloy soluble material for joining the pin electrode on the anode side and the overcurrent exothermic piece is the other pin electrode. And the amount of the low melting point alloy soluble material that joins the overcurrent exothermic piece to each other.
The protection element according to claim 13 is the protection element according to any one of claims 1 to 12, wherein the spring is a shape memory alloy spring that returns to its original shape at a temperature lower than the melting point of the low melting point soluble material and higher than room temperature. It is used.

(1)直流加電下で過電流が流れると、過電流発熱性片が発熱し、過電流発熱性片と電極とを接合している低融点可溶材がその発生熱で溶融され、バネの応力エネルギーで過電流発熱性片がピン電極間から脱離して過電流が遮断される。従って、平時、低融点可溶材への直流電流の流通が実質的にかなり少なく、低融点可溶材の直流マイグレーションをよく排除でき、このマイグレーションに基づく誤動作を排除して過電流を適確に遮断できる。
(2)被保護機器の前記過電流以外の異常が発生すると、抵抗器が通電発熱され、低融点可溶材がその発生熱で溶融され、バネの応力エネルギーで過電流発熱性片がピン電極間から脱離されて被保護機器への給電が停止される。而るに(1)で説明した通り、平時、低融点可溶材への直流電流の流通が実質的にかなり少なく、低融点可溶材の直流マイグレーションをよく排除でき、このマイグレーションに基づく誤動作を排除して被保護機器異常時の給電遮断を適確に行い得る。
(3)過電流発熱性片と抵抗器との間が絶縁されているから、通電発熱回路の回路素子等に被保護機器の回路電圧が作用せず、通電発熱回路を安全に保持できる。
(1) When an overcurrent flows under direct current heating, the overcurrent exothermic piece generates heat, and the low melting point soluble material joining the overcurrent exothermic piece and the electrode is melted by the generated heat, and the spring With the stress energy, the overcurrent exothermic piece is detached from between the pin electrodes and the overcurrent is interrupted. Therefore, in normal times, the flow of DC current to the low melting point soluble material is substantially less, and DC migration of the low melting point soluble material can be well eliminated, and malfunctions based on this migration can be eliminated and overcurrent can be cut off properly. .
(2) When an abnormality other than the overcurrent occurs in the protected device, the resistor is heated by energization, the low melting point fusible material is melted by the generated heat, and the overcurrent exothermic piece is moved between the pin electrodes by the stress energy of the spring. Power supply to the protected device is stopped. Therefore, as explained in (1), the flow of direct current to the low melting point soluble material is substantially small during normal times, and the DC migration of the low melting point soluble material can be well eliminated, and malfunctions based on this migration are eliminated. Therefore, it is possible to properly cut off the power supply when the protected device is abnormal.
(3) Since the overcurrent exothermic piece and the resistor are insulated, the circuit voltage of the protected device does not act on the circuit elements of the energization heat generation circuit, and the energization heat generation circuit can be safely held.

以下、本発明に係る保護素子の実施例を図面を参照しつつ説明する。
図1−1の(イ)は本発明に係る保護素子の一実施例を示す縦断面図、図1−1の(ロ)は図1−1の(イ)におけるロ−ロ断面図である。
図1−1において、10は耐熱性の絶縁基台、例えばフェノール樹脂板である。1,1は一対の並行なピン電極であり、絶縁基台1に挿通固定してある。このピン電極は銅製や錫めっき真鍮製等とすることができる。8は巻線型抵抗器であり、リード導体付きキャップ電極801が耐熱性絶縁コア例えばセラミックスコアの両端に装着され、コアに抵抗線が巻き付けられ、その巻き付け各端が各キャップ電極801,801に溶接等により接合されてなり、ピン電極1,1間に並設し、片側のリード導体80bを絶縁基台10から引き出してある。
2はピン電極1,1間に電気的に充分な低抵抗で接触させて配置した過電流発熱性片であり、電極1に較べて薄い金属板、電極1に較べて比抵抗の高い合金板等を使用できる。21は過電流発熱性片2に設けた孔、9はこの孔21に挿通して下端を抵抗器一端のキャップ電極801に当接した絶縁管、例えばセラミックス管であり、抵抗器8の他方のリード導体80aがこの絶縁管9内を通っている。
3は過電流発熱性片2と各ピン電極1,1との間を接合した低融点可溶材であり、低融点可溶合金や熱可塑性樹脂または導電性熱可塑性樹脂等を使用できる。7はバネであり、例えばステンレスバネを使用でき、過電流発熱性片2と抵抗器本体一端のキャップ電極801との間において絶縁管9に圧縮状態のもとで挿通してあり、低融点可溶材3が溶融したときに、過電流発熱性片2をピン電極1,1から脱離させ得る応力エネルギーを保有させてある。
この絶縁は、抵抗器本体一端のキャップ電極から片側のリード導体上に絶縁皮膜を設けることによっても施すことができる。
81は抵抗器本体上にピン電極にまたがって設けた絶縁耐熱樹脂モールド被覆である。
4,4はピン電極1,1に接続した可撓性リード線であり、絶縁被覆撚り線や金属板を使用できる。
5はケースであり、絶縁基台のピン電極嵌合孔の一部を開放したままとしてケース内を非気密性としてあるが、ケースを密閉性とする必要がある場合は、その一部開放部をシール材で封止すればよい。ケースは外部の機器などにネジなどで固定することができる。
Hereinafter, embodiments of a protection element according to the present invention will be described with reference to the drawings.
1-1 (a) is a longitudinal sectional view showing an embodiment of the protective element according to the present invention, and (b) in FIG. 1-1 is a cross-sectional view in FIG. 1-1 (b). .
In FIG. 1-1, 10 is a heat-resistant insulating base, for example, a phenol resin plate. Reference numerals 1 and 1 denote a pair of parallel pin electrodes which are inserted and fixed to the insulating base 1. This pin electrode can be made of copper, tin-plated brass, or the like. Reference numeral 8 denotes a wire-wound resistor. Cap electrodes 801 with lead conductors are attached to both ends of a heat-resistant insulating core, for example, a ceramic score, resistance wires are wound around the core, and each winding end is welded to each cap electrode 801,801. The lead conductor 80b on one side is drawn out from the insulating base 10 and is juxtaposed between the pin electrodes 1 and 1.
Reference numeral 2 denotes an overcurrent exothermic piece arranged in contact with the pin electrodes 1 and 1 with a sufficiently low resistance. The metal plate is thinner than the electrode 1 and the alloy plate has a higher specific resistance than the electrode 1. Etc. can be used. 21 is a hole provided in the overcurrent exothermic piece 2, 9 is an insulating tube, for example, a ceramic tube, which is inserted into the hole 21 and has a lower end abutting against the cap electrode 801 at one end of the resistor. A lead conductor 80a passes through the insulating tube 9.
Reference numeral 3 denotes a low melting point soluble material in which the overcurrent exothermic piece 2 and each pin electrode 1, 1 are joined, and a low melting point soluble alloy, a thermoplastic resin, a conductive thermoplastic resin, or the like can be used. 7 is a spring, for example, a stainless spring can be used, and is inserted between the overcurrent exothermic piece 2 and the cap electrode 801 at one end of the resistor main body under a compressed state. When the molten material 3 is melted, the stress energy capable of detaching the overcurrent exothermic piece 2 from the pin electrodes 1 and 1 is retained.
This insulation can also be provided by providing an insulating film on the lead conductor on one side from the cap electrode at one end of the resistor body.
Reference numeral 81 denotes an insulating heat-resistant resin mold coating provided on the resistor main body across the pin electrode.
Reference numerals 4 and 4 are flexible lead wires connected to the pin electrodes 1 and 1, and an insulation-coated stranded wire or a metal plate can be used.
5 is a case, and the inside of the case is made non-hermetic while leaving a part of the pin electrode fitting hole of the insulating base open, but if the case needs to be hermetically sealed, a part of the case is opened May be sealed with a sealing material. The case can be fixed to external devices with screws.

図1−1に示す保護素子においては、後述するように、リード導体80a→抵抗器8→リード導体80bを含む抵抗器通電発熱回路が、被保護機器の異常時に通電されて抵抗器8が通電発熱され、その発生熱で低融点可溶材3,3が溶融されてピン電極1,1間が遮断される。而るに、抵抗器通電発熱回路のオン状態でのインピーダンスが低く、抵抗器通電発熱回路のオン後、低融点可溶材3,3が溶融されるまでの間にピン電極1→過電流発熱性片2→バネ7→抵抗器キャップ電極801の経路に電流が流れてバネ7が発熱し、そのバネ特性の低下で保護素子の作動に支障をきたす畏れがある。
従って、図1−2に示すように、バネ7と過電流発熱性片2との間、またはバネ7と抵抗器キャップ電極801との間に絶縁スペーサ901,902を介在させることが好ましい。これら双方の絶縁スペーサ901,902を介在させることもできる。また、絶縁スペーサ902に代え、抵抗器キャップ電極801に絶縁膜をコートすることもできる。
In the protection element shown in FIG. 1-1, as will be described later, a resistor energization heating circuit including the lead conductor 80a → the resistor 8 → the lead conductor 80b is energized when the protected device is abnormal and the resistor 8 is energized. Heat is generated and the low melting point soluble materials 3 and 3 are melted by the generated heat, and the pin electrodes 1 and 1 are blocked. Thus, the impedance of the resistor energization heat generation circuit is low, and the pin electrode 1 → the overcurrent exothermicity after the resistor energization heat generation circuit is turned on until the low melting point fusible materials 3 and 3 are melted. A current flows through the path of the piece 2 → spring 7 → resistor cap electrode 801, the spring 7 generates heat, and the deterioration of the spring characteristic may hinder the operation of the protection element.
Therefore, as shown in FIG. 1-2, it is preferable to interpose insulating spacers 901 and 902 between the spring 7 and the overcurrent exothermic piece 2 or between the spring 7 and the resistor cap electrode 801. Both of these insulating spacers 901 and 902 can be interposed. Further, instead of the insulating spacer 902, the resistor cap electrode 801 can be coated with an insulating film.

図1−1に示す実施例では、圧縮バネを使用しているが、その圧縮バネを排し、図2に示すように、過電流発熱性片2をピン電極1,1から引張りにより脱離する引張りバネ7’を過電流発熱性片2とケース5の内面とに結着し、抵抗器の片側のリード導体80aと過電流発熱性片2との間との直接接触を防止するための絶縁管9’を前記絶縁管に代えて設けることもできる。
前記絶縁スペーサや絶縁管の使用に代え、バネ7自体を絶縁体とすること、例えばセラミックス製バネを使用することもできる。
図2において、図1−1と同一の符合は同一の構成部分を示している。
前記絶縁スペーサの使用に代え、バネ自体を絶縁体とすること、例えばセラミックスバネを使用することもできる。
In the embodiment shown in FIG. 1-1, a compression spring is used. However, the compression spring is removed, and the overcurrent exothermic piece 2 is detached from the pin electrodes 1 and 1 as shown in FIG. The tension spring 7 'is bonded to the overcurrent exothermic piece 2 and the inner surface of the case 5 to prevent direct contact between the lead conductor 80a on one side of the resistor and the overcurrent exothermic piece 2. The insulating tube 9 ′ can be provided in place of the insulating tube.
Instead of using the insulating spacer or the insulating tube, the spring 7 itself may be an insulator, for example, a ceramic spring.
2, the same reference numerals as those in FIG. 1-1 indicate the same components.
Instead of using the insulating spacer, the spring itself may be an insulator, for example, a ceramic spring.

図3は本発明に係る保護素子の別実施例を示す縦断面図である。
図3において、10は耐熱性の絶縁基台、例えばフェノール樹脂板である。1,1は一対の並行なピン電極であり、絶縁基台1に挿通固定してある。このピン電極1,1は銅製とすることができる。8は巻線型抵抗器であり、リード導体付きキャップ電極801が耐熱性絶縁コア例えばセラミックスコアの両端に装着され、コアに抵抗線が巻き付けられ、その巻き付け各端が各キャップ電極301,301に溶接等により接合されてなり、ピン電極1,1間に並設し、片側のリード導体80bを絶縁基台10から引き出してある。
81は抵抗器本体上にピン電極にまたがって設けた樹脂モールド被覆である。
2はピン電極1,1間に電気的に充分な低抵抗で接触させて配置した過電流発熱性片であり、ピン電極1に較べて薄い金属板、ピン電極に較べて比抵抗の高い合金板等を使用できる。21は過電流発熱性片2に設けた孔であり、抵抗器の他方のリード導体80aをこの孔21に通過させてある。
そして、過電流発熱性片2と抵抗器の他方のリード導体80aとの直接接触を防止してその間を絶縁するために、過電流発熱性片2の孔21内面には絶縁管9を装着してある。この絶縁管の装着に代え、抵抗器の他方のリード導体80aに絶縁被覆を施すこともできる。
3は過電流発熱性片2と各ピン電極1,1との間を接合した低融点可溶材であり、低融点可溶合金や熱可塑性樹脂または導電性熱可塑性樹脂等を使用できる。7,7は各ピン電極1,1に挿通したバネであり、絶縁板911をピン電極1,1及び抵抗器本体の片側のリード導体80aに通して抵抗器本体片端のキャップ電極801で支承し、この絶縁支持板911と過電流発熱性片2との挾持でバネ7,7を圧縮状態とし、低融点可溶材3,3が溶融したときに過電流発熱性片2をピン電極1,1から脱離させ得る応力エネルギーを保有させてある。両ピン電極1,1及び抵抗器本体の片側のリード導体80aに挿通する孔を有する絶縁板912を、前記バネ7,7の他端と過電流発熱性片2との間に介在させてもよい。
5はケースであり、絶縁基台10のピン電極嵌合孔の一部を開放したままとしてケースを非密閉構造とすることができる。
この実施例では、ピン電極1,1にリード部を設けている。
ケースを密閉性とする必要がある場合は、その一部開放部はシール材で封止される。
FIG. 3 is a longitudinal sectional view showing another embodiment of the protective element according to the present invention.
In FIG. 3, 10 is a heat-resistant insulating base, for example, a phenol resin plate. Reference numerals 1 and 1 denote a pair of parallel pin electrodes which are inserted and fixed to the insulating base 1. The pin electrodes 1 and 1 can be made of copper. Reference numeral 8 denotes a wire-wound resistor. Cap electrodes 801 with lead conductors are attached to both ends of a heat-resistant insulating core, for example, a ceramic score, resistance wires are wound around the core, and each winding end is welded to each cap electrode 301, 301. The lead conductor 80b on one side is drawn out from the insulating base 10 and is juxtaposed between the pin electrodes 1 and 1.
Reference numeral 81 denotes a resin mold coating provided across the pin electrode on the resistor body.
2 is an overcurrent exothermic piece placed between the pin electrodes 1 and 1 in contact with a sufficiently low resistance, a thin metal plate compared to the pin electrode 1, and an alloy having a higher specific resistance than the pin electrode. A board etc. can be used. Reference numeral 21 denotes a hole provided in the overcurrent exothermic piece 2, and the other lead conductor 80 a of the resistor is passed through this hole 21.
In order to prevent direct contact between the overcurrent exothermic piece 2 and the other lead conductor 80a of the resistor and to insulate between them, an insulating tube 9 is attached to the inner surface of the hole 21 of the overcurrent exothermic piece 2. It is. Instead of mounting the insulating tube, an insulating coating can be applied to the other lead conductor 80a of the resistor.
Reference numeral 3 denotes a low melting point soluble material in which the overcurrent exothermic piece 2 and each pin electrode 1, 1 are joined, and a low melting point soluble alloy, a thermoplastic resin, a conductive thermoplastic resin, or the like can be used. Reference numerals 7 and 7 denote springs inserted into the respective pin electrodes 1 and 1, and the insulating plate 911 is passed through the pin electrodes 1 and 1 and the lead conductor 80a on one side of the resistor body, and supported by the cap electrode 801 on one end of the resistor body. The springs 7 and 7 are compressed by holding the insulating support plate 911 and the overcurrent exothermic piece 2, and when the low melting point fusible materials 3 and 3 are melted, the overcurrent exothermic piece 2 is connected to the pin electrodes 1 and 1. Stress energy that can be desorbed. An insulating plate 912 having a hole inserted through both the pin electrodes 1 and 1 and the lead conductor 80a on one side of the resistor body may be interposed between the other end of the springs 7 and 7 and the overcurrent exothermic piece 2. Good.
Reference numeral 5 denotes a case, and the case can have a non-sealing structure with a part of the pin electrode fitting hole of the insulating base 10 being left open.
In this embodiment, the lead electrodes 1 and 1 are provided with lead portions.
When it is necessary to make the case airtight, a part of the opening is sealed with a sealing material.

本発明に係る保護素子は、図4に示す二次電池保護回路の保護素子として好適に使用できる。
図4において、Eは二次電池を、Lは負荷を、Sは充電電源を、swはスイッチ例えばトランジスターを、Tは二次電池Eの過充電または過放電を検知しスイッチオン信号を発信するIC回路をそれぞれ示している。
Aは本発明に係る保護素子を示し、ピン電極1,1に接続したリード線4,4と抵抗器のリード導体80aとを3端子とする構成である。
放電時に過電流が流れると、保護素子Aの過電流発熱性片2を発熱させて低融点可溶材3,3を溶融させ、バネ7の応力エネルギーを解放し過電流発熱性片2を電極1,1間から脱離させて負荷Lと二次電池Eとの間を遮断し、また、二次電池Eの過放電に対し、IC回路Tからの信号によりスイッチswをオンさせ、保護素子Aの抵抗器8を二次電池Eによって通電発熱させ、その発生熱で低融点可溶材3,3を溶融させ、バネ7の圧縮応力エネルギーを解放し過電流発熱性片2を電極1,1間から脱離させて二次電池Eと負荷Lとの間を遮断させる。
更に、充電時、過充電に対し、IC回路Tからの信号によりスイッチswをオンさせ、保護素子Aの抵抗器8を二次電池E若しくは充電電源Sで通電発熱させ、その発生熱で低融点可溶材3,3を溶融させ、バネ7の圧縮応力エネルギーを解放し過電流発熱性片2を電極1,1間から脱離させて二次電池Eと充電電源Sとの間を遮断させる。
The protection element according to the present invention can be suitably used as a protection element of the secondary battery protection circuit shown in FIG.
In FIG. 4, E is a secondary battery, L is a load, S is a charging power source, sw is a switch, for example, a transistor, and T is a switch-on signal upon detecting overcharge or overdischarge of the secondary battery E. Each IC circuit is shown.
A shows a protection element according to the present invention, and has a configuration in which the lead wires 4 and 4 connected to the pin electrodes 1 and 1 and the lead conductor 80a of the resistor have three terminals.
When an overcurrent flows during discharge, the overcurrent exothermic piece 2 of the protection element A is heated to melt the low melting point fusible materials 3 and 3 to release the stress energy of the spring 7, and the overcurrent exothermic piece 2 is connected to the electrode 1. , 1 is disconnected to disconnect between the load L and the secondary battery E, and the switch sw is turned on by a signal from the IC circuit T against the overdischarge of the secondary battery E, and the protective element A The resistor 8 is energized and heated by the secondary battery E, the low melting point soluble materials 3 and 3 are melted by the generated heat, the compression stress energy of the spring 7 is released, and the overcurrent exothermic piece 2 is connected between the electrodes 1 and 1. Is disconnected from the secondary battery E and the load L.
Further, during charging, the switch sw is turned on by a signal from the IC circuit T for overcharging, and the resistor 8 of the protective element A is energized and heated by the secondary battery E or the charging power source S, and the generated heat has a low melting point. The fusible materials 3 and 3 are melted, the compression stress energy of the spring 7 is released, the overcurrent exothermic piece 2 is detached from between the electrodes 1 and 1, and the secondary battery E and the charging power source S are disconnected.

前記二次電池保護回路においては、両ピン電極の極性が、充電時、放電時の度に交互に変わるが、時間当たりに掛かる電力量は充電時の方が放電時よりも多くなる。しかし、各ピン電極と過電流発熱性片との電気的導通が電気的接触のためによく確保されているから、低融点可溶材への直流電流の流通がかなり少なく、低融点可溶材合金の直流マイグレーションを排除できる。
そして、過電流が流れると、過電流発熱性片がジュール発熱し、その発生熱で低融点可溶材が溶融され、バネが解放され、その保有応力エネルギーで過電流発熱性片が電極間から脱離される。従って、直流過電流を適確に遮断できる。
充電時に過充電が生じると、または放電時に過放電が生じると、抵抗器が通電発熱され、その発生熱で低融点可溶材が溶融され、バネが解放され、その保有応力エネルギーで過電流発熱性片が電極間から脱離され、二次電池と充電電源との間または二次電池と負荷との間が遮断される。従って、二次電池を過充電または過放電の異常からも適確に保護できる。
In the secondary battery protection circuit, the polarities of both pin electrodes change alternately at the time of charging and discharging, but the amount of electric power per time is larger at the time of charging than at the time of discharging. However, since the electrical continuity between each pin electrode and the overcurrent exothermic piece is well secured for electrical contact, the flow of DC current to the low melting point soluble material is considerably less, and the low melting point melting material alloy DC migration can be eliminated.
When an overcurrent flows, the overcurrent exothermic piece generates Joule heat, the low melting point soluble material is melted by the generated heat, the spring is released, and the overcurrent exothermic piece is detached from between the electrodes by the retained stress energy. To be released. Therefore, the DC overcurrent can be properly cut off.
If overcharging occurs during charging or overdischarging occurs during discharging, the resistor generates heat, the low melting point soluble material is melted by the generated heat, the spring is released, and the overcurrent exothermicity is generated by the retained stress energy. The piece is detached from between the electrodes, and the secondary battery and the charging power source or the secondary battery and the load are interrupted. Therefore, the secondary battery can be properly protected from overcharge or overdischarge abnormality.

本発明に係る保護素子においては、抵抗器本体の耐熱性絶縁被覆81に抵抗器本体の発熱で変色する材料を使用し、ケース5を透視可能とすれば、保護素子の作動が過電流によるのか、過電流以外の異常によるのかを容易に判別できる。   In the protective element according to the present invention, if the heat-resistant insulating coating 81 of the resistor body is made of a material that changes color due to the heat generated by the resistor body, and the case 5 can be seen through, is the operation of the protective element caused by overcurrent? It is possible to easily determine whether it is due to an abnormality other than overcurrent.

本発明に係る保護素子においては、図3に示すように、各ピン電極1,1に脚部を設け、この脚部をケース(絶縁基台)から引き出してリード導体とすることができる。プリント配線板への実装時の位置決めを容易化するために、一方のピン電極に脚部を設け、他方のピン電極に、図1に示すように可撓性の引出線4を接続することもできる。   In the protection element according to the present invention, as shown in FIG. 3, each pin electrode 1, 1 is provided with a leg portion, and the leg portion can be drawn out from the case (insulating base) to be a lead conductor. In order to facilitate positioning during mounting on a printed wiring board, a leg portion may be provided on one pin electrode, and a flexible lead wire 4 may be connected to the other pin electrode as shown in FIG. it can.

本発明に係る保護素子において、過電流発熱性片の形状は短冊、円形等適宜に設定でき、それに応じ、図5に示すように、ピン電極1の断面形状も適宜に設定できる。
図6に示すように、過電流発熱性片2の各端部を各ピン電極1,1の上面を越えさせるようにすれば、低融点可溶材3を付ける際、過電流発熱性片の各端部裏面と各ピン電極の外側との間の隅から内側の隅に低融点可溶材が回り込むのをよく防止でき、過電流発熱性片脱離時の低融点可溶材のひげ発生を防止できて絶縁的に安全である。この場合、フラックスを塗布する必要がなく、耐オーバロード特性上、有利である。
低融点可溶材にフラックスを塗布しておけば、ひげ発生を良好に防止できる。この場合、ケースは密閉構造とされる。
In the protection element according to the present invention, the shape of the overcurrent exothermic piece can be appropriately set such as a strip or a circle, and accordingly, the cross-sectional shape of the pin electrode 1 can be appropriately set as shown in FIG.
As shown in FIG. 6, if each end of the overcurrent exothermic piece 2 is made to exceed the upper surface of each pin electrode 1, 1, each of the overcurrent exothermic pieces is provided when the low melting point soluble material 3 is attached. It is possible to prevent the low melting point soluble material from wrapping around from the corner between the back of the edge and the outside of each pin electrode to the inner corner, and to prevent the generation of whiskers of the low melting point soluble material when the overcurrent exothermic piece is detached. Insulating and safe. In this case, it is not necessary to apply a flux, which is advantageous in terms of anti-overload characteristics.
If flux is applied to the low melting point soluble material, generation of whiskers can be prevented well. In this case, the case has a sealed structure.

本発明に係る保護素子においては、バネとして、低融点可溶材の融点よりも低く、かつ常温よりも高い温度で原形に復帰する形状記憶合金バネを使用すれば、平常時、低融点可溶材にクリープ応力が作用せず、低融点可溶材を少なくでき、優れた長期安定性が得られる。   In the protective element according to the present invention, if a shape memory alloy spring that is lower than the melting point of the low melting point soluble material and returns to the original shape at a temperature higher than room temperature is used as the spring, the low melting point soluble material is normally used. Creep stress does not act, low melting point soluble material can be reduced, and excellent long-term stability can be obtained.

本発明に係る保護素子において、過電流発熱性片側に全電流が流れ、低融点可溶材側に電流がバイパスしないことが理想的であるが、数%〜30%程度のバイパスであれば許容される。この場合、充電時に陽極側となる方のピン電極と過電流発熱性片とを接合する低融点合金可溶材の量を他方のピン電極と過電流発熱性片とを接合する低融点合金可溶材の量よりも多くすることが、前記マイグレーション対策として有効である。
充電時に陽極側となる方のピン電極を認識できるように、その旨をケースに記することができる。
In the protection element according to the present invention, it is ideal that the entire current flows on one side of the overcurrent exothermic side and the current is not bypassed on the low melting point soluble material side, but a bypass of several percent to 30% is acceptable. The In this case, the amount of the low-melting-point alloy soluble material that joins the pin electrode on the anode side and the overcurrent exothermic piece during charging is the same as the low-melting-point alloy soluble material that joins the other pin electrode and the overcurrent exothermic piece. It is effective as a countermeasure against the migration to increase the amount of the above.
This can be noted on the case so that the pin electrode on the anode side can be recognized during charging.

本発明に係る保護素子の一実施例を示す図面である。1 is a view showing an embodiment of a protection element according to the present invention. 本発明に係る保護素子の別実施例の要部を示す図面である。It is drawing which shows the principal part of another Example of the protection element which concerns on this invention. 本発明に係る保護素子の他の別実施例の要部を示す図面である。It is drawing which shows the principal part of the other another Example of the protection element which concerns on this invention. 本発明に係る保護素子の上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the protection element which concerns on this invention. 本発明に係る保護素子の使用状態を示す図面である。It is drawing which shows the use condition of the protection element which concerns on this invention. 本発明に係る保護素子の上記とは別の実施例の要部を示す図面である。It is drawing which shows the principal part of the Example different from the above of the protection element which concerns on this invention. 本発明に係る保護素子の上記とは別の実施例の要部を示す図面である。It is drawing which shows the principal part of the Example different from the above of the protection element which concerns on this invention. 二次電池保護回路を示す図面である。2 is a diagram illustrating a secondary battery protection circuit.

符号の説明Explanation of symbols

10 絶縁基台
1 電極
2 過電流発熱性片
21 孔
3 低融点可溶材
4 リード線
5 ケース
7 バネ
8 抵抗器
80a 抵抗器の一方のリード導体
81 絶縁被覆層
9 絶縁管
9’ 絶縁管
DESCRIPTION OF SYMBOLS 10 Insulation base 1 Electrode 2 Overcurrent exothermic piece 21 Hole 3 Low melting point soluble material 4 Lead wire 5 Case 7 Spring 8 Resistor 80a Resistor one lead conductor 81 Insulation coating layer 9 Insulation tube 9 'Insulation tube

Claims (13)

一対のピン電極を有し、抵抗器本体の両端にリード導体が取付けられてなる抵抗器を有し、この抵抗器本体が前記のピン電極に並設され、過電流の通電により発熱される過電流発熱性片が抵抗器の一方のリード導体に挿通された状態で前記一対のピン電極間にまたがって配設され、各ピン電極と過電流発熱性片との間が低融点可溶材で接合され、前記過電流発熱性片と抵抗器本体との間において圧縮コイルバネが前記抵抗器の一方のリード導体に通され、該リード導体とバネ及び過電流発熱性片との間並びにバネと抵抗器本体端面との間の直接接触を防止するための絶縁体が付加され、抵抗器の両リード導体間に被保護機器の異常時に抵抗器本体を通電発熱させて前記低融点可溶材を溶融させる抵抗器通電発熱回路が接続されることを特徴とする保護素子。 A resistor having a pair of pin electrodes and having lead conductors attached to both ends of the resistor body. The resistor body is juxtaposed with the pin electrode and is heated by overcurrent. A current exothermic piece is disposed across the pair of pin electrodes in a state of being inserted into one lead conductor of the resistor, and each pin electrode and the overcurrent exothermic piece are joined with a low melting point soluble material. A compression coil spring is passed through one lead conductor of the resistor between the overcurrent exothermic piece and the resistor body, and between the lead conductor and the spring and the overcurrent exothermic piece, and between the spring and the resistor. An insulator is added to prevent direct contact with the end face of the main body, and the resistor body is heated between the lead conductors of the resistor when the device to be protected is abnormally heated to melt the low melting point soluble material. It is characterized in that a heater energization heating circuit is connected Protection element that. 過電流発熱性片とバネ一端との間またはバネ他端と抵抗器本体端との間の少なくとも一方に絶縁体を介在させたことを特徴とする請求項1記載の保護素子。 2. The protective element according to claim 1, wherein an insulator is interposed between at least one of the overcurrent exothermic piece and one end of the spring or between the other end of the spring and the resistor main body end. 一対のピン電極を有し、抵抗器本体の両端にリード導体が取付けられてなる抵抗器を有し、この抵抗器本体が前記のピン電極に並設され、過電流の通電により発熱される過電流発熱性片が抵抗器の一方のリード導体に挿通された状態で前記一対のピン電極間にまたがって配設され、各ピン電極に圧縮コイルバネが挿通され、各ピン電極と過電流発熱性片との間が低融点可溶材で接合され、前記抵抗器の一方のリード導体と過電流発熱性片との間との直接接触を防止するための絶縁体が付加され、抵抗器の両リード導体間に被保護機器の異常時に抵抗器本体を通電発熱させて前記低融点可溶材を溶融させる抵抗器通電発熱回路が接続されることを特徴とする保護素子。 A resistor having a pair of pin electrodes and having lead conductors attached to both ends of the resistor body. The resistor body is juxtaposed with the pin electrode and is heated by overcurrent. A current exothermic piece is disposed across the pair of pin electrodes in a state of being inserted into one lead conductor of the resistor, a compression coil spring is inserted into each pin electrode, and each pin electrode and the overcurrent exothermic piece are arranged. Are joined with a low melting point fusible material, and an insulator is added to prevent direct contact between one lead conductor of the resistor and the overcurrent exothermic piece. A resistor energization heat generating circuit is connected to energize and heat the resistor main body to melt the low melting point soluble material when the protected device is abnormal. 一対のピン電極を有し、抵抗器本体の両端にリード導体が取付けられてなる抵抗器を有し、この抵抗器本体が前記のピン電極に並設され、過電流の通電により発熱される過電流発熱性片が抵抗器の一方のリード導体に挿通された状態で前記一対のピン電極間にまたがって配設され、各ピン電極と過電流発熱性片との間が低融点可溶材で接合され、前記抵抗器の一方のリード導体と過電流発熱性片との間との直接接触を防止するための絶縁体が付加され、過電流発熱性片をピン電極とは反対側に引っ張る引っ張りバネが設けられ、抵抗器の両リード導体間に被保護機器の異常時に抵抗器本体を通電発熱させて前記低融点可溶材を溶融させる抵抗器通電発熱回路が接続されることを特徴とする保護素子。 A resistor having a pair of pin electrodes and having lead conductors attached to both ends of the resistor body. The resistor body is juxtaposed with the pin electrode and is heated by overcurrent. A current exothermic piece is disposed across the pair of pin electrodes in a state of being inserted into one lead conductor of the resistor, and each pin electrode and the overcurrent exothermic piece are joined with a low melting point soluble material. And an insulator for preventing direct contact between one lead conductor of the resistor and the overcurrent exothermic piece, and a tension spring for pulling the overcurrent exothermic piece to the side opposite to the pin electrode And a resistor energization heating circuit that melts the low melting point soluble material by energizing and heating the resistor body when the protected device is abnormal is connected between both lead conductors of the resistor . 過電流発熱性片の各端部が各ピン電極の上面を越えており、それらの各端部裏面と各ピン電極の外側隅が低融点可溶材で接合されていることを特徴とする請求項1〜4何れか記載の保護素子。 The end portions of the overcurrent exothermic pieces exceed the upper surface of each pin electrode, and the back surface of each end portion and the outer corner of each pin electrode are joined with a low melting point soluble material. The protective element in any one of 1-4. ケースに収容されていることを特徴とする請求項1〜5何れか記載の保護素子。 The protective element according to claim 1, wherein the protective element is accommodated in a case. 抵抗器本体の発熱で変色される絶縁層が抵抗器本体及びピン電極にわたって被覆され、ケースが透視可能とされていることを特徴とする請求項6記載の保護素子。 The protective element according to claim 6, wherein an insulating layer that is discolored by heat generation of the resistor body is covered over the resistor body and the pin electrode, and the case can be seen through. 両ピン電極にケースより引き出された脚部が設けられていることを特徴とする請求項6または7記載の保護素子。 The protection element according to claim 6 or 7, wherein both pin electrodes are provided with leg portions drawn from the case. 一方のピン電極にケースより引き出された脚部が設けられ、他方のピン電極に可撓性の引出線が接続されていることを特徴とする請求項6または7記載の保護素子。 8. The protective element according to claim 6, wherein a leg portion led out from the case is provided on one pin electrode, and a flexible lead wire is connected to the other pin electrode. 二次電池の保護用であり、異常時が二次電池の過充電時または過放電時であり、過電流が二次電池放電時での過電流であることを特徴とする請求項1〜9何れか記載の保護素子。 It is for protection of a secondary battery, the abnormal time is an overcharge or overdischarge of the secondary battery, and the overcurrent is an overcurrent at the time of secondary battery discharge. Any protection element. 低融点可溶材が合金であることを特徴とする請求項1〜10何れか記載の保護素子。 The protective element according to claim 1, wherein the low melting point soluble material is an alloy. 充電時に陽極側となる方のピン電極と過電流発熱性片とを接合する低融点合金可溶材の量が他方のピン電極と過電流発熱性片とを接合する低融点合金可溶材の量よりも多くされていることを特徴とする請求項10記載の保護素子。 The amount of the low melting point alloy soluble material that joins the pin electrode that becomes the anode side during charging and the overcurrent exothermic piece is larger than the amount of the low melting point alloy soluble material that joins the other pin electrode and the overcurrent exothermic piece. The protection element according to claim 10, wherein the protection element is also increased. バネに、低融点可溶材の融点よりも低く、かつ常温よりも高い温度で原形に復帰する形状記憶合金バネを使用したことを特徴とする請求項1〜12何れか記載の保護素子。 The protection element according to any one of claims 1 to 12, wherein a shape memory alloy spring which is lower than the melting point of the low melting point soluble material and returns to the original shape at a temperature higher than room temperature is used for the spring.
JP2008120841A 2008-03-05 2008-05-07 Protective element Active JP4757895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120841A JP4757895B2 (en) 2008-03-05 2008-05-07 Protective element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008055381 2008-03-05
JP2008055381 2008-03-05
JP2008120841A JP4757895B2 (en) 2008-03-05 2008-05-07 Protective element

Publications (2)

Publication Number Publication Date
JP2009238719A JP2009238719A (en) 2009-10-15
JP4757895B2 true JP4757895B2 (en) 2011-08-24

Family

ID=41252391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120841A Active JP4757895B2 (en) 2008-03-05 2008-05-07 Protective element

Country Status (1)

Country Link
JP (1) JP4757895B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5779474B2 (en) * 2011-10-28 2015-09-16 内橋エステック株式会社 Protective element
JP5779477B2 (en) * 2011-11-04 2015-09-16 内橋エステック株式会社 Protective element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824701B2 (en) * 1976-07-20 1983-05-23 大阪瓦斯株式会社 Hot water storage type and instant hot water heating equipment
JPS63102143A (en) * 1986-10-17 1988-05-07 Matsushita Electric Ind Co Ltd Electron bean deflecting plate
DE19809149C2 (en) * 1998-03-04 2001-09-27 Trw Automotive Electron & Comp Security, in particular for automotive technology
JP4637001B2 (en) * 2005-10-28 2011-02-23 三洋電機株式会社 Protection element and battery pack provided with the protection element

Also Published As

Publication number Publication date
JP2009238719A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5123624B2 (en) Battery and power supply system using the same
US10483061B2 (en) Protective device
JP6417220B2 (en) Protective element
JP6357221B2 (en) Protective device
KR20080041636A (en) Electrical composite device
US20150229118A1 (en) Protective device
JP4630403B2 (en) Protective element
JP3470694B2 (en) Protection element
TW201517105A (en) Protective element
TW201545195A (en) Protection device and battery pack
KR20150040954A (en) Protective element and battery pack
JP2006221919A (en) Fuse with substrate type resistor and battery pack
JP4757931B2 (en) Protective element
TW201611069A (en) Protection element and protection circuit
JP4757895B2 (en) Protective element
JP4943360B2 (en) Protective element
JP4943359B2 (en) Protective element
JP4630404B2 (en) Protective element
TW201707037A (en) Protection element and fuse element
JP2008091292A (en) Current fuse
TW201517106A (en) Protection element
JP4757898B2 (en) Protective element
JP2012129124A (en) Circuit protective element and battery pack device using the same
JP2015005508A (en) Circuit protection device
TW201505064A (en) Protection element and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101215

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Ref document number: 4757895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250