JP4757898B2 - Protective element - Google Patents

Protective element Download PDF

Info

Publication number
JP4757898B2
JP4757898B2 JP2008134883A JP2008134883A JP4757898B2 JP 4757898 B2 JP4757898 B2 JP 4757898B2 JP 2008134883 A JP2008134883 A JP 2008134883A JP 2008134883 A JP2008134883 A JP 2008134883A JP 4757898 B2 JP4757898 B2 JP 4757898B2
Authority
JP
Japan
Prior art keywords
overcurrent
resistor
exothermic piece
alloy
lead conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008134883A
Other languages
Japanese (ja)
Other versions
JP2009283324A (en
Inventor
嘉明 田中
尚 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2008134883A priority Critical patent/JP4757898B2/en
Publication of JP2009283324A publication Critical patent/JP2009283324A/en
Application granted granted Critical
Publication of JP4757898B2 publication Critical patent/JP4757898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は電気機器の保護素子に関し、高容量二次電池、例えば高容量リチウムイオン二次電池に対し過電流を遮断し、過充電時や過放電時に充電や放電を停止するのに有用なものである。   The present invention relates to a protection element for an electrical device, which is useful for interrupting overcurrent to a high-capacity secondary battery, for example, a high-capacity lithium ion secondary battery, and stopping charging and discharging at the time of overcharge or overdischarge. It is.

二次電池、例えばリチウムイオン二次電池においては、過電流や過充電または過放電に対し、二次電池を負荷または充電電源から遮断することが要求され、かかる要求を満たす保護素子として、低融点合金ヒューズと抵抗器とを熱的に近接させて一括したものが知られている。
図3は二次電池保護回路の一例を示している。
図3において、Eは二次電池を、Lは負荷を、Sは充電電源を、swはスイッチ例えばトランジスターを、Tは二次電池の過充電または過放電を検知しスイッチオン信号を発信するIC回路をそれぞれ示し、過電流が流れると、保護素子A’の低融点合金ヒューズ30’を溶断させて負荷Lと二次電池Eとの間を遮断し、また、二次電池Eの過放電に対し、IC回路Tによりスイッチswをオンさせ、保護素子A’の抵抗器8’を二次電池Eによって通電発熱させ、その発生熱で低融点合金ヒューズ30’を溶断させて二次電池Eと負荷Lとの間を遮断している。
更に、過充電に対し、IC回路Tによりスイッチswをオンさせ、保護素子A’の抵抗器8’を二次電池E若しくは充電電源Sで通電発熱させ、その発生熱で保護素子A’の低融点合金ヒューズ30’を溶断させて二次電池Eと充電電源Sとの間を遮断している。
In secondary batteries, for example, lithium ion secondary batteries, it is required to shut off the secondary battery from the load or the charging power source against overcurrent, overcharge or overdischarge. An alloy fuse and a resistor that are in close proximity to each other are known.
FIG. 3 shows an example of a secondary battery protection circuit.
In FIG. 3, E is a secondary battery, L is a load, S is a charging power source, sw is a switch such as a transistor, and T is an IC that detects a overcharge or overdischarge of the secondary battery and issues a switch-on signal. When each circuit is shown and an overcurrent flows, the low melting point alloy fuse 30 ′ of the protective element A ′ is blown to cut off the load L and the secondary battery E, and the secondary battery E is overdischarged. On the other hand, the switch sw is turned on by the IC circuit T, the resistor 8 ′ of the protective element A ′ is energized and heated by the secondary battery E, and the low melting point alloy fuse 30 ′ is blown by the generated heat, and the secondary battery E The load L is interrupted.
Furthermore, for overcharge, the switch sw is turned on by the IC circuit T, the resistor 8 ′ of the protection element A ′ is energized and heated by the secondary battery E or the charging power source S, and the generated heat reduces the protection element A ′. The melting point alloy fuse 30 ′ is blown to block between the secondary battery E and the charging power source S.

本発明者等においては、Bi系低融点合金やSb系低融点合金等の低融点合金ヒューズに長時間、直流電流を流すと、そのヒューズ両端の電極のうち、陽極側の電極と低融点合金ヒューズとの界面の合金にマイグレーションが発生し、クラックが生じて低融点合金ヒューズが本来の動作をするに至るまえに、破断する事実を確認している。   In the present inventors, when a direct current is passed through a low melting point alloy fuse such as a Bi based low melting point alloy or an Sb based low melting point alloy for a long time, among the electrodes at both ends of the fuse, the anode side electrode and the low melting point alloy It has been confirmed that the alloy at the interface with the fuse undergoes migration and cracks occur before the low melting point alloy fuse performs its original operation.

この低融点合金ヒューズのマイグレーションの発生理由は、次のように推定できる。
低融点合金には、共晶型合金、固溶体型合金、金属間化合物型合金があり、これらはミクロ的に見ると、二種以上の金属原子が混合して新しい原子配列の結晶格子を造り、格子点のイオン化原子が平衡状態にあると言える。しかしながら、Bi原子やSb原子は平衡位置から飛び出し易く課電によリエネルギーを与えられて格子点から飛び出し、転位原子となって結晶格子内を放浪し、直流の場合は、その転位原子が陰極側に移動し、陰極界面に析出していく。転位原子が飛び出した跡の空孔においては、あたかも、満員の観覧席で或る席が空いたとすると、その空席の隣の客が一人づつ移動して新たな空席をうめていくようにして、移動して陽極界面に至り、その界面で空孔同志が合体してクラックを発生するに至ると推定できる。
The reason for the migration of the low melting point alloy fuse can be estimated as follows.
Low melting point alloys include eutectic type alloys, solid solution type alloys, and intermetallic compound type alloys. From a microscopic viewpoint, these two types of metal atoms are mixed to create a crystal lattice with a new atomic arrangement. It can be said that the ionized atoms at the lattice points are in an equilibrium state. However, Bi atoms and Sb atoms are likely to jump out of the equilibrium position, and are given energy by the applied voltage, jump out of the lattice points, dislodge in the crystal lattice as a dislocation atom, and in the case of direct current, the dislocation atom is a cathode. Moves to the side and deposits at the cathode interface. In the vacancies where the dislocation atoms jumped out, as if a certain seat was vacant in the crowded seat, the passengers next to the vacant seat moved one by one and filled in new vacancies, It can be presumed that they move to the anode interface, where the pores coalesce at the interface and cracks occur.

Bi系低融点合金ヒューズやSb系低融点合金ヒューズのマイグレーションの例を示せば次の通りである。
57重量%Bi−残部Sn,直径1mmφ,長さ5mmの低融点合金片の両端に直径1mmφの銅リード導体を溶接し、直流15アンペアを5000時間通電したところ、陰極側の銅リード導体の端面に接して厚み200μmのBi金属層が析出され、陽極側の銅リード導体の端面に接して厚み30μmの空隙が形成された。
また、5重量%Sb−残部Sn,直径2mmφ,長さ7mmの低融点合金片の両端に直径2mmφの銅リード導体を溶接し、直流60アンペアを5000時間通電したところ、陰極側の銅リード導体の端面に接して厚み50μmのSb金属層が析出され、陽極側の銅リード導体の端面に接して厚み20μmの空隙が形成された。
Examples of migration of Bi-based low melting point alloy fuses and Sb-based low melting point alloy fuses are as follows.
A copper lead conductor with a diameter of 1 mmφ was welded to both ends of a 57 wt% Bi-remainder Sn, 1 mmφ diameter, 5 mm long low melting point alloy piece, and a 15 ampere direct current was applied for 5000 hours. The end face of the copper lead conductor on the cathode side A Bi metal layer having a thickness of 200 μm was deposited in contact therewith, and a gap having a thickness of 30 μm was formed in contact with the end face of the copper lead conductor on the anode side.
Also, a copper lead conductor with a diameter of 2 mmφ was welded to both ends of a 5 wt% Sb-remainder Sn, a diameter of 2 mmφ and a length of 7 mm and a copper lead conductor with a diameter of 2 mmφ was energized for 5000 hours. An Sb metal layer having a thickness of 50 μm was deposited in contact with the end surface of the electrode, and a 20 μm-thick void was formed in contact with the end surface of the copper lead conductor on the anode side.

図3において、符合A’で示した「低融点合金ヒューズと抵抗器とを一括した保護素子」は周知である(例えば、特許文献1、特許文献2等)   In FIG. 3, “a protective element in which a low melting point alloy fuse and a resistor are collectively” indicated by reference numeral A ′ is well known (for example, Patent Document 1, Patent Document 2, etc.).

実開昭62−024451号公報Japanese Utility Model Publication No. 62-024451 実開昭58−157943号公報Japanese Utility Model Publication No. 58-157943

而るに、図3において、低融点合金ヒューズ30’の両端電極の極性が、充電時、放電時の度に変わるが、時間当たりの電力量は充電時の方が放電時よりも多くなるから、前記低融点合金ヒューズ30’のマイグレーションは避け難い。   Thus, in FIG. 3, the polarity of the both end electrodes of the low melting point alloy fuse 30 ′ changes at the time of charging and discharging, but the amount of power per hour is larger at the time of charging than at the time of discharging. The migration of the low melting point alloy fuse 30 'is difficult to avoid.

そこで、本発明者等は図4に示すような保護素子を提案した。(特許文献3)
特願2008−120840明細書 図4において、10は耐熱性の絶縁台座である。1,1は一対の並行なピン電極であり、絶縁台座10に挿通固定してある。8は巻線型抵抗器であり、リード導体付きキャップ電極801が耐熱性絶縁コアの両端に装着され、コアに抵抗線が巻き付けられ、その巻き付け各端が各キャップ電極801,802に溶接等により接合されてなり、ピン電極1,1間に並設し、他方のリード導体80bを絶縁台座10から引き出してある。2は過電流発熱性片であり、孔においてガイド軸6に挿通しピン電極1,1間に電気的に充分な低抵抗で接触させた状態で配設してあり、電極1の断面に較べて薄い金属板、電極1に較べて比抵抗の高い合金板等を使用できる。3は過電流発熱性片2と各ピン電極1,1との間及び過電流発熱性片2とガイド軸6との間を接合した可溶合金である。7はバネであり、過電流発熱性片2と抵抗器本体一端との間において圧縮状態でガイド軸6に挿通してあり、可溶合金3が溶融したときに、過電流発熱性片2をピン電極1,1から脱離させ得る応力エネルギーを保有させてある。 800は抵抗器8の本体上にピン電極1,1にまたがって設けた樹脂モールド被覆である。5はケースである。
Therefore, the present inventors have proposed a protective element as shown in FIG. (Patent Document 3)
In FIG. 4, 10 is a heat-resistant insulating pedestal. Reference numerals 1 and 1 denote a pair of parallel pin electrodes which are inserted and fixed to the insulating base 10. Reference numeral 8 denotes a wire-wound resistor. Cap electrodes 801 with lead conductors are attached to both ends of a heat-resistant insulating core, resistance wires are wound around the core, and each winding end is joined to each cap electrode 801, 802 by welding or the like. Thus, the other lead conductor 80b is drawn out from the insulating base 10 between the pin electrodes 1 and 1. Reference numeral 2 denotes an overcurrent exothermic piece, which is inserted in the hole through the guide shaft 6 and in contact with the pin electrodes 1 and 1 with a sufficiently low resistance, compared to the cross section of the electrode 1. A thin metal plate or an alloy plate having a higher specific resistance than the electrode 1 can be used. Reference numeral 3 denotes a fusible alloy in which the overcurrent exothermic piece 2 and the pin electrodes 1 and 1 and the overcurrent exothermic piece 2 and the guide shaft 6 are joined. Reference numeral 7 denotes a spring, which is inserted into the guide shaft 6 in a compressed state between the overcurrent exothermic piece 2 and one end of the resistor body. When the fusible alloy 3 is melted, the overcurrent exothermic piece 2 is Stress energy that can be detached from the pin electrodes 1 and 1 is retained. Reference numeral 800 denotes a resin mold coating provided on the body of the resistor 8 across the pin electrodes 1 and 1. 5 is a case.

前記保護素子は、図3に示す二次電池保護回路の保護素子として使用される。
放電時に過電流が流れると、保護素子Aの過電流発熱性片2を発熱させて可溶合金3を溶融させ、バネ7の応力エネルギーを解放し過電流発熱性片2を電極1,1間から脱離させて負荷Lと二次電池Eとの間を遮断し、また、二次電池Eの過放電に対し、IC回路Tからの信号によりスイッチswをオンさせ、抵抗器8を二次電池Eによって通電発熱させ、その発生熱で可溶合金3を溶融させ、バネ7の圧縮応力エネルギーを解放し過電流発熱性片2を電極1,1間から脱離させて二次電池Eと負荷Lとの間を遮断させる。
この場合、可溶合金の融点が前記マイグレーションにより変化していても、過電流発熱性片を発熱温度をその変化を見込んだ温度とするように過電流発熱性片の抵抗値を設定しておくことにより、過電流遮断を確実に行わせ得る。
The protection element is used as a protection element of the secondary battery protection circuit shown in FIG.
When an overcurrent flows during discharge, the overcurrent exothermic piece 2 of the protective element A is heated to melt the fusible alloy 3, release the stress energy of the spring 7, and place the overcurrent exothermic piece 2 between the electrodes 1 and 1. Is disconnected from the load L and the secondary battery E, and the switch sw is turned on by a signal from the IC circuit T in response to the overdischarge of the secondary battery E, and the resistor 8 is connected to the secondary battery. The battery E is energized and heated, the fusible alloy 3 is melted by the generated heat, the compression stress energy of the spring 7 is released, the overcurrent exothermic piece 2 is detached from between the electrodes 1 and 1, and the secondary battery E The load L is disconnected.
In this case, even if the melting point of the fusible alloy has changed due to the migration, the resistance value of the overcurrent exothermic piece is set so that the exothermic temperature of the overcurrent exothermic piece takes into account the change. Thus, the overcurrent interruption can be surely performed.

更に、充電時、過充電に対し、IC回路Tからの信号によりスイッチswをオンさせ、抵抗器8を二次電池E若しくは充電電源Sで通電発熱させ、その発生熱で可溶合金3を溶融させ、バネ7の圧縮応力エネルギーを解放し過電流発熱性片2を電極間1,1から脱離させて二次電池Eと充電電源Sとの間を遮断させる。
この場合、可溶合金の融点が前記マイグレーションにより変化していても、抵抗器本体の発熱温度をその変化を見込んだ温度とするように抵抗器の抵抗値を設定しておくことにより、通電遮断を確実に行わせ得る。
Further, during charging, the switch sw is turned on by a signal from the IC circuit T for overcharging, the resistor 8 is energized and heated by the secondary battery E or the charging power source S, and the fusible alloy 3 is melted by the generated heat. Then, the compressive stress energy of the spring 7 is released, and the overcurrent exothermic piece 2 is detached from the interelectrodes 1 and 1 so that the secondary battery E and the charging power source S are disconnected.
In this case, even if the melting point of the fusible alloy has changed due to the migration, the energization is cut off by setting the resistance value of the resistor so that the heating temperature of the resistor body takes into account the change. Can be performed reliably.

図4に示す保護素子においては、圧縮バネ7の反力が、ピン電極1,1と過電流発熱性片2との間を接合する可溶合金3,3の2箇所及び抵抗器8の一方のリード導体80aと過電流発熱性片2との間を接合する可溶合金3の1箇所の合計3ヵ所で支持されるから、各箇所の可溶合金の応力を小さくでき、それだけ可溶合金のクリープをよく軽減でき、前記作動をよく担保できる。   In the protection element shown in FIG. 4, the reaction force of the compression spring 7 is generated by two portions of the fusible alloys 3 and 3 joining the pin electrodes 1 and 1 and the overcurrent exothermic piece 2 and one of the resistors 8. Since the lead conductor 80a and the overcurrent exothermic piece 2 are supported at a total of three locations of the fusible alloy 3, the stress of the fusible alloy at each location can be reduced, and the fusible alloy can be reduced accordingly. The creep can be reduced well, and the operation can be secured well.

しかしながら、図4に示す保護素子においては、抵抗器本体8と過電流発熱性片2との間にバネ7が介在し、抵抗器本体8から各可溶合金3,3,3までの距離が遠いから、抵抗器本体8の発生熱が各可溶合金に伝わるのに要する時間がそれだけ長くなり、作動迅速性に問題がある。   However, in the protection element shown in FIG. 4, the spring 7 is interposed between the resistor body 8 and the overcurrent exothermic piece 2, and the distance from the resistor body 8 to each of the soluble alloys 3, 3, 3 is Since it is far away, the time required for the heat generated by the resistor main body 8 to be transmitted to each fusible alloy becomes longer, and there is a problem in the operation speed.

本発明の目的は、抵抗器の一方のリード導体と一対のピン電極にわたって過電流発熱性片を配設し、該過電流発熱性片と前記一方のリード導体及び前記一対の各ピン電極との間をそれぞれ可溶合金で接合し、可溶合金の溶融時に前記過電流発熱性片を前記一対のピン電極及び一方のリード導体から脱離させるバネを設け、抵抗体の他方のリード導体と一対のピン電極の何れか一方との間に、被保護機器の異常時に前記抵抗器本体を通電発熱させて前記の可溶合金を溶融させる抵抗器発熱回路を接続する保護素子の作動迅速性を向上させることにある。   An object of the present invention is to dispose an overcurrent exothermic piece across one lead conductor of a resistor and a pair of pin electrodes, and the overcurrent exothermic piece, the one lead conductor, and the pair of pin electrodes. A spring is provided between each of the pair of pin electrodes and one of the lead conductors so that the overcurrent exothermic piece is detached from the pair of pin electrodes and one of the lead conductors. Improves the speed of operation of the protective element that connects a resistor heating circuit that melts the fusible alloy by energizing and heating the resistor body when the protected device is abnormal. There is to make it.

請求項1に係る保護素子は、抵抗器本体の両端にリード導体を有する抵抗器及び一対のピン電極並びにガイド軸が並設され、抵抗器の一方のリード導体と一対のピン電極にわたって過電流発熱性片が配設され、該過電流発熱性片と前記一方のリード導体及び同過電流発熱性片と前記一対の各ピン電極との間がそれぞれ可溶合金で接合され、可溶合金の溶融時に前記過電流発熱性片を前記一対のピン電極及び一方のリード導体から脱離させるバネが前記過電流発熱性片または過電流発熱性片を支承する支持板により圧縮された状態で前記ガイド軸に挿通され、抵抗体の他方のリード導体と一対のピン電極の何れか一方との間に、被保護機器の異常時に前記抵抗器本体を通電発熱させて前記の可溶合金を溶融させる抵抗器発熱回路が接続されることを特徴とする。
請求項2に係る保護素子は、請求項1の保護素子において、抵抗器本体の一方のリード導体が省略され、抵抗器本体の一端と過電流発熱性片との間が可溶合金で接合されていることを特徴とする。
請求項3に係る保護素子は、請求項1または2の保護素子において、支持板が絶縁体であり、ガイド軸に該支持板が摺動可能に挿通されていることを特徴とする。
請求項4に係る保護素子は、請求項1または3の保護素子において、過電流発熱性片に支持板中央の孔を経て抵抗器本体一端に接触される突部及び突部を貫通する一方のリード導体挿通孔が設けられ、一方のリード導体と過電流発熱性片との可溶合金による接合が前記突部と前記抵抗器本体一端との境界において行われ、支持板に前記の各ピン電極の一端部を収容する貫通孔が設けられ、これらの各孔において各ピン電極一端と過電流発熱性片各端との可溶合金による接合が行われ、支持板の両端部にガイド軸挿通孔が設けられ、各ガイド軸挿通孔に挿通された各ガイド軸にバネが挿通されていることを特徴とする。
請求項5に係る保護素子は、請求項1〜4何れかの保護素子において、台座から抵抗器の他方のリード導体及び一対のピン電極のリード部が引き出され、同台座にガイド軸が固定され、同台座にケースが装着されていることを特徴とする。
請求項6に係る保護素子は、請求項5の保護素子において、抵抗器本体の発熱で変色される絶縁体が抵抗器本体及び一対のピン電極を覆って設けられ、ケースが透視可能とされていることを特徴とする。
請求項7に係る保護素子は、請求項1〜6何れかの保護素子において、二次電池の保護用であり、過電流が二次電池の許容負荷電流であり、異常時が二次電池の過充電時または過放電時であり、過電流が二次電池放電時での過電流であることを特徴とする。
請求項8に係る保護素子は、請求項7の保護素子において、充電時に陽極側となる方のピン電極と過電流発熱性片とを接合する可溶合金の量が他方のピン電極と過電流発熱性片とを接合する可溶合金の量よりも多くされていることを特徴とする。
請求項9に係る保護素子は、請求項1〜8何れかの保護素子において、可溶合金がBi系またはSb系合金であることを特徴とする。
According to a first aspect of the present invention, a resistor having a lead conductor on both ends of a resistor body, a pair of pin electrodes, and a guide shaft are juxtaposed, and overcurrent heat is generated across one lead conductor of the resistor and the pair of pin electrodes. The overcurrent exothermic piece and the one lead conductor and the overcurrent exothermic piece and the pair of pin electrodes are respectively joined with a fusible alloy to melt the fusible alloy. The guide shaft in a state where a spring for detaching the overcurrent exothermic piece from the pair of pin electrodes and one lead conductor is compressed by a support plate supporting the overcurrent exothermic piece or the overcurrent exothermic piece. A resistor that is inserted through the resistor and causes the resistor body to generate heat and melt the soluble alloy between the other lead conductor of the resistor and one of the pair of pin electrodes when the protected device is abnormal. Connect the heat generation circuit. The features.
The protective element according to claim 2 is the protective element according to claim 1, wherein one lead conductor of the resistor main body is omitted, and one end of the resistor main body and the overcurrent exothermic piece are joined with a soluble alloy. It is characterized by.
According to a third aspect of the present invention, in the protective element according to the first or second aspect, the support plate is an insulator, and the support plate is slidably inserted into the guide shaft.
The protective element according to claim 4 is the protective element according to claim 1 or 3 , wherein the overcurrent exothermic piece is contacted with one end of the resistor main body through the hole in the center of the support plate and one of the protrusions penetrating the protrusion. A lead conductor insertion hole is provided, and one lead conductor and an overcurrent exothermic piece are joined by a soluble alloy at the boundary between the protrusion and one end of the resistor body, and each pin electrode is formed on a support plate. Through holes for receiving one end of each of these pins are provided, and in each of these holes, one end of each pin electrode and each end of the overcurrent exothermic piece are joined by a soluble alloy, and guide shaft insertion holes are formed at both ends of the support plate. And a spring is inserted through each guide shaft inserted through each guide shaft insertion hole.
The protection element according to claim 5 is the protection element according to any one of claims 1 to 4, wherein the other lead conductor of the resistor and the lead portion of the pair of pin electrodes are drawn from the pedestal, and the guide shaft is fixed to the pedestal. A case is mounted on the pedestal.
The protection element according to claim 6 is the protection element according to claim 5, wherein an insulator that changes color due to heat generation of the resistor body is provided to cover the resistor body and the pair of pin electrodes, and the case can be seen through. It is characterized by being.
The protective element according to claim 7 is the protective element according to any one of claims 1 to 6, which is for protecting the secondary battery, the overcurrent is the allowable load current of the secondary battery, and the abnormal battery It is overcharge or overdischarge, and the overcurrent is overcurrent when the secondary battery is discharged .
The protection element according to claim 8 is the protection element according to claim 7, wherein the amount of the fusible alloy that joins the pin electrode on the anode side during charging and the overcurrent exothermic piece is the same as that of the other pin electrode. It is characterized by being larger than the amount of the fusible alloy that joins the exothermic pieces.
A protection element according to claim 9 is the protection element according to any one of claims 1 to 8, characterized in that the fusible alloy is a Bi-based or Sb-based alloy.

(1)可溶合金にバネ反力が作用する箇所が、過電流発熱性片両端の各端部と各ピン電極とを接合する2ヵ所及び過電流発熱性片の中間部とガイド軸とを接合する1ヵ所の合計3ヵ所に分散されているから、1〜2ヵ所の場合に較べ、可溶合金に作用する応力を小さくできる。従って、可溶合金のクリープを低減でき、保護素子の適格な作動を保障できる。
(2)直流加電下で過電流が流れると、過電流発熱性片が発熱し、過電流発熱性片と電極とを接合している可溶合金がその発生熱で溶融され、バネの応力エネルギーで過電流発熱性片がピン電極間から脱離して過電流が遮断される。この場合、可溶合金の融点が前記マイグレーションにより変化していても、過電流発熱性片を発熱温度をその変化を見込んだ温度とするように過電流発熱性片の抵抗値を設定しておくことにより、過電流遮断を確実に行わせ得る。
(3)被保護機器の前記過電流以外の異常が発生すると、抵抗器が通電発熱され、可溶合金がその発生熱で溶融され、バネの応力エネルギーで過電流発熱性片がピン電極間から脱離されて被保護機器への給電が停止される。この場合、可溶合金の融点が前記マイグレーションにより変化していても、抵抗器本体の発熱温度をその変化を見込んだ温度とするように抵抗器の抵抗値を設定しておくことにより、通電遮断を確実に行わせ得る。
この場合、図に示す保護素子とはことなり、抵抗器本体と過電流発熱性片3との間にバネを介在させず、バネを別の位置に移設し、抵抗器本体から各可溶合金までの距離を短くしているから、抵抗器本体の発生熱を各可溶合金にそれだけ速く伝達でき、作動を迅速化できる。
(1) The location where the spring reaction force acts on the fusible alloy consists of two locations where each end of the overcurrent exothermic piece and each pin electrode are joined, and the intermediate portion of the overcurrent exothermic piece and the guide shaft. Since it is dispersed in a total of three places, one place to be joined, the stress acting on the fusible alloy can be reduced as compared with the case of one or two places. Therefore, creep of the fusible alloy can be reduced, and proper operation of the protective element can be ensured.
(2) When an overcurrent flows under direct current heating, the overcurrent exothermic piece generates heat, and the fusible alloy joining the overcurrent exothermic piece and the electrode is melted by the generated heat, and the stress of the spring With the energy, the overcurrent exothermic piece is detached from between the pin electrodes and the overcurrent is interrupted. In this case, even if the melting point of the fusible alloy has changed due to the migration, the resistance value of the overcurrent exothermic piece is set so that the exothermic temperature of the overcurrent exothermic piece takes into account the change. Thus, the overcurrent interruption can be surely performed.
(3) When an abnormality other than the overcurrent occurs in the protected device, the resistor is heated by energization, the fusible alloy is melted by the generated heat, and the overcurrent exothermic piece is moved between the pin electrodes by the stress energy of the spring. The power supply to the protected device is stopped after being detached. In this case, even if the melting point of the fusible alloy has changed due to the migration, the energization is cut off by setting the resistance value of the resistor so that the heating temperature of the resistor body takes into account the change. Can be performed reliably.
In this case, unlike the protective element shown in the figure, the spring is not moved between the resistor body and the overcurrent exothermic piece 3, but the spring is moved to another position, and each soluble alloy is moved from the resistor body. Therefore, the generated heat of the resistor body can be transferred to each soluble alloy as quickly as possible, and the operation can be speeded up.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1−1の(イ)は本発明に係る保護素子の一実施例を示す側面図、図1−1の(ロ)は図1−1の(イ)におけるロ−ロ断面図である。
図1−1において、10は耐熱性の絶縁台座、例えばフェノール樹脂台である。1,1は一対の並行なピン電極であり、絶縁台座10に固定し、台座10からリード部11を引き出してある。
このピン電極1は銅製や真鍮製とすることができ、円柱型、平型等にでき、抵抗器からの輻射熱を受け易いように、抵抗器側に凹の湾曲加工乃至は曲げ加工を施すことが好ましい。8は巻線型または酸化金属皮膜型の抵抗器であり、リード導体80a(80b)付きのキャップ電極801(802)が耐熱性絶縁コア例えばセラミックスコアの両端に装着され、コアに抵抗線または酸化金属皮膜が設けられ、その抵抗体の各端が各キャップ電極801,802に溶接等により接合されてなり、ピン電極1,1間に並設してある。この抵抗器の他方のキャップ電極802を台座中央の突部101に当接し、他方のリード導体80bを突部101を経て絶縁台座10から引き出してある。2は過電流発熱性片であり、図1−2に示すように、裏面に突部20を有し、突部20を貫通する孔を設け、その貫通孔に抵抗器8の一方のリード導体80aを挿通し、突部20と抵抗器本体80の一方のキャップ電極801とを接触させ、その接触箇所において、一方のリード導体80aと過電流発熱性片2とを可溶合金3により接合すると共に、各ピン電極1の一端端面の一半部を過電流発熱性片2各端部の裏面に接触させ、各ピン電極の一端端面の他半部と過電流発熱性片2の各端面とを可溶合金3により接合してある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1-1 (a) is a side view showing an embodiment of the protection element according to the present invention, and (b) in FIG. 1-1 is a cross-sectional view taken along line (b) in FIG. 1-1.
In FIG. 1-1, 10 is a heat-resistant insulating base, for example, a phenol resin base. Reference numerals 1 and 1 denote a pair of parallel pin electrodes, which are fixed to an insulating base 10 and lead parts 11 are drawn out from the base 10.
The pin electrode 1 can be made of copper or brass, and can be cylindrical, flat or the like, and is subjected to concave bending or bending on the resistor side so that it is easy to receive radiant heat from the resistor. Is preferred. Reference numeral 8 denotes a winding type or metal oxide film type resistor, and cap electrodes 801 (802) with lead conductors 80a (80b) are attached to both ends of a heat resistant insulating core such as a ceramic score, and resistance wires or metal oxides are attached to the core. A film is provided, and each end of the resistor is joined to each cap electrode 801, 802 by welding or the like, and is arranged between the pin electrodes 1, 1. The other cap electrode 802 of this resistor is brought into contact with the protrusion 101 at the center of the base, and the other lead conductor 80b is drawn from the insulating base 10 through the protrusion 101. Reference numeral 2 denotes an overcurrent exothermic piece, as shown in FIG. 1B, having a protrusion 20 on the back surface, a hole penetrating the protrusion 20, and one lead conductor of the resistor 8 in the through hole. 80a is inserted, the protrusion 20 and one cap electrode 801 of the resistor main body 80 are brought into contact with each other, and one lead conductor 80a and the overcurrent exothermic piece 2 are joined with the soluble alloy 3 at the contact point. At the same time, one half of one end face of each pin electrode 1 is brought into contact with the back surface of each end of the overcurrent exothermic piece 2, and the other half of one end face of each pin electrode and each end face of the overcurrent exothermic piece 2 are connected. Joined by a fusible alloy 3.

図1−2に示すように、過電流発熱性片2の裏面突部30の孔口の肉を削ってキャビティ30を形成し、過電流発熱性片2を一方のリード導体80aに挿通し、キャビティ30に可溶合金を充填し、過電流発熱性片2の突部20を抵抗器本体80の一方のキャップ電極801に当接した状態で過電流発熱性片2の各端部200と各ピン電極1の端面との可溶合金3による接合を行い、この接合時の熱で前記キャビティ内30の可溶合金を溶融させて過電流発熱性片2と一方のリード導体80aとの可溶合金3による接合を行うことができる。
この場合、可溶合金が凝固するまで、後述の支持板4を押えてバネ7,7の圧縮反力を支える必要がある。接合時の熱がバネ7,7に伝われば、バネ特性の低下が避けられないので、支持板は熱絶縁体とすることが好ましい。
As shown in FIG. 1-2, the cavity 30 is formed by shaving the wall of the back surface protrusion 30 of the overcurrent exothermic piece 2, the overcurrent exothermic piece 2 is inserted into one lead conductor 80a, The cavity 30 is filled with a fusible alloy, and each end portion 200 of the overcurrent exothermic piece 2 and each of the overcurrent exothermic pieces 2 in a state where the protrusion 20 of the overcurrent exothermic piece 2 is in contact with one cap electrode 801 of the resistor body 80. The end surface of the pin electrode 1 is joined by the fusible alloy 3, and the fusible alloy in the cavity 30 is melted by heat at the time of joining, so that the overcurrent exothermic piece 2 and the one lead conductor 80a are fusible. Bonding with the alloy 3 can be performed.
In this case, it is necessary to support the compression reaction force of the springs 7 and 7 by pressing a support plate 4 described later until the soluble alloy is solidified. If the heat at the time of joining is transmitted to the springs 7 and 7, the spring characteristics are inevitably deteriorated. Therefore, the support plate is preferably a thermal insulator.

図1−1において、6,6はガイド軸であり、前記の抵抗器8及び一対のピン電極1,1を挾んで台座10のバネサポータ102,102に植設してある。
7,7は各ガイド軸6,6に挿通したバネであり、前記抵抗器8の一方のリード導体80a及び一対のピン電極1,1並びにガイド軸6,6に共通の支持板4を摺動可能に挿通し、この支持板4で過電流発熱性片2を支承し、各バネ7,7の圧縮反力を支持板4を介して各可溶合金3,3,3に伝えている。
In FIG. 1A, reference numerals 6 and 6 denote guide shafts which are implanted in the spring supporters 102 and 102 of the base 10 with the resistor 8 and the pair of pin electrodes 1 and 1 interposed therebetween.
Reference numerals 7 and 7 denote springs inserted through the guide shafts 6 and 6, and slide the support plate 4 common to the one lead conductor 80 a and the pair of pin electrodes 1 and 1 and the guide shafts 6 and 6 of the resistor 8. The overcurrent exothermic piece 2 is supported by the support plate 4, and the compression reaction force of the springs 7, 7 is transmitted to the soluble alloys 3, 3, 3 via the support plate 4.

この支持板4には、図1−3に示すように、過電流発熱性片2の突部の径よりもやや大きな径の孔201、ピン電極の径よりもやや大きな径の孔101,101、ガイド軸の径よりもやや大きな径の孔601,601が設けられている。これらの孔に代え、過電流発熱性片の外郭よりも小で、かつ図の孔を内包する内郭の一箇の孔を支持板に設けることもできる。図1−1において、5はケースであり、透視可能とすることが好ましい。   As shown in FIG. 1-3, the support plate 4 has a hole 201 having a diameter slightly larger than the diameter of the protrusion of the overcurrent exothermic piece 2 and holes 101 and 101 having a diameter slightly larger than the diameter of the pin electrode. Holes 601 and 601 having a diameter slightly larger than the diameter of the guide shaft are provided. Instead of these holes, a single inner hole that is smaller than the outer shell of the overcurrent exothermic piece and encloses the hole in the figure can be provided in the support plate. In FIG. 1-1, 5 is a case and it is preferable to be able to see through.

前記保護素子を組み立てるには、各ガイド軸6,6にバネ7,7を挿通し、抵抗器8の一方のリード導体80a及び一対のピン電極1,1並びにガイド軸6,6に支持板4を挿通し、この支持板4を治具で押えてバネの圧縮反力を支えた状態で、過電流発熱性片2を一方のリード導体80aに挿通し、過電流発熱性片2のキャビティ30に可溶合金を充填し、過電流発熱性片2の突部20を抵抗器本体80の一方のキャップ電極801に当接したうえで過電流発熱性片2の各端部200と各ピン電極1の端面との可溶合金3による接合を行い、この接合時の熱で前記キャビティ内30の可溶合金を溶融させて過電流発熱性片2と一方のリード導体80aとの可溶合金3による接合を行い、可溶合金の凝固を待って治具を外し支持板4の押えを解除することができる。
支持板を治具で押えることに代え、過電流発熱性片2を熱絶縁性の治具で押えてバネ7の圧縮反力を支え、この状態で過電流発熱性片2の各端部200と各ピン電極1の端面との可溶合金3による接合を行い、この接合時の熱で前記キャビティ内30の可溶合金を溶融させて過電流発熱性片2と一方のリード導体80aとの可溶合金3による接合を行うこともできる。
In order to assemble the protection element, the springs 7 and 7 are inserted into the guide shafts 6 and 6, and the one lead conductor 80 a of the resistor 8 and the pair of pin electrodes 1 and 1 and the guide shafts 6 and 6 are supported by the support plate 4. In a state where the support plate 4 is pressed with a jig to support the compression reaction force of the spring, the overcurrent exothermic piece 2 is inserted into one lead conductor 80a, and the cavity 30 of the overcurrent exothermic piece 2 is inserted. Is filled with a fusible alloy, and the protrusion 20 of the overcurrent exothermic piece 2 is brought into contact with one cap electrode 801 of the resistor body 80, and then each end portion 200 of the overcurrent exothermic piece 2 and each pin electrode. 1 is welded to the end face of the meltable alloy 3, and the meltable alloy in the cavity 30 is melted by heat at the time of joining, so that the fusible alloy 3 of the overcurrent exothermic piece 2 and one of the lead conductors 80 a is melted. And wait for solidification of the fusible alloy to remove the jig and hold the support plate 4 It can be divided.
Instead of pressing the support plate with a jig, the overcurrent exothermic piece 2 is pressed with a heat insulating jig to support the compression reaction force of the spring 7, and in this state, each end 200 of the overcurrent exothermic piece 2 is supported. And the end surface of each pin electrode 1 are joined by a fusible alloy 3, and the fusible alloy in the cavity 30 is melted by the heat at the time of joining, so that the overcurrent exothermic piece 2 and one lead conductor 80 a Joining with the fusible alloy 3 can also be performed.

前記過電流発熱性片2と支持板4とを一体化すること、支持板を省略し過電流発熱性片にガイド軸挿通孔部分を設けることも可能である。図1−4の(イ)は、後者の場合の抵抗器、ピン電極、バネ挿通ガイド軸の配置の一例を示している。図1−4の(イ)において、4は過電流発熱性片、1,1はピン電極、80aは抵抗器本体の一方のリード導体または一方のキャップ電極801、6はバネ挿通ガイド軸であり、バネの圧縮反力を過電流発熱性片とピン電極との接合箇所、過電流発熱性片と抵抗器本体の一方のリード導体または一方のキャップ電極との接合箇所に均等に分散させるようにしてある。
この場合、図1−4の(ロ)に示すように熱絶縁支持板4をガイド軸6に挿通し、過電流発熱性片2を配置し、この過電流発熱性片2を熱絶縁性治具で押えバネ7の圧縮反力を支えた状態で前記可溶合金による接合を行うこともできる。
It is possible to integrate the overcurrent exothermic piece 2 and the support plate 4, omit the support plate, and provide a guide shaft insertion hole portion in the overcurrent exothermic piece. 1-4 shows an example of the arrangement of resistors, pin electrodes, and spring insertion guide shafts in the latter case. 1-4 (a), 4 is an overcurrent exothermic piece, 1, 1 is a pin electrode, 80a is one lead conductor of the resistor body or one cap electrode 801, 6 is a spring insertion guide shaft. The compression reaction force of the spring should be evenly distributed at the junction between the overcurrent exothermic piece and the pin electrode, and at the junction between the overcurrent exothermic piece and one lead conductor of the resistor body or one cap electrode. It is.
In this case, as shown in (b) of FIG. 1-4, the thermal insulation support plate 4 is inserted into the guide shaft 6 and the overcurrent exothermic piece 2 is disposed, and the overcurrent exothermic piece 2 is thermally insulated. It is also possible to perform the joining with the soluble alloy in a state where the compression reaction force of the presser spring 7 is supported by the tool.

前記ガイド軸6に対しバネ7が傾いても、ガイド軸6に対し支持板4をひっかかりなく円滑に摺動させ得るように、支持板のガイド軸挿通孔に遊びをもたせることが好ましい。例えば、図1−5に示すように、溝602,602とすることが好ましい。
前記支持板は金属製とすることもできるが、絶縁体、例えばガラスエポキシ樹脂製やセラミックス製とすることが好ましい。
Even if the spring 7 is inclined with respect to the guide shaft 6, it is preferable to allow play in the guide shaft insertion hole of the support plate so that the support plate 4 can be smoothly slid relative to the guide shaft 6 without being caught. For example, as shown in FIG. 1-5, the grooves 602 and 602 are preferable.
The support plate may be made of metal, but is preferably made of an insulator such as glass epoxy resin or ceramic.

前記抵抗器の一方のリード導体を省略し、過電流発熱性片2の突部の孔から可溶合金を入れて過電流発熱性片2の突部と抵抗器8の一方のキャップ電極801とを可溶合金で接合してもよい。   One lead conductor of the resistor is omitted, and a fusible alloy is inserted from the hole of the protrusion of the overcurrent exothermic piece 2, and the protrusion of the overcurrent exothermic piece 2 and one cap electrode 801 of the resistor 8 May be joined with a soluble alloy.

本発明に係る保護素子は、二次電池保護回路の保護素子として好適に使用できる。
図2において、Eは二次電池を、Lは負荷を、Sは充電電源を、swはスイッチ例えばトランジスターを、Tは二次電池の過充電または過放電を検知しスイッチオン信号を発信するIC回路をそれぞれ示している。
Aは本発明に係る保護素子を示し、電極1,1のリード部101,101と抵抗器本体80の他方のリード導体80bとを3端子とする構成である。
放電時に過電流が流れると、保護素子Aの過電流発熱性片2を発熱させて低融点可溶材3,3を溶融させ、バネ7の応力エネルギーを解放し過電流発熱性片2を電極1,1間から脱離させて負荷Lと二次電池Eとの間を遮断し、また、二次電池Eの過放電に対し、IC回路Tからの信号によりスイッチswをオンさせ、抵抗器本体80を二次電池Eによって通電発熱させ、その発生熱で低融点可溶材3を溶融させ、バネ7の圧縮応力エネルギーを解放し過電流発熱性片2を電極1,1間から脱離させて二次電池Eと負荷Lとの間を遮断させる。
更に、充電時、過充電に対し、IC回路Tからの信号によりスイッチswをオンさせ、抵抗器本体80を二次電池E若しくは充電電源Sで通電発熱させ、その発生熱で低融点可溶材3を溶融させ、バネ7の圧縮応力エネルギーを解放し過電流発熱性片2を電極間1,1から脱離させて二次電池Eと充電電源Sとの間を遮断させる。
The protection element according to the present invention can be suitably used as a protection element of a secondary battery protection circuit.
In FIG. 2, E is a secondary battery, L is a load, S is a charging power source, sw is a switch such as a transistor, and T is an IC that detects a overcharge or overdischarge of the secondary battery and issues a switch-on signal. Each circuit is shown.
A shows a protection element according to the present invention, and has a configuration in which the lead portions 101 and 101 of the electrodes 1 and 1 and the other lead conductor 80b of the resistor main body 80 have three terminals.
When an overcurrent flows during discharge, the overcurrent exothermic piece 2 of the protection element A is heated to melt the low melting point fusible materials 3 and 3 to release the stress energy of the spring 7, and the overcurrent exothermic piece 2 is connected to the electrode 1. , 1 is disconnected to disconnect between the load L and the secondary battery E, and the switch sw is turned on by a signal from the IC circuit T in response to overdischarge of the secondary battery E, and the resistor body 80 is energized and heated by the secondary battery E, the low melting point soluble material 3 is melted by the generated heat, the compression stress energy of the spring 7 is released, and the overcurrent exothermic piece 2 is detached from between the electrodes 1 and 1. The secondary battery E and the load L are disconnected.
Furthermore, during charging, the switch sw is turned on by a signal from the IC circuit T for overcharging, and the resistor main body 80 is energized and heated by the secondary battery E or the charging power source S, and the low melting point soluble material 3 is generated by the generated heat. Is melted, the compressive stress energy of the spring 7 is released, and the overcurrent exothermic piece 2 is detached from the interelectrodes 1, 1 to cut off the secondary battery E and the charging power source S.

二次電池保護回路においては、両ピン電極の極性が、充電時、放電時の度に交互に変わるが、時間当たりに掛かる電力量は充電時の方が放電時よりも多くなり、低融点可溶材合金の直流マイグレーションが問題となる。しかしながら、可溶合金接合箇所において、過電流発熱性片とピン電極との接触面や過電流発熱性片突部と抵抗器本体のキャップ電極との接触面も電流通路とし、可溶合金に流れる電流割合を少なくしてあるから直流マイグレーションをよく抑制でき、多少の直流マイグレーションに対しては、前記した通り、各可溶合金が担うバネ応力を充分に抑制できるので、直流マイグレーションによる機械的影響も良好に排除できる。   In the secondary battery protection circuit, the polarity of both pin electrodes changes alternately at the time of charging and discharging, but the amount of electric power per hour is higher at the time of charging than at the time of discharging, and a low melting point is possible. DC migration of the molten alloy becomes a problem. However, the contact surface between the overcurrent exothermic piece and the pin electrode and the contact surface between the overcurrent exothermic piece projection and the cap electrode of the resistor body also serve as a current path at the fusible alloy joint, and flows into the fusible alloy. Since the current ratio is reduced, DC migration can be well suppressed, and for some DC migration, as described above, the spring stress of each soluble alloy can be sufficiently suppressed. Can be eliminated well.

直流加電下で過電流が流れると、過電流発熱性片が発熱し、過電流発熱性片と電極とを接合している可溶合金がその発生熱で溶融され、バネの応力エネルギーで過電流発熱性片がピン電極間から脱離して過電流が遮断される。この場合、可溶合金の融点が前記マイグレーションにより上昇していても、過電流発熱性片を発熱温度をその上昇分を見込んだ温度に発熱させるように過電流発熱性片の抵抗値を設定しておくことにより、過電流遮断を確実に行わせ得る。この抵抗値の設定は、過電流発熱性片の厚みまたは材質の調整により行われる。   When an overcurrent flows under direct current heating, the overcurrent exothermic piece generates heat, and the fusible alloy that joins the overcurrent exothermic piece and the electrode is melted by the generated heat, and is overheated by the stress energy of the spring. The current exothermic piece is detached from between the pin electrodes and the overcurrent is interrupted. In this case, even if the melting point of the fusible alloy is increased by the migration, the resistance value of the overcurrent exothermic piece is set so that the overcurrent exothermic piece is heated to a temperature that accounts for the increased temperature. Therefore, overcurrent interruption can be surely performed. This resistance value is set by adjusting the thickness or material of the overcurrent exothermic piece.

二次電池の過充電や過放電が発生すると、抵抗器が通電発熱され、可溶合金がその発生熱で溶融され、バネの応力エネルギーで過電流発熱性片がピン電極間から脱離されて充電や給電が停止される。この場合、可溶合金の融点が前記マイグレーションにより変化していても、抵抗器本体の発熱温度をその変化を見込んだ温度に発熱させるように抵抗器の抵抗値を設定しておくことにより、通電遮断を確実に行わせ得る。   When an overcharge or overdischarge of the secondary battery occurs, the resistor heats up, the fusible alloy melts with the generated heat, and the overcurrent exothermic pieces are detached from the pin electrodes by the stress energy of the spring. Charging and power supply are stopped. In this case, even if the melting point of the fusible alloy changes due to the migration, the resistance value of the resistor is set so that the heating temperature of the resistor body is heated to a temperature that anticipates the change. Blocking can be performed reliably.

この場合、図4に示す保護素子は、抵抗器本体80と過電流発熱性片3との間にバネ7を介在させているが、本発明に係る保護素子では、この位置にバネを設けずに、別の位置にバネを移設し、抵抗器本体80から各可溶合金3,3,3までの距離を短くしているから、抵抗器本体80の発生熱を各可溶合金3にそれだけ速く伝達でき、作動を迅速化できる。   In this case, in the protection element shown in FIG. 4, the spring 7 is interposed between the resistor body 80 and the overcurrent exothermic piece 3, but in the protection element according to the present invention, no spring is provided at this position. In addition, the spring is moved to another position and the distance from the resistor main body 80 to each of the fusible alloys 3, 3, 3 is shortened. Fast transmission and quick operation.

また、抵抗体の通電発熱時、バネに電流がバイパスする畏れが全くなく(図4に示す保護素子では、バネ7の比抵抗値が抵抗器のリード導体80aに較べてそれほど高くないので、バネ7に電流がバイパスする可能性がある)、バネの通電加熱によるバネ特性の低下もなく、良好な作動性を保証できる。   In addition, there is no possibility of current bypassing the spring when the resistor is energized and heated (in the protective element shown in FIG. 4, the specific resistance value of the spring 7 is not so high compared to the lead conductor 80a of the resistor. 7, there is a possibility that current will bypass), and there is no deterioration of the spring characteristics due to energization heating of the spring, and good operability can be guaranteed.

本発明に係る保護素子において、耐熱性絶縁被覆800に抵抗器本体の発熱で変色する材料を使用し、ケース5を透視可能とすれば、保護素子の作動が過電流によるのか、過電流以外の異常によるのかを容易に判別できる。   In the protective element according to the present invention, if a material that changes color due to heat generated by the resistor body is used for the heat-resistant insulating coating 800 and the case 5 can be seen through, whether the operation of the protective element is due to overcurrent or other than overcurrent. It is possible to easily determine whether it is due to an abnormality.

本発明に係る保護素子において、各ピン電極1,1と抵抗器の他方のリード導体80bとの間の絶縁距離を確保するために、図1−6に示すように、ピン電極1のリード部11を台座10の側面から引き出すことができる。   In the protection element according to the present invention, in order to secure an insulation distance between each pin electrode 1, 1 and the other lead conductor 80b of the resistor, as shown in FIG. 11 can be pulled out from the side surface of the base 10.

本発明に係る保護素子において、ピン電極が平板等のように表面積が大きくなった場合、放熱性が高くなり抵抗器からの熱が逃げて作動が遅くなる惧れがあるので、図1−7に示すように、部分的に切り欠いたり、穿孔したりして断面積の小さい個所を設けることが好ましい。 In the protective element according to the present invention, when the surface area of the pin electrode is large, such as a flat plate, the heat dissipation becomes high, and heat from the resistor may escape and the operation may be delayed. As shown in FIG. 5, it is preferable to provide a portion having a small cross-sectional area by partially notching or drilling.

本発明に係る保護素子において、過電流発熱性片側に全電流が流れ、可溶合金側に電流がバイパスしないことが理想的であるが、数%〜30%程度のバイパスであれば許容される。この場合、総合的に陽極側となる方のピン電極と過電流発熱性片とを接合する可溶合金の量を他方のピン電極と過電流発熱性片とを接合する可溶合金の量よりも多くすることが、前記マイグレーション対策として有効である。
充電時に陽極側となる方のピン電極には、そのことを認識できるマークを付することができる。
In the protection element according to the present invention, it is ideal that the entire current flows on one side of the overcurrent exothermic side and the current is not bypassed on the fusible alloy side, but a bypass of several percent to 30% is acceptable. . In this case, the amount of the fusible alloy that joins the pin electrode on the anode side and the overcurrent exothermic piece as a whole is larger than the amount of the fusible alloy that joins the other pin electrode and the overcurrent exothermic piece. Increasing the number is effective as a countermeasure against the migration.
A mark that can recognize this can be attached to the pin electrode that is on the anode side during charging.

本発明に係る保護素子の一実施例を示す図面である。1 is a view showing an embodiment of a protection element according to the present invention. 図1に示す保護素子における可溶合金接合状態を示す図面である。It is drawing which shows the soluble alloy joining state in the protection element shown in FIG. 本発明に係る保護素子で使用する支持板の一例を示す図面である。It is drawing which shows an example of the support plate used with the protection element which concerns on this invention. 本発明に係る保護素子の上記とは別の実施例の要部を示す図面である。It is drawing which shows the principal part of the Example different from the above of the protection element which concerns on this invention. 本発明に係る保護素子で使用する支持板の上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the support plate used with the protection element which concerns on this invention. 本発明に係る保護素子の上記とは別の実施例の要部を示す図面である。It is drawing which shows the principal part of the Example different from the above of the protection element which concerns on this invention. 本発明に係る保護素子の上記とは別の実施例の要部を示す図面である。It is drawing which shows the principal part of the Example different from the above of the protection element which concerns on this invention. 本発明に係る保護素子の使用状態を示す図面である。It is drawing which shows the use condition of the protection element which concerns on this invention. 二次電池保護回路を示す図面である。2 is a diagram illustrating a secondary battery protection circuit. 本出願人が既に提案した保護素子を示す図面である。2 is a diagram illustrating a protective element that has been proposed by the present applicant.

符号の説明Explanation of symbols

10 絶縁台座
1 ピン電極
2 過電流発熱性片
3 可溶合金
4 支持板
5 ケース
6 ガイド軸
7 バネ
8 抵抗器
80a 抵抗器の一方のリード導体
800 絶縁被覆層
DESCRIPTION OF SYMBOLS 10 Insulation base 1 Pin electrode 2 Overcurrent exothermic piece 3 Soluble alloy 4 Support plate 5 Case 6 Guide shaft 7 Spring 8 Resistor 80a One lead conductor of resistor 800 Insulation coating layer

Claims (9)

抵抗器本体の両端にリード導体を有する抵抗器及び一対のピン電極並びにガイド軸が並設され、抵抗器の一方のリード導体と一対のピン電極にわたって過電流発熱性片が配設され、該過電流発熱性片と前記一方のリード導体及び同過電流発熱性片と前記一対の各ピン電極との間がそれぞれ可溶合金で接合され、可溶合金の溶融時に前記過電流発熱性片を前記一対のピン電極及び一方のリード導体から脱離させるバネが前記過電流発熱性片または過電流発熱性片を支承する支持板により圧縮された状態で前記ガイド軸に挿通され、抵抗体の他方のリード導体と一対のピン電極の何れか一方との間に被保護機器の異常時に前記抵抗器本体を通電発熱させて前記の可溶合金を溶融させる抵抗器発熱回路が接続されることを特徴とする保護素子。 A resistor having a lead conductor on both ends of the resistor body, a pair of pin electrodes, and a guide shaft are juxtaposed, and an overcurrent exothermic piece is disposed across one lead conductor of the resistor and the pair of pin electrodes. The current exothermic piece and the one lead conductor and the overcurrent exothermic piece and the pair of pin electrodes are each joined by a fusible alloy, and when the fusible alloy melts, the overcurrent exothermic piece is A spring to be detached from a pair of pin electrodes and one lead conductor is inserted into the guide shaft in a state compressed by the overcurrent exothermic piece or the support plate supporting the overcurrent exothermic piece, and the other of the resistor A resistor heating circuit is connected between the lead conductor and one of the pair of pin electrodes to cause the resistor body to generate heat and melt the soluble alloy when the protected device is abnormal. Protective element. 抵抗器本体の一方のリード導体が省略され、抵抗器本体の一端と過電流発熱性片との間が可溶合金で接合されていることを特徴とする請求項1記載の保護素子。 2. The protective element according to claim 1, wherein one lead conductor of the resistor body is omitted, and one end of the resistor body and the overcurrent exothermic piece are joined by a soluble alloy. 支持板が絶縁体であり、ガイド軸に該支持板が摺動可能に挿通されている請求項1または2記載の保護素子。 The protection element according to claim 1 or 2, wherein the support plate is an insulator, and the support plate is slidably inserted into the guide shaft. 過電流発熱性片に支持板中央の孔を経て抵抗器本体一端に接触される突部及び突部を通る一方のリード導体挿通孔が設けられ、一方のリード導体と過電流発熱性片との可溶合金による接合が前記突部と前記抵抗器本体一端との境界において行われ、支持板に前記の各ピン電極の一端部を収容する貫通孔が設けられ、これらの各孔において各ピン電極一端と過電流発熱性片各端との可溶合金による接合が行われ、支持板の両端部にガイド軸挿通孔が設けられ、各ガイド軸挿通孔に挿通された各ガイド軸にバネが挿通されていることを特徴とする請求項1または3記載の保護素子。 The overcurrent exothermic piece is provided with a projecting portion that contacts the one end of the resistor body through the hole in the center of the support plate and one lead conductor insertion hole that passes through the projecting portion. Joining with a fusible alloy is performed at the boundary between the projection and one end of the resistor body, and a through hole is provided in the support plate to accommodate one end of each pin electrode. One end and each end of the overcurrent exothermic piece are joined with a soluble alloy, guide shaft insertion holes are provided at both ends of the support plate, and a spring is inserted into each guide shaft inserted into each guide shaft insertion hole. The protective element according to claim 1 , wherein the protective element is formed. 台座から抵抗器の他方のリード導体及び一対のピン電極のリード部が引き出され、ガイド軸が該台座に固定され、同台座にケースが装着されていることを特徴とする請求項1〜4何れか記載の保護素子。 The other lead conductor of the resistor and the lead portion of the pair of pin electrodes are drawn out from the pedestal, the guide shaft is fixed to the pedestal, and a case is mounted on the pedestal. Or a protective element. 抵抗器本体の発熱で変色される絶縁体が抵抗器本体及び一対のピン電極を覆って設けられ、ケースが透視可能とされていることを特徴とする請求項5記載の保護素子。 6. The protective element according to claim 5, wherein an insulator that changes color due to heat generated by the resistor body is provided to cover the resistor body and the pair of pin electrodes, and the case can be seen through. 二次電池の保護用であり、異常時が二次電池の過充電時または過放電時であり、過電流が二次電池放電時での過電流であることを特徴とする請求項1〜6何れか記載の保護素子。 It is for protection of a secondary battery, the time of abnormality is the time of overcharge or overdischarge of the secondary battery, and the overcurrent is an overcurrent at the time of secondary battery discharge. Any protection element. 充電時に陽極側となる方のピン電極と過電流発熱性片とを接合する可溶合金の量が他方のピン電極と過電流発熱性片とを接合する可溶合金の量よりも多くされていることを特徴とする請求項7記載の保護素子。 The amount of the fusible alloy joining the pin electrode on the anode side during charging and the overcurrent exothermic piece is made larger than the amount of the fusible alloy joining the other pin electrode and the overcurrent exothermic piece. The protective element according to claim 7, wherein 可溶合金がBi系またはSb系合金であることを特徴とする請求項1〜8何れか記載の保護素子。 The protective element according to claim 1, wherein the fusible alloy is a Bi-based or Sb-based alloy.
JP2008134883A 2008-05-23 2008-05-23 Protective element Active JP4757898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134883A JP4757898B2 (en) 2008-05-23 2008-05-23 Protective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134883A JP4757898B2 (en) 2008-05-23 2008-05-23 Protective element

Publications (2)

Publication Number Publication Date
JP2009283324A JP2009283324A (en) 2009-12-03
JP4757898B2 true JP4757898B2 (en) 2011-08-24

Family

ID=41453566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134883A Active JP4757898B2 (en) 2008-05-23 2008-05-23 Protective element

Country Status (1)

Country Link
JP (1) JP4757898B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118013B (en) * 2009-12-31 2014-03-26 深圳日海通讯技术股份有限公司 Security unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824701B2 (en) * 1976-07-20 1983-05-23 大阪瓦斯株式会社 Hot water storage type and instant hot water heating equipment
JPS63102143A (en) * 1986-10-17 1988-05-07 Matsushita Electric Ind Co Ltd Electron bean deflecting plate
JPH07235247A (en) * 1994-02-21 1995-09-05 Toshiba Electric Appliance Co Ltd Temperature control device
DE19809149C2 (en) * 1998-03-04 2001-09-27 Trw Automotive Electron & Comp Security, in particular for automotive technology
JP4637001B2 (en) * 2005-10-28 2011-02-23 三洋電機株式会社 Protection element and battery pack provided with the protection element

Also Published As

Publication number Publication date
JP2009283324A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4630403B2 (en) Protective element
JP5123624B2 (en) Battery and power supply system using the same
JP6357221B2 (en) Protective device
KR101760966B1 (en) Circuit protection device
TWI585801B (en) Protective components and battery pack
KR20140107591A (en) Protective device
TWI585800B (en) Protective components and battery pack
JPH08236305A (en) Protective circuit and protective element
KR20150040954A (en) Protective element and battery pack
JP2006221919A (en) Fuse with substrate type resistor and battery pack
JP4757931B2 (en) Protective element
WO2016017567A1 (en) Protection element and protection circuit
JP4757898B2 (en) Protective element
TWI824067B (en) Protection element and protection circuit
JP4943360B2 (en) Protective element
JP4912447B2 (en) Alloy type thermal fuse
JP4943359B2 (en) Protective element
JP4757895B2 (en) Protective element
KR20170133512A (en) Protection element and fuse element
CN206976271U (en) A kind of controlled fuse of disconnected type high current soon
JP4630404B2 (en) Protective element
JP2012129124A (en) Circuit protective element and battery pack device using the same
WO2020189225A1 (en) Battery pack and protection circuit
JP4368039B2 (en) Thermal fuse having a self-heating element and a battery pack incorporating the thermal fuse
TW202244969A (en) Protection element and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101215

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4757898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250