JP3889855B2 - Substrate type temperature fuse - Google Patents

Substrate type temperature fuse Download PDF

Info

Publication number
JP3889855B2
JP3889855B2 JP17310397A JP17310397A JP3889855B2 JP 3889855 B2 JP3889855 B2 JP 3889855B2 JP 17310397 A JP17310397 A JP 17310397A JP 17310397 A JP17310397 A JP 17310397A JP 3889855 B2 JP3889855 B2 JP 3889855B2
Authority
JP
Japan
Prior art keywords
soluble alloy
point soluble
melting point
low melting
temperature fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17310397A
Other languages
Japanese (ja)
Other versions
JPH117876A (en
Inventor
充明 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP17310397A priority Critical patent/JP3889855B2/en
Publication of JPH117876A publication Critical patent/JPH117876A/en
Application granted granted Critical
Publication of JP3889855B2 publication Critical patent/JP3889855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電流容量の大きい基板型温度ヒュ−ズに関するものである。
【0002】
【従来の技術】
合金型温度ヒュ−ズにおいては、ヒュ−ズエレメントに低融点可溶合金片を用いており、電気機器に取付けて使用され、電気機器が過電流のために発熱すると、その発生熱で温度ヒュ−ズのヒュ−ズエレメントが溶融され、この溶融金属が界面エネルギ−に基づく球状化で分断され、機器の電源からの遮断で機器の異常発熱、ひいては火災の発生を未然に防止している。
合金型温度ヒュ−ズとして、図3に示すように、良熱伝導性の絶縁基板11’、例えばセラミックス板上に一対の膜電極12’,12’を設け、各膜電極12’にリ−ド線13’を接続し、これらの膜電極間に低融点可溶合金片14’を接続し、それらの低融点可溶合金片14’にフラックス15’を塗布し、このフラックス塗布低融点可溶合金片を覆って絶縁体16’を被覆した、所謂、基板型温度ヒュ−ズが公知である。
この基板型温度ヒュ−ズは合金型温度ヒュ−ズの薄型化に有利である。また、膜電極が数μmの厚みであり熱伝導抵抗が高く、リ−ド線を機器にはんだ付けする際、リ−ド線を経ての低融点可溶合金片へのはんだ付け熱の伝導を膜電極でよく阻止できるので、はんだ付け時での温度ヒュ−ズの損傷を容易に防止できる有利性もある。
【0003】
【発明が解決しようとする課題】
通常、温度ヒュ−ズは通電電流の比較的小さな電気機器や回路の保護に使用され、通電電流の大きな電気機器や回路の保護には、電流ヒュ−ズが使用されている。
しかしながら、その中間の電流領域に対しては、必ずしも、電流ヒュ−ズで適切に対処し得ないのが現況である。
【0004】
而るに、上記の基板型温度ヒュ−ズを電流容量上、上記の中間電流領域に適応させるためには、ヒュ−ズエレメントの外径をほぼ1.0mmφ以上とする必要があるが、本発明者の検討結果によれば、かかる基板型温度ヒュ−ズでは、作動速度が遅く、温度ヒュ−ズとして満足に作動させ難い。
例えば、図3において、セラミックス絶縁基板の厚みを0.6mm、膜電極間の距離L’を0.8mmとし、ヒュ−ズエレメントに融点126℃、断面積0.4mm2の低融点可溶合金片を用いた基板型温度ヒュ−ズを温度130℃のオイル中に浸漬すると、約20秒でヒュ−ズエレメントが溶断されるのに対し、ヒュ−ズエレメントの断面積を約3倍の1.2mm2にすると、ヒュ−ズエレメントの溶断に約40秒もの時間がかかり、作動速度が余りにも遅く、満足な保護機能が期待できない。
【0005】
このように低融点可溶合金片の線径を大きくすると、作動に時間がかかる理由としては、▲1▼基板型温度ヒュ−ズの熱の主な伝達経路が絶縁基板の裏面から基板を貫いて低融点可溶合金片の内部に至る経路であり、低融点可溶合金片の径が大きくなると、低融点可溶合金片の熱容量の増大のために低融点可溶合金片の融点への加熱に要する時間が長くなること、▲2▼膜電極と絶縁被覆層との間が密接されており、溶融された低融点可溶合金の膜電極への濡れによる移動が本来的に生じ難く、低融点可溶合金片の径が大きくなって溶融合金量が多くなっても、前記膜電極との濡れによる移動量が変わらず、それだけ多量の溶融合金が膜電極の間に残るようになること等を挙げることができる。
【0006】
本発明の目的は、電流容量が大きく、しかも作動速度の速い基板型温度ヒュ−ズを提供することにある。
【0007】
【課題を解決するための手段】
本発明に係る基板型温度ヒュ−ズは、電気機器の発熱で低融点可溶合金片が溶融され、この溶融金属が電極への濡れ拡がりで分断される温度ヒューズであり、良熱伝導性の絶縁基板上に一対の膜電極を設け、これらの膜電極間に複数本の低融点可溶合金片を並列接続し、それらの低融点可溶合金片にフラックスを塗布し、このフラックス塗布低融点可溶合金片を覆って絶縁体を被覆したことを特徴とする構成であり、一方の膜電極における低融点可溶合金片の接続箇所の間隔よりも、他方の膜電極における低融点可溶合金片の接続箇所の間隔を狭くすることができ、例えば、一方の膜電極を円弧状とし、他方の膜電極を前記円弧状内に位置するランドとし、複数本の低融点可溶合金片を両膜電極間に放射状に接続することができる。上記の各低融点可溶合金片の断面積は0.8mm
以下とすることが望ましい。
【0008】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は請求項1に係る基板型温度ヒュ−ズの一例を示す図面である。
図1において、11は良熱伝導性の耐熱性絶縁基板であり、例えば、厚み0.1mm〜1.0mmのアルミナセラミックス板を使用できる。12,12は絶縁基板に設けた一対の膜電極であり、厚みは通常5μm〜100μmとされ、銀ペ−スト等の導電ぺ−ストの印刷・焼付けにより形成できる。13は各膜電極12に接続したリ−ド線である。14,…は膜電極間に接続した複数本の低融点可溶合金片であり、各低融点可溶合金片14には断面積0.8mm2以下、好ましくは0.4mm2以下の丸線や箔を使用してある。15は低融点可溶合金片14,…上に塗布したフラックス、16は低融点可溶合金片及び電極を覆って被覆した絶縁体であり、例えば、エポキシ樹脂のディツピング塗装により形成できる。
【0009】
上記の実施例においては、膜電極における低融点可溶合金片の接続箇所の間隔を両膜電極において等しくしているが、一方の膜電極における低融点可溶合金片の接続箇所の間隔に較べ、他方の膜電極における低融点可溶合金片の接続箇所の間隔を狭くすることもできる。
【0010】
図2の(イ)は請求項3に係る基板型温度ヒュ−ズの一例を示す図面、図2の(ロ)は図2の(イ)におけるロ−ロ断面図である。
図2において、11は絶縁基板である。121は一方の円弧状膜電極、122は円弧状内のランドからなる他方の膜電極であり、リ−ド線接続用耳部123を備えている。13,13は各膜電極121,122に接続したリ−ド線である。14,…は両膜電極間に放射状に接続した複数本の低融点可溶合金片であり、断面積が0.8mm2以下、好ましくは0.4mm2以下の丸線や箔を使用してある。17は内郭が円弧状膜電極121の外周よりも大きく、外郭が絶縁基板11の外郭よりもやや小なる絶縁スペ−サ、例えば、セラミックス板であり、リ−ド線用溝171を有し、円弧状膜電極121を囲んで絶縁基板11上に載置してある。15は低融点可溶合金片14に塗布したフラックス、16は絶縁スペ−サ17内に被覆した絶縁体であり、絶縁スペ−サ17の内郭が円弧状膜電極121の外郭よりも充分に大きくされているので、円弧状膜電極121を含んだ充電部位が絶縁体15に深く埋入されている。
【0011】
本発明に係る基板型温度ヒュ−ズは、被保護機器の過電流に基づく発熱を受熱し易い部位に取付けられ、機器の入力端に直列に接続されて使用される。而して、電気機器が過電流のために発熱すると、その発生熱で温度ヒュ−ズのヒュ−ズエレメントが溶融され、この溶融金属が界面エネルギ−に基づく球状化で分断され、機器が電源からの遮断される。
この場合、低融点可溶合金片への熱の主な伝達経路が絶縁基板外面から絶縁基板を垂直に通過し、低融点可溶合金片の中心に向かう経路であり、低融点可溶合金片の径が大となるほど、低融点可溶合金片の容積が大となって、低融点可溶合金片の溶融に時間がかかる。また、溶融された低融点可溶合金片が膜電極への濡れのために膜電極に向け界面張力で引っ張られて移動するが、この移動量は膜電極の濡れ性に負うところが大きく、膜電極が同じであればその移動流量が変わらず、しかも、膜電極と絶縁被覆層との間が密接されており溶融された低融点可溶合金の膜電極への濡れによる移動が本来的に生じ難いため、低融点可溶合金片の径が大となり低融点可溶合金片の容積が大きくなると、電極間に残る溶融合金量がそれだけ多くなって、分断が生じ難くなる。
【0012】
本発明者は低融点可溶合金片の断面積と外径と基板型温度ヒュ−ズの作動時間との関係を、基板型温度ヒュ−ズを低融点可溶合金片の融点と同温度+4℃のオイル中に浸漬することによって求めたところ、低融点可溶合金片の断面積が0.8mm2以下であれば、作動時間を20秒以内に抑え得ることを見出した。
本発明に係る基板型温度ヒュ−ズにおいては、この知見を根拠に低融点可溶合金片の断面積を0.8mm2以下としている。
【0013】
本発明に係る基板型温度ヒュ−ズにおいては、複数本の低融点可溶合金片が並列接続されており、各低融点可溶合金片の作動時間を厳密に同一にすることは困難であり、ある程度のバラツキが避けられず、しかも、均一に加熱されるとは限らないので、並列接続された低融点可溶合金片の何れか一個が時間的に優先して分断され、以後、次々と分断されて行く。この場合、一の低融点可溶合金片の分断により残りの低融点可溶合金片に流れる電流が増大されるから、残りの低融点可溶合金片はジュ−ル発熱によっても加熱され、それだけ分断時間が速められ、かかる面からも基板型温度ヒュ−ズ全体の作動を迅速化できる。
更に、低融点可溶合金片の図のランドからなる膜電極のように面積が小となっても、低融点可溶合金片接続箇所の間隔が狭くなるために、その膜電極に濡れにより引き込まれる溶融合金が相互に凝集され、その凝集力も分断に寄与するから、作動の迅速化をよく保持できる。
【0014】
本発明に係る基板型温度ヒュ−ズにおいて、低融点可溶合金片の並列個数は必要とされる電流容量によって定められ、通常は3〜10個とされる。
【0015】
【実施例】
〔実施例1〕
図1において、絶縁基板に厚み0.6mmのアルミナセラミックス板を用い、膜電極を銀ペ−ストの印刷・焼付けにより形成し、膜電極の巾を0.8mm、長さを3.0mm、膜電極間の間隔を1.2mmとし、低融点可溶合金片には断面積0.3mm2、融点126℃のものを4本使用し、フラックスにはロジンを用い、絶縁被覆体にはエポキシ樹脂を使用した。なお、リ−ド線には線径φ0.55mmの銅線を使用した。
〔比較例〕
低融点可溶合金片の本数を一本とし、その断面積をほぼ0.3×4mm2とした以外、実施例1に同じとした。
【0016】
これらの実施例及び比較例のそれぞれにつき(各試料数は10個)、直流5アンペアを通電した状態で温度140℃のシリコンオイルに浸漬し、浸漬後通電遮断までの時間を測定したところ、実施例では8秒以内であったが、比較例では10秒〜20秒であり、本発明によれば、作動時間を充分に短くできることが確認できた。
【0017】
〔実施例2〕
図2において、絶縁基板に厚み0.6mmのアルミナセラミックス板を用い、膜電極を銀ペ−ストの印刷・焼付けにより形成し、円弧状膜電極の外径をφ5.0mm、内径をφ3.8mm、ランド膜電極の外径をφ1.2mmとし、低融点可溶合金片には断面積0.3mm2、融点126℃のものを4本使用し、絶縁スペ−サに厚み0.8mmのセラミックス板を用い、フラックスにロジンを用い、絶縁被覆体にはエポキシ樹脂を使用した。なお、リ−ド線には線径φ0.55mmの銅線を使用した。
上記と同様の作動試験を行い、浸漬後通電遮断までの時間を測定したところ、7秒以内であり、実施例と同等の作動時間であった。
【0018】
【発明の効果】
本発明に係る基板型温度ヒュ−ズにおいては、複数個の低融点可溶合金片の並列接続のために電流容量を大きくでき、その並列接続する低融点可溶合金片の断面積を0.8mm2以下に抑えることにより、溶断を迅速に行わせ得る。
従って、電流容量が大で、迅速作動の基板型温度ヒュ−ズを提供できる。
【図面の簡単な説明】
【図1】請求項1に係る基板型温度ヒュ−ズを示す図面である。
【図2】請求項3に係る基板型温度ヒュ−ズを示す図面である。
【図3】従来の基板型温度ヒュ−ズを示す図面である。
【符号の説明】
11 絶縁基板
12 膜電極
121 円弧状膜電極
122 ランド膜電極
13 リ−ド線
14 低融点可溶合金片
15 フラックス
16 絶縁体
17 絶縁スペ−サ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate type temperature fuse having a large current capacity.
[0002]
[Prior art]
In the alloy type temperature fuse, a low melting point soluble alloy piece is used for the fuse element, and it is used by being attached to an electric device. When the electric device generates heat due to overcurrent, the generated heat generates a temperature fuse. The fuse element is melted, and the molten metal is divided by spheroidization based on the interfacial energy, and the device is prevented from being heated abnormally and thus generating a fire by being cut off from the power source of the device.
As an alloy type temperature fuse, as shown in FIG. 3, a pair of membrane electrodes 12 'and 12' are provided on an insulating substrate 11 'having good heat conductivity, for example, a ceramic plate, and each membrane electrode 12' has a lead wire. A low melting point soluble alloy piece 14 'is connected between the membrane electrodes, and a flux 15' is applied to the low melting point soluble alloy piece 14 '. A so-called substrate-type temperature fuse in which a molten alloy piece is covered and an insulator 16 'is covered is known.
This substrate type temperature fuse is advantageous for reducing the thickness of the alloy type temperature fuse. Also, the membrane electrode is several μm thick and has high heat conduction resistance. When soldering the lead wire to the equipment, it conducts the heat of soldering to the low melting point soluble alloy piece via the lead wire. Since it can be well blocked by the membrane electrode, there is an advantage that damage of the temperature fuse during soldering can be easily prevented.
[0003]
[Problems to be solved by the invention]
Usually, the temperature fuse is used to protect an electric device or circuit having a relatively small energizing current, and the current fuse is used to protect an electric device or circuit having a large energizing current.
However, the current state is that the current fuse cannot always be appropriately dealt with by the current fuse.
[0004]
Thus, in order to adapt the substrate type temperature fuse to the intermediate current region in terms of current capacity, the outer diameter of the fuse element needs to be approximately 1.0 mmφ or more. According to the inventor's investigation results, such a substrate type temperature fuse has a low operating speed and is difficult to operate satisfactorily as a temperature fuse.
For example, in FIG. 3, a low-melting-point soluble alloy having a ceramic insulating substrate thickness of 0.6 mm, a distance L ′ between membrane electrodes of 0.8 mm, a fuse element with a melting point of 126 ° C., and a cross-sectional area of 0.4 mm 2 When a substrate-type temperature fuse using a piece is immersed in an oil having a temperature of 130 ° C., the fuse element is blown out in about 20 seconds, whereas the cross-sectional area of the fuse element is about 3 times 1 If it is 2 mm 2 , it takes about 40 seconds to fuse the fuse element, the operation speed is too slow, and a satisfactory protective function cannot be expected.
[0005]
As described above, when the wire diameter of the low melting point soluble alloy piece is increased, the operation takes time. (1) The main heat transfer path of the substrate type temperature fuse penetrates the substrate from the back surface of the insulating substrate. This is a route to the inside of the low melting point soluble alloy piece. When the diameter of the low melting point soluble alloy piece increases, the heat capacity of the low melting point soluble alloy piece increases to the melting point of the low melting point soluble alloy piece. (2) The time required for heating is increased, and (2) the membrane electrode and the insulating coating layer are in intimate contact with each other, and movement due to wetting of the melted low melting point soluble alloy to the membrane electrode is unlikely to occur inherently. Even when the diameter of the low melting point soluble alloy piece increases and the amount of molten alloy increases, the amount of movement due to wetting with the membrane electrode does not change, and a large amount of molten alloy remains between the membrane electrodes. Etc.
[0006]
An object of the present invention is to provide a substrate type temperature fuse having a large current capacity and a high operating speed.
[0007]
[Means for Solving the Problems]
The substrate-type temperature fuse according to the present invention is a thermal fuse in which a low-melting-point soluble alloy piece is melted by heat generated by an electric device, and this molten metal is divided by wetting and spreading to an electrode. A pair of membrane electrodes is provided on an insulating substrate, a plurality of low melting point soluble alloy pieces are connected in parallel between these membrane electrodes, and flux is applied to these low melting point soluble alloy pieces. The low melting point soluble alloy in the other membrane electrode has a structure characterized by covering the fusible alloy piece and covering the insulator, and the interval between the connection points of the low melting point soluble alloy pieces in one membrane electrode. For example, one membrane electrode has an arc shape, the other membrane electrode has a land located within the arc shape, and a plurality of low-melting-point soluble alloy pieces are both arranged. Radial connections can be made between the membrane electrodes. The cross-sectional area of each of the above low melting point soluble alloy pieces is 0.8 mm
The following is desirable.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a drawing showing an example of a substrate-type temperature fuse according to claim 1.
In FIG. 1, reference numeral 11 denotes a heat-resistant insulating substrate having good thermal conductivity, and for example, an alumina ceramic plate having a thickness of 0.1 mm to 1.0 mm can be used. Reference numerals 12 and 12 denote a pair of membrane electrodes provided on an insulating substrate. The thickness is usually 5 μm to 100 μm, and can be formed by printing and baking a conductive paste such as silver paste. Reference numeral 13 denotes a lead wire connected to each membrane electrode 12. 14 are a plurality of low-melting-point soluble alloy pieces connected between the membrane electrodes, and each low-melting-point soluble alloy piece 14 has a round wire with a cross-sectional area of 0.8 mm 2 or less, preferably 0.4 mm 2 or less. And foil is used. 15 is a flux applied on the low melting point soluble alloy pieces 14,... 16 is an insulator covering and covering the low melting point soluble alloy pieces and the electrodes, and can be formed, for example, by dipping coating of an epoxy resin.
[0009]
In the above embodiment, the distance between the connection points of the low melting point soluble alloy pieces in the membrane electrode is the same in both film electrodes, but compared to the distance between the connection points of the low melting point soluble alloy pieces in one of the membrane electrodes. The interval between the connection points of the low melting point soluble alloy pieces in the other membrane electrode can be narrowed.
[0010]
2 (a) is a drawing showing an example of a substrate type temperature fuse according to claim 3, and FIG. 2 (b) is a cross-sectional view of FIG. 2 (b).
In FIG. 2, 11 is an insulating substrate. Reference numeral 121 denotes one arcuate membrane electrode, and 122 denotes the other membrane electrode formed of lands in the arcuate shape, and includes a lead wire connecting ear 123. Reference numerals 13 and 13 denote lead wires connected to the respective membrane electrodes 121 and 122. 14, are a plurality of low-melting-point soluble alloy pieces radially connected between both membrane electrodes, using a round wire or foil having a cross-sectional area of 0.8 mm 2 or less, preferably 0.4 mm 2 or less. is there. Reference numeral 17 denotes an insulating spacer whose inner contour is larger than the outer periphery of the arc-shaped film electrode 121 and whose outer contour is slightly smaller than the outer contour of the insulating substrate 11, for example, a ceramic plate, and has a lead wire groove 171. The arc-shaped membrane electrode 121 is placed on the insulating substrate 11. Reference numeral 15 denotes a flux applied to the low melting point soluble alloy piece 14, and 16 denotes an insulator coated in the insulating spacer 17. The inner surface of the insulating spacer 17 is sufficiently larger than the outer shape of the arc-shaped film electrode 121. Since it is enlarged, the charging site including the arcuate membrane electrode 121 is deeply embedded in the insulator 15.
[0011]
The substrate-type temperature fuse according to the present invention is attached to a portion where heat generation based on an overcurrent of a protected device is easily received, and is used by being connected in series to the input end of the device. Thus, when an electric device generates heat due to an overcurrent, the fuse element of the temperature fuse is melted by the generated heat, the molten metal is divided by spheroidization based on the interfacial energy, and the device is powered Is cut off from.
In this case, the main transfer path of heat to the low-melting-point soluble alloy piece is a path that passes vertically from the outer surface of the insulating substrate to the center of the low-melting-point soluble alloy piece, The larger the diameter, the larger the volume of the low melting point soluble alloy piece and the longer the melting time of the low melting point soluble alloy piece. In addition, the molten low melting point soluble alloy piece moves by being pulled by the interfacial tension toward the membrane electrode in order to get wet to the membrane electrode, but this movement amount largely depends on the wettability of the membrane electrode. If the flow rate is the same, the flow rate of movement does not change, and the membrane electrode and the insulating coating layer are in intimate contact with each other. Therefore, when the diameter of the low-melting-point soluble alloy piece becomes large and the volume of the low-melting-point soluble alloy piece becomes large, the amount of the molten alloy remaining between the electrodes increases so that it becomes difficult to cause division.
[0012]
The present inventor shows the relationship between the cross-sectional area and outer diameter of the low melting point soluble alloy piece and the operating time of the substrate type temperature fuse, and the substrate type temperature fuse is equal to the melting point of the low melting point soluble alloy piece +4. As a result of immersing in oil at 0 ° C., it was found that if the cross-sectional area of the low melting point soluble alloy piece is 0.8 mm 2 or less, the operation time can be suppressed within 20 seconds.
In the substrate type temperature fuse according to the present invention, the cross-sectional area of the low melting point soluble alloy piece is set to 0.8 mm 2 or less based on this knowledge.
[0013]
In the substrate type temperature fuse according to the present invention, a plurality of low melting point soluble alloy pieces are connected in parallel, and it is difficult to make the operating time of each low melting point soluble alloy piece strictly the same. Since some variation is unavoidable, and it is not always heated uniformly, any one of the low melting point soluble alloy pieces connected in parallel is divided with priority in time, and thereafter one after another Go divided. In this case, since the current flowing through the remaining low melting point soluble alloy piece is increased by the division of one low melting point soluble alloy piece, the remaining low melting point soluble alloy piece is also heated by the Joule heat generation. The cutting time can be accelerated, and the operation of the entire substrate type temperature fuse can be speeded up from this point of view.
Furthermore, even if the area is small, such as the membrane electrode consisting of the land of the low melting point soluble alloy piece, the interval between the low melting point soluble alloy piece connecting portions becomes narrow, so that the membrane electrode is pulled in by wetting. Since the molten alloys are agglomerated with each other and the agglomeration force also contributes to the division, the speed of operation can be well maintained.
[0014]
In the substrate-type temperature fuse according to the present invention, the parallel number of the low-melting-point soluble alloy pieces is determined by the required current capacity, and is usually 3-10.
[0015]
【Example】
[Example 1]
In FIG. 1, an alumina ceramic plate having a thickness of 0.6 mm is used as an insulating substrate, a membrane electrode is formed by printing and baking a silver paste, the width of the membrane electrode is 0.8 mm, the length is 3.0 mm, and the membrane The distance between the electrodes is 1.2 mm, the low melting point soluble alloy piece uses four cross-sectional areas of 0.3 mm 2 and a melting point of 126 ° C., rosin is used for the flux, and epoxy resin is used for the insulation coating. It was used. A copper wire having a diameter of 0.55 mm was used as the lead wire.
[Comparative Example]
The number of low-melting-point soluble alloy pieces was one, and the same as Example 1 except that the cross-sectional area was approximately 0.3 × 4 mm 2 .
[0016]
For each of these examples and comparative examples (each sample number was 10), the sample was immersed in silicon oil at a temperature of 140 ° C. with 5 amperes of direct current supplied, and the time until the interruption of current supply after immersion was measured. In the example, it was within 8 seconds, but in the comparative example, it was 10 to 20 seconds. According to the present invention, it was confirmed that the operation time could be sufficiently shortened.
[0017]
[Example 2]
In FIG. 2, an alumina ceramic plate having a thickness of 0.6 mm is used as the insulating substrate, the membrane electrode is formed by printing and baking silver paste, the outer diameter of the arcuate membrane electrode is φ5.0 mm, and the inner diameter is φ3.8 mm. The outer diameter of the land membrane electrode is φ1.2 mm, the low melting point soluble alloy piece is four pieces with a cross-sectional area of 0.3 mm 2 and a melting point of 126 ° C., and an insulating spacer with a thickness of 0.8 mm. A plate was used, rosin was used for the flux, and an epoxy resin was used for the insulation coating. A copper wire having a diameter of 0.55 mm was used as the lead wire.
When the same operation test as described above was performed and the time until the energization was interrupted after immersion was measured, it was within 7 seconds, which was the same operation time as the example.
[0018]
【The invention's effect】
In the substrate-type temperature fuse according to the present invention, the current capacity can be increased for the parallel connection of a plurality of low-melting-point soluble alloy pieces, and the cross-sectional area of the low-melting-point soluble alloy pieces to be connected in parallel is 0. By limiting the thickness to 8 mm 2 or less, fusing can be performed quickly.
Therefore, a substrate-type temperature fuse having a large current capacity and a quick operation can be provided.
[Brief description of the drawings]
FIG. 1 is a view showing a substrate type temperature fuse according to claim 1;
FIG. 2 is a view showing a substrate type temperature fuse according to claim 3;
FIG. 3 is a view showing a conventional substrate type temperature fuse.
[Explanation of symbols]
11 Insulating substrate 12 Membrane electrode 121 Arc-shaped membrane electrode 122 Land membrane electrode 13 Lead wire 14 Low melting point soluble alloy piece 15 Flux 16 Insulator 17 Insulating spacer

Claims (4)

電気機器の発熱で低融点可溶合金片が溶融され、この溶融金属が電極への濡れ拡がりで分断される温度ヒューズであり、良熱伝導性の絶縁基板上に一対の膜電極を設け、これらの膜電極間に複数本の低融点可溶合金片を並列接続し、それらの低融点可溶合金片にフラックスを塗布し、このフラックス塗布低融点可溶合金片を覆って絶縁体を被覆したことを特徴とする基板型温度ヒュ−ズ。 This is a thermal fuse in which the low melting point soluble alloy piece is melted by the heat generated by the electrical equipment, and this molten metal is divided by wetting and spreading to the electrode, and a pair of membrane electrodes are provided on an insulating substrate with good thermal conductivity. A plurality of low-melting-point soluble alloy pieces were connected in parallel between the membrane electrodes, a flux was applied to these low-melting-point soluble alloy pieces, and an insulator was covered with the flux-coated low-melting-point soluble alloy pieces. A substrate type temperature fuse characterized by the above. 一方の膜電極における低融点可溶合金片の接続箇所の間隔よりも、他方の膜電極における低融点可溶合金片の接続箇所の間隔を狭くした請求項1記載の基板型温度ヒュ−ズ。The substrate-type temperature fuse according to claim 1, wherein the interval between the connection points of the low melting point soluble alloy pieces in the other membrane electrode is narrower than the interval between the connection points of the low melting point soluble alloy pieces in the other membrane electrode. 一方の膜電極を円弧状とし、他方の膜電極を前記円弧状内に位置するランドとし、複数本の低融点可溶合金片を両膜電極間に放射状に接続した請求項2記載の基板型温度ヒュ−ズ。3. A substrate mold according to claim 2, wherein one membrane electrode has an arc shape, the other membrane electrode has a land located in the arc shape, and a plurality of low melting point soluble alloy pieces are connected radially between the two membrane electrodes. Temperature fuse. 各低融点可溶合金片の断面積が0.8mm以下である請求項1乃至3何れか記載の基板型温度ヒュ−ズ。4. The substrate type temperature fuse according to claim 1, wherein the cross-sectional area of each low melting point soluble alloy piece is 0.8 mm or less.
JP17310397A 1997-06-14 1997-06-14 Substrate type temperature fuse Expired - Fee Related JP3889855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17310397A JP3889855B2 (en) 1997-06-14 1997-06-14 Substrate type temperature fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17310397A JP3889855B2 (en) 1997-06-14 1997-06-14 Substrate type temperature fuse

Publications (2)

Publication Number Publication Date
JPH117876A JPH117876A (en) 1999-01-12
JP3889855B2 true JP3889855B2 (en) 2007-03-07

Family

ID=15954236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17310397A Expired - Fee Related JP3889855B2 (en) 1997-06-14 1997-06-14 Substrate type temperature fuse

Country Status (1)

Country Link
JP (1) JP3889855B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812865B2 (en) * 1998-09-21 2006-08-23 矢崎総業株式会社 Electrical circuit safety device
JP4110967B2 (en) * 2002-12-27 2008-07-02 ソニーケミカル&インフォメーションデバイス株式会社 Protective element
CN102371227A (en) * 2011-10-19 2012-03-14 湖南天益高技术材料制造有限公司 On-line emulsion coating equipment for wire rod rust prevention
DE102014115588B4 (en) 2014-10-27 2022-04-28 Lisa Dräxlmaier GmbH Security device and method for manufacturing a security device

Also Published As

Publication number Publication date
JPH117876A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
JP3889855B2 (en) Substrate type temperature fuse
JPH1050184A (en) Chip fuse element
JP4112078B2 (en) Substrate type resistance / temperature fuse
JP3594649B2 (en) Substrate type resistance / temperature fuse
JP2799996B2 (en) Temperature sensor
JP3252025B2 (en) Substrate type temperature fuse
JP3770408B2 (en) Substrate type resistance / temperature fuse and protection method for equipment
JP2574700B2 (en) Flat thermal fuse
JP4234818B2 (en) Resistance thermal fuse and manufacturing method thereof
JP3434897B2 (en) Substrate type resistance / temperature fuse
JPH0436021Y2 (en)
JP3696635B2 (en) How the temperature protector works
JP3403993B2 (en) Fuse with flux
JPH086354Y2 (en) Alloy type thermal fuse
JP6959964B2 (en) Protective element
JPH05258653A (en) Substrate type temperature fuse
JPH117875A (en) Alloy temperature fuse
JPH0638351Y2 (en) Temperature fuse
JP4267332B2 (en) Protective element
JPH0310594Y2 (en)
JPH117877A (en) Alloy temperature fuse
JPH0436530Y2 (en)
JPH10162714A (en) Chip fuse element
JPH0142907Y2 (en)
JPH10261353A (en) Resistance/temperature fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees