WO1998010478A1 - SYSTEM FOR OPERATING, MAINTAINING AND MANAGING Na/MOLTEN SALT CELL - Google Patents

SYSTEM FOR OPERATING, MAINTAINING AND MANAGING Na/MOLTEN SALT CELL Download PDF

Info

Publication number
WO1998010478A1
WO1998010478A1 PCT/JP1996/002543 JP9602543W WO9810478A1 WO 1998010478 A1 WO1998010478 A1 WO 1998010478A1 JP 9602543 W JP9602543 W JP 9602543W WO 9810478 A1 WO9810478 A1 WO 9810478A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
molten salt
temperature
batteries
abnormal
Prior art date
Application number
PCT/JP1996/002543
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromi Tokoi
Kazuo Takahashi
Takeshi Hiranuma
Kiyomitsu Nemoto
Naohisa Watahiki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1996/002543 priority Critical patent/WO1998010478A1/en
Publication of WO1998010478A1 publication Critical patent/WO1998010478A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5011Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature for several cells simultaneously or successively
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to improving the safety and reliability of the operation and maintenance of a Na / molten salt battery, and particularly to the operation and maintenance of a Na / molten salt battery for nighttime power storage and large power storage such as batteries for electric vehicles. Regarding the management system.
  • a large number of batteries are required to construct a large power storage system with Na-no-salt batteries.
  • the output per i battery is only 50 to 60 W each.
  • about 200,000 batteries are required to construct a system of about 10,000 kW. Therefore, in order to generate large power, batteries must be connected in series and parallel, and batteries connected in series and parallel are called collective batteries.
  • a clustered battery is formed in units of several hundred batteries, which are further electrically connected to construct a large power storage system.
  • Battery failure is a phenomenon that involves Joule heating due to poor charge / discharge of the battery or short-circuiting of the electrodes, and a rise in battery temperature due to a direct reaction between Na and the active material due to solid electrolyte damage.
  • a large number of sensors are required to detect abnormal single batteries. And the equipment is complicated could not be realized.
  • the prior art will be described in detail.
  • NaZ molten salt g ponds such as ⁇ '& No2 battery, NaZSCl battery, NaZNiC1 battery, NaZFeCl battery, NaNoSc battery, etc. Since this is a problem to be solved, the following description will be made using a Na / S battery as an example.
  • Na / S batteries are equipped with a safety container in a solid electrolyte tube through which Na ions can pass, store Na, and supply only Na required for the pond reaction to the surface of the body electrolyte tube. I do.
  • the supplied Na permeates through the solid electrolyte and undergoes a discharge reaction with S charged outside the tube to generate an electromotive force.
  • the amount of battery reaction is controlled by adjusting the discharge current.
  • NS batteries operate at 300 ° C to 350 "C, taking into account the melting point of the active material.
  • the abnormal battery is disconnected and the operation management system that can continue the operation of the remaining healthy batteries, and replace the abnormal battery A system to maintain must be provided.
  • the abnormal battery has a large internal resistance or the solid electrolyte is damaged. If the current continues to flow through the series-parallel connection as it is, the battery may be further damaged.
  • an object of the present invention is to detect an abnormal battery when an abnormal battery is generated in the battery pack, disconnect the abnormal battery from other healthy batteries, continue the operation of the healthy battery, and subsequently operate the abnormal battery. It is an object of the present invention to provide an operation and maintenance management system for a NaZ molten salt battery that facilitates maintenance and replacement of a battery. Disclosure of the invention
  • the present invention measures an individual battery temperature by simple temperature measurement, and specifies an abnormal battery. That is, the abnormal battery is identified by a simple method such as using laser light scattering or shading as a temperature measuring means, or using a low melting point substance at the connection part of the optical fiber to lose the connection function at an abnormal temperature.
  • the specified abnormal battery has a large internal resistance or a damaged solid electrolyte, and must be immediately disconnected from the normal battery. When disconnecting, it is not necessary to separate the abnormal battery alone, and the battery connected in series to the abnormal battery may be cut off using an electric switch. The remaining normal batteries can continue operation.
  • the specified abnormal battery is recorded in the data processing device, which enables smooth repair or replacement work during maintenance and inspection of the power storage device.
  • an abnormal battery is specified by measuring the battery temperature from among the assembled battery composed of many batteries.
  • the temperature is measured by using an optical fiber and measuring the temperature from the Raman scattering of the incident laser light from the fiber, or the thermal expansion of the battery due to the abnormal temperature of the battery.
  • a simple method using light shielding by quality or the like is used.
  • a low melting point substance for the connection part of the optical fiber and providing a connection part corresponding to each battery there is a method of melting the connection part and losing the connection function when abnormal battery temperature occurs.
  • Conceivable All batteries connected in series with the identified abnormal battery are disconnected from the healthy battery by a switch, and can continue to run in a healthy battery. Further, the specified abnormal battery is recorded in the data processing device K, and a smooth repair or replacement operation can be performed at the time of maintenance and inspection of the power storage device.
  • FIG. 1 is a configuration diagram of an operation / maintenance system of a Na / molten salt battery according to one embodiment of the present invention.
  • FIG. 2 is a Na / molten salt battery according to an embodiment of the present invention.
  • FIG. 3 is a battery temperature characteristic diagram obtained by the operation / maintenance management system of FIG. 3.
  • FIG. 3 is a configuration diagram of the operation / maintenance management system of the Na molten salt battery according to one embodiment of the present invention.
  • FIG. 5 is a configuration diagram of an operation and maintenance management system of a Na molten salt battery according to another embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a Na molten salt battery according to another embodiment of the present invention.
  • FIG. 1 is a configuration diagram of an operation / maintenance management system.
  • FIG. 1 is a diagram showing a basic configuration of the operation and maintenance management method of the present invention.
  • the NaZS assembled battery 10 is composed of nine cells 1, 2, '
  • the batteries were connected in series with 1, 2, 3 and 4, 5, 6, and 7, 8, 9 respectively, and these three series batteries were connected in parallel.
  • the circuit was disconnected for each series battery.
  • Each battery is equipped with an optical fiber 11 and the optical fiber 11 has a laser pulse 12 attached to it. It is incident from the direction of arrow 13.
  • the laser beam 12 emits Raman scattered light depending on the temperature at each position at each position.
  • Raman scattered light is composed of anti-Stokes light that shifts to the short wavelength side and stroke light that shifts to the long wavelength side, compared to the incident laser light.
  • the intensity ratio between the anti-Stokes light and the stock light is a function of only the temperature if the material of the optical fiber and the wavelength of the incident light are determined, and the temperature at the scattering position can be measured from this ratio.
  • the temperature measurement position can be determined from the time from the injection of a laser pulse to the return of Raman scattered light.
  • FIG. 2 shows the temperature measurement results. Obviously, the temperature of battery 6 is rising, and the other battery temperatures are at 350 ° C during normal operation.
  • the entire system that enabled the above measurement sent a laser pulse 12 from the laser transmitter 14 to the battery 10 via the optical finos 11 and the half mirror 15 as shown in Fig. 3. Transmit and capture the Raman scattered light with the data processor 13 via the half mirror-15. Obtain temperature and position information from Raman scattered light and display the results on the CRT 16 screen.
  • the display example is as shown in Fig. 2.
  • the data processing device 13 diagnoses the degree of the abnormality, and if necessary, disconnects the switch 17 in the assembled battery in order to disconnect the abnormal battery from the normal battery. Send Therefore, the battery pack can function as a power storage device and continue operation without the abnormal battery affecting many normal batteries.
  • data such as the temperature rise value of the abnormal battery and the degree of the determined abnormality are recorded in the memory of the processing equipment. Cell selection instantly from a large number of 3 ⁇ 4 pond should 'be, also, the temperature of - h f' - the way data over such, since summary of damage can be determined, appropriate action can be performed.
  • FIG. 4 is a Na / S battery operation / maintenance management system according to a second embodiment of the present invention.
  • the difference from the i-th embodiment is the method of measuring the battery temperature.
  • a laser pulse I 3 is shot at the optical fin 11, emitted through the lens 18 once into the atmosphere, and then incident on the optical fin 11 through the next lens 19.
  • one laser beam propagates one after another, and in the battery 6, the electrode section 20 of the battery 6 rises to the optical path in the air due to the abnormal temperature of the battery. ing.
  • transmitted light attenuates and scattered light increases. Therefore, by detecting these lights, the battery having the abnormal temperature can be specified.
  • FIG. 5 shows an operation and maintenance management system for a NaZ pond according to a third embodiment of the present invention. What differs from the first and second embodiments is the method of measuring the pond temperature. A laser pulse 13 was injected into the optical fiber 11 and a low melting point alloy was used for the optical fiber connector 21 installed at the battery position.
  • the low-melting alloy melts at 500 ° C to 60 ° C (TC) and impairs its function as an optical fiber connector. If there is an abnormal battery, the optical loss of the connector at that location increases, and the transmitted light is reduced. Attenuation and scattered light increase, so detecting these lights can identify the battery with abnormal temperature.
  • this method makes the scattered light (Rayleigh scattering) and transmitted light much stronger, making detection easier.
  • the abnormal battery even when an abnormal battery occurs in the battery pack, the abnormal battery is detected, the abnormal battery is separated from other healthy batteries, the operation of the healthy battery is continued, and the subsequent abnormal battery is operated.
  • the operation and maintenance management system of Na / molten salt batteries for nighttime power storage and large power storage for electric vehicle batteries that facilitated maintenance and replacement of batteries has become possible, improving the reliability and safety of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

An Na/molten salt cell comprises a cathode active material containing sodium (Na) as an essential component, an anode active material containing sulfur (S) or a molten salt as of sodium polysulfide as essential components, and a solid electrolyte which is interposed between the cathode and anode active materials and through which Na ions permeate. A battery consisting of such cells has means which detects the temperature in the battery, means which stores the temperature information of the battery and detects an abnormal cell, and means which disconnects the abnormal cell from the normal cells connected in series and parallel to the abnormal cell. An abnormal cell is detected and disconnected from the other normal cells, the operation of the normal cells is continued, and then, the abnormal cell can be easily exchanged.

Description

明 細 書  Specification
N a Z溶融塩電池の運転 · 保守管理  Operation and maintenance of NaZ molten salt batteries
技術分野 Technical field
本発明は、 N a /溶融塩電池の運転 · 保守に関する安全性や信頼性の 向上に係り、 特に夜間電力貯蔵や電気自動車用電池等の大電力貯蔵用の N a 溶融塩電池の運転 · 保守管理システムに関する。  The present invention relates to improving the safety and reliability of the operation and maintenance of a Na / molten salt battery, and particularly to the operation and maintenance of a Na / molten salt battery for nighttime power storage and large power storage such as batteries for electric vehicles. Regarding the management system.
¾ 、技 vti ¾, technique vti
N aノ溶融塩電池で大電力貯蔵システムを構成するには多数本の電池 が必要である。 電池 i 本当りの出力は、 卨々 5 0〜 6 0 Wに過ぎず、 例 えば、 1 万 k W程度のシステムを構成するには約 2 0万本の電池が必要 となる。 従って、 大電力を発生するため、 電池を直並列接続する必要が あり、 直並列接続された電池を集合電池と呼んでいる。 一般的には数百 本単位で集合電池を形成し、 これをさらに電気的に接続して大電力貯蔵 システムを構築する。  A large number of batteries are required to construct a large power storage system with Na-no-salt batteries. The output per i battery is only 50 to 60 W each. For example, about 200,000 batteries are required to construct a system of about 10,000 kW. Therefore, in order to generate large power, batteries must be connected in series and parallel, and batteries connected in series and parallel are called collective batteries. In general, a clustered battery is formed in units of several hundred batteries, which are further electrically connected to construct a large power storage system.
多数本の電池で構成する大電力貯蔵システムを効率良く運用するには、 仮に 1 本の電池が異常を示しても異常電池を切り離し、 残りの健全な電 池を運転する必要がある。 さらに、 異常電池を交換する場合には異常電 池の特定が不可欠である。  In order to operate a large power storage system composed of many batteries efficiently, even if one battery shows an abnormality, it is necessary to disconnect the abnormal battery and operate the remaining healthy batteries. Furthermore, when replacing an abnormal battery, it is essential to identify the abnormal battery.
電池の異常とは電池の充放電不良や電極の短絡によるジュール発熱, 固体電解質破損による N a と活物質の直接反応による電池温度の上昇を 伴う現象である。 これまで、 集合電池の異常を集合電池の温度異常や漏 洩した活物質を測定して、 検知しょうとする試みはあったが、 異常な電 池単体を検出しょうとすると多数個のセンサが必要となり、 装置も複雑 となるため、 実現できなかった。 さらに、 従来技術を詳述する。 N aZ 溶融塩 g池としては、 ^' &ノ2電池, N a ZS C l 電池, N a Z N i C 1電池, N aZF e C l電池, N aノ S c電池等多数存在するカ 共通する問題なので以 卜' N a / S電池を例に説明する。 Battery failure is a phenomenon that involves Joule heating due to poor charge / discharge of the battery or short-circuiting of the electrodes, and a rise in battery temperature due to a direct reaction between Na and the active material due to solid electrolyte damage. Until now, there have been attempts to detect abnormalities in the assembled battery by measuring abnormalities in the temperature of the assembled battery or leaked active material, but a large number of sensors are required to detect abnormal single batteries. And the equipment is complicated Could not be realized. Further, the prior art will be described in detail. There are many types of NaZ molten salt g ponds, such as ^ '& No2 battery, NaZSCl battery, NaZNiC1 battery, NaZFeCl battery, NaNoSc battery, etc. Since this is a problem to be solved, the following description will be made using a Na / S battery as an example.
N a / S電池は、 安全性を高めるため、 N aイオンが透過 能な固体 電解質管内に安全容器を設け N aを貯蔵し、 池反応に必要な N aのみ を 体電解質管の表面に供給する。 供給された N aは固体電解質を透過 して、 管外に充填された Sと放電反応して、 起電力を発生する。 止常運 転時には電池反応量は、 放電電流を調整することによって、 コン トロー ルされる。 N S電池は活物質の融点を考慮して、 3 0 0°Cから 350 "Cで運転する。  To enhance safety, Na / S batteries are equipped with a safety container in a solid electrolyte tube through which Na ions can pass, store Na, and supply only Na required for the pond reaction to the surface of the body electrolyte tube. I do. The supplied Na permeates through the solid electrolyte and undergoes a discharge reaction with S charged outside the tube to generate an electromotive force. During normal operation, the amount of battery reaction is controlled by adjusting the discharge current. NS batteries operate at 300 ° C to 350 "C, taking into account the melting point of the active material.
仮に、 電池の固体電解質管が破損したり、 電池が短絡した場合には、 N aと Sの iff接反応量を制御することが困難となり、 電池内で異常な発 熱を生じ、 最悪の状態では電池容器の破損につながる可能性がある。 無 論、 電池容器の健全性維持のために、 多くの考慮と対策がなされている。 しかし、 これらの対策電池でも、 発熱を完全に防止することは困難であ る。  If the solid electrolyte tube of the battery is damaged or if the battery is short-circuited, it will be difficult to control the amount of iff contact between Na and S, causing abnormal heat generation in the battery and in the worst case. In this case, the battery container may be damaged. Of course, many considerations and measures have been taken to maintain the soundness of battery containers. However, even with these countermeasures, it is difficult to completely prevent heat generation.
そこで、 これらの電池を多数本用いて構成する ¾力貯蔵システムでは、 電池の破損を監視しながら、 電池運転をする必要がある。 N a ZS電池 は現在、 研究開発段階であるため、 電池の温度や電流, 電圧等を監視し ながら、 運転を実施している。 しかし、 実用化を考えると、 数十万本の 電池を個々に監視することは不可能に近い。  Therefore, in a power storage system configured by using a large number of these batteries, it is necessary to operate the batteries while monitoring the damage of the batteries. Since the NaZS battery is currently in the research and development stage, it operates while monitoring battery temperature, current, and voltage. However, considering practical application, it is almost impossible to monitor hundreds of thousands of batteries individually.
上記した電力貯蔵システムにおいて、 電池の短絡や固体電解質の破損 というような異常現象が発生した場合に、 異常電池を切り離し、 残りの 健全な電池の運転を継続できる運 管理システム、 及び異常電池を交換 保守するシステムを提供する必要がある。 なお、 異常電池は、 内部抵抗 が大きかったり、 固体電解質が破損したり しており、 そのまま、 直並列 接続をして電流を流し続けると電池の破損をさらに促進する可能性があ る。 In the above-mentioned power storage system, if an abnormal phenomenon such as a short circuit of the battery or damage to the solid electrolyte occurs, the abnormal battery is disconnected and the operation management system that can continue the operation of the remaining healthy batteries, and replace the abnormal battery A system to maintain must be provided. The abnormal battery has a large internal resistance or the solid electrolyte is damaged. If the current continues to flow through the series-parallel connection as it is, the battery may be further damaged.
従って、 本発明の目的は、 集合電池内に異常電池が発生した場合に、 異常電池を検知し、 異常電池を他の健全電池から切り離し、 健全な電池 の運転を継続すると共に、 その後の異常電池の保守交換を容易にした N a Z溶融塩電池の運転 · 保守管理システムを提供することにある。 発明の開示  Therefore, an object of the present invention is to detect an abnormal battery when an abnormal battery is generated in the battery pack, disconnect the abnormal battery from other healthy batteries, continue the operation of the healthy battery, and subsequently operate the abnormal battery. It is an object of the present invention to provide an operation and maintenance management system for a NaZ molten salt battery that facilitates maintenance and replacement of a battery. Disclosure of the invention
本発明は、 個々の電池温度を簡便な温度計測により測定し、 異常電池 を特定する。 すなわち、 温度測定手段としてレーザー光の散乱あるいは 遮光等を利用したり、 光フアイバの接続部に低融点物質を用い異常温度 で接続機能を喪失させる等、 簡便な方法を用い異常電池を特定する。 特 定された異常電池は、 内部抵抗が大きかったり、 固体電解質が破損した り しており、 即座に正常電池から切り離す必要がある。 なお、 切り離し に当っては異常電池単体を切リ離す必要はなく、 異常電池に直列接続さ れた電池をそつく り電気スィツチにて切り離せばよい。 残りの正常電池 は運転を継続できる。 さらに、 特定された異常電池はデータ処理装置に 記録され、 電力貯蔵装置の保守点検時にスムーズな修理または交換作業 が可能となる。  The present invention measures an individual battery temperature by simple temperature measurement, and specifies an abnormal battery. That is, the abnormal battery is identified by a simple method such as using laser light scattering or shading as a temperature measuring means, or using a low melting point substance at the connection part of the optical fiber to lose the connection function at an abnormal temperature. The specified abnormal battery has a large internal resistance or a damaged solid electrolyte, and must be immediately disconnected from the normal battery. When disconnecting, it is not necessary to separate the abnormal battery alone, and the battery connected in series to the abnormal battery may be cut off using an electric switch. The remaining normal batteries can continue operation. In addition, the specified abnormal battery is recorded in the data processing device, which enables smooth repair or replacement work during maintenance and inspection of the power storage device.
本発明によれば、 多数本で構成する集合電池中から異常な電池を電池 温度の測定により特定する。 温度測定は光ファイバを用いて、 入射レー ザ一光のファイバでのラマン散乱から、 温度を計測する方法、 あるいは 電池の異常温度による電池の熱膨張を利用し、 入射レーザー光の膨張物 質による遮光等を利用した簡便な方法を用いる。 さらに、 光ファイバの 接続部に低融点物質を用い、 各電池に対応して、 接続部を設けることに よリ、 電池異常温度発生時に接続部が溶融して接続機能を喪失させる方 法等が考えられる。 特定された異常電池と直列接続された電池はすべて 健全な電池からスィッチで切り離され、 健全な 1¾池を継続して) I転でき る。 更に、 特定された異常電池はデータ処理装 Kに ¾録され、 電力貯蔵 装置の保守点検時にスムーズな修理または交換作荣が可能となる。 図面の簡単な説明 According to the present invention, an abnormal battery is specified by measuring the battery temperature from among the assembled battery composed of many batteries. The temperature is measured by using an optical fiber and measuring the temperature from the Raman scattering of the incident laser light from the fiber, or the thermal expansion of the battery due to the abnormal temperature of the battery. A simple method using light shielding by quality or the like is used. Furthermore, by using a low melting point substance for the connection part of the optical fiber and providing a connection part corresponding to each battery, there is a method of melting the connection part and losing the connection function when abnormal battery temperature occurs. Conceivable. All batteries connected in series with the identified abnormal battery are disconnected from the healthy battery by a switch, and can continue to run in a healthy battery. Further, the specified abnormal battery is recorded in the data processing device K, and a smooth repair or replacement operation can be performed at the time of maintenance and inspection of the power storage device. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の一実施例の N a /溶融塩電池の運転 · 保守管理シ ステムの構成図であり、 第 2図は、 本発明の ·実施例の N aノ溶融塩電 池の運転 · 保守管理システムで得られた電池温度特性図であり、 第 3図 は、 本発明の一実施例の N a 溶融塩電池の運転 · 保守管理システムの 構成図であり、 第 4図は、 本発明の他の実施例である N aノ溶融塩電池 の運転 · 保守管理システムの構成図であり、 第 5図は、 本発明の他の実 施例である N aノ溶融塩電池の運転 · 保守管理システムの構成図である, 発明を実施するための最良の形態  FIG. 1 is a configuration diagram of an operation / maintenance system of a Na / molten salt battery according to one embodiment of the present invention. FIG. 2 is a Na / molten salt battery according to an embodiment of the present invention. FIG. 3 is a battery temperature characteristic diagram obtained by the operation / maintenance management system of FIG. 3. FIG. 3 is a configuration diagram of the operation / maintenance management system of the Na molten salt battery according to one embodiment of the present invention. FIG. 5 is a configuration diagram of an operation and maintenance management system of a Na molten salt battery according to another embodiment of the present invention. FIG. 5 is a diagram illustrating a Na molten salt battery according to another embodiment of the present invention. FIG. 1 is a configuration diagram of an operation / maintenance management system.
以下、 本発明の一実施例を説明する。 第 1 図は、 本発明の運転 ' 保守 管理法の基本構成を示す図である。 説明を簡潔にするため、 第 1 図では N a Z S集合電池 1 0 を 9本の単電池 1, 2, ' · ·, で構成した。 電池は 1, 2, 3 と 4, 5, 6および 7, 8, 9 をそれぞれ |直列に接続 し、 これら 3組の直列電池を並列に接続した„ なお、 各直列電池には回 路を断路するためのスィッチ 1 Ί を取付けてある。 各電池には光ファィ ノ 1 1 が装着されており、 同光ファイバ 1 1 にはレーザーパルス 1 2が 矢印 1 3の方向から入射される。 レーザ一光 1 2は各位置でその場の温 度に依存したラマン散乱光を放出する。 ラマン散乱光は入射レーザー光 に比べ、 短波長側にシフ 卜するアンチス トークス光と長波長側にシフ 卜 するス 卜一クス光とで構成される。 アンチストークス光とス ト一クス光 との強度比は光ファィバの構成材料と入射光の波長が決まれば、 温度の みの関数となり、 この比から散乱位置の温度が測定できる。 さらに、 レ 一ザ一パルスを入射してから、 ラマン散乱光が戻ってくるまでの時間か ら温度測定位置を知ることができる。 Hereinafter, an embodiment of the present invention will be described. FIG. 1 is a diagram showing a basic configuration of the operation and maintenance management method of the present invention. For simplicity, in Fig. 1, the NaZS assembled battery 10 is composed of nine cells 1, 2, ' The batteries were connected in series with 1, 2, 3 and 4, 5, 6, and 7, 8, 9 respectively, and these three series batteries were connected in parallel. The circuit was disconnected for each series battery. Each battery is equipped with an optical fiber 11 and the optical fiber 11 has a laser pulse 12 attached to it. It is incident from the direction of arrow 13. The laser beam 12 emits Raman scattered light depending on the temperature at each position at each position. Raman scattered light is composed of anti-Stokes light that shifts to the short wavelength side and stroke light that shifts to the long wavelength side, compared to the incident laser light. The intensity ratio between the anti-Stokes light and the stock light is a function of only the temperature if the material of the optical fiber and the wavelength of the incident light are determined, and the temperature at the scattering position can be measured from this ratio. In addition, the temperature measurement position can be determined from the time from the injection of a laser pulse to the return of Raman scattered light.
仮に、 電池 6に異常が発生し電池の温度が正常運転時の 3 5 0 °Cから 5 0 0 °Cに上昇すれば、 上記の方法によつて電池 6の位置の温度上昇を 検出できる。 温度測定結果を第 2図に示す。 明らかに、 電池 6の温度が 上昇しており、 他の電池温度は正常運転時の 3 5 0 °Cを示している。 上記計測を可能にした全システムは第 3図に示すように、 レーザ一発 信器 1 4から光ファイノ 1 1 、 並びにハーフミラ一 1 5 を介して、 集合 電池 1 0内にレーザーパルス 1 2 を発信し、 ラマン散乱光をハーフミラ - 1 5 を介してデータ処理装置 1 3でキャッチする。 ラマン散乱光から 温度情報と位置情報を得、 結果を C R T 1 6の画面に表示する。 表示例 は第 2図に示したとおりである。  If an abnormality occurs in the battery 6 and the temperature of the battery rises from 350 ° C. during normal operation to 500 ° C., the temperature rise at the position of the battery 6 can be detected by the above method. Figure 2 shows the temperature measurement results. Obviously, the temperature of battery 6 is rising, and the other battery temperatures are at 350 ° C during normal operation. As shown in Fig. 3, the entire system that enabled the above measurement sent a laser pulse 12 from the laser transmitter 14 to the battery 10 via the optical finos 11 and the half mirror 15 as shown in Fig. 3. Transmit and capture the Raman scattered light with the data processor 13 via the half mirror-15. Obtain temperature and position information from Raman scattered light and display the results on the CRT 16 screen. The display example is as shown in Fig. 2.
さらに、 測定温度に異常のある場合には、 データ処理装置 1 3は異常 の程度を診断し、 必要に応じて異常電池を正常電池から切り離すため、 集合電池内のスィ ツチ 1 7 を遮断する信号を送信する。 従って、 異常電 池は多数の正常電池に悪影響を与えることなく、 集合電池は電力貯蔵装 置として機能し、 運転を継続できる。 無論、 装置の保守点検の際には、 異常電池の温度上昇値並びに、 判定された異常の程度等のデータが処理 装置のメモリーに記録されているので、 修理すべき電池あるいは交換す べき電池を多数本の ¾池の中から瞬時に選定'でき、 また、 温度の- h f'-経 過等のデータから、 損傷の概要が判別できるので、 適切な対処が可能と なる。 Further, if the measured temperature is abnormal, the data processing device 13 diagnoses the degree of the abnormality, and if necessary, disconnects the switch 17 in the assembled battery in order to disconnect the abnormal battery from the normal battery. Send Therefore, the battery pack can function as a power storage device and continue operation without the abnormal battery affecting many normal batteries. Of course, at the time of maintenance and inspection of the equipment, data such as the temperature rise value of the abnormal battery and the degree of the determined abnormality are recorded in the memory of the processing equipment. Cell selection instantly from a large number of ¾ pond should 'be, also, the temperature of - h f' - the way data over such, since summary of damage can be determined, appropriate action can be performed.
第 4図は、 本発明の第 2の実施例を示す N aノ S電池の運転 · 保守管 理システムである。 第 i の実施例と異なるのは、 電池温度の計測法であ る。 光ファイ ノく 1 1 にレーザーパルス I 3 を人射し、 レンズ 1 8 を経て 一度大気中に出射し、 さらに、 次のレンズ 1 9 を介して光ファイ ノく 1 1 に入射する。 このように次々とレーザ一ビームが伝播し、 電池 6では大 気中の光路に電池 6の電極部 2 0が電池の異常温度上异のため、 熱膨張 して、 レーザービームを一部遮断している。 その結果、 透過光は減衰し、 散乱光は増大する。 従って、 これらの光を検出すれば、 温度異常のあつ た電池が特定できる。  FIG. 4 is a Na / S battery operation / maintenance management system according to a second embodiment of the present invention. The difference from the i-th embodiment is the method of measuring the battery temperature. A laser pulse I 3 is shot at the optical fin 11, emitted through the lens 18 once into the atmosphere, and then incident on the optical fin 11 through the next lens 19. In this way, one laser beam propagates one after another, and in the battery 6, the electrode section 20 of the battery 6 rises to the optical path in the air due to the abnormal temperature of the battery. ing. As a result, transmitted light attenuates and scattered light increases. Therefore, by detecting these lights, the battery having the abnormal temperature can be specified.
本方法は第 1 の実施例に比べ、 検出する散乱光 (レイ リイ散乱) や透 過光が格段に強くなり、 検出が容易となる。 また、 熟膨張を顕著にする ため、 電極材以外の線膨張の大きな材料を利用することも可能である。 第 5図は、 本発明の第 3の実施例を す N a Z 池の運転, 保守管 理システムである。 第 1, 2の実施例と異なるのは、 ' 池温度の計測法 である。 光ファイバ 1 1 にレーザーパルス 1 3 を入射し、 電池位置に設 けた光ファイバ接続器 2 1 に低融点合金を用いた。 低融点合金は 5 0 0 °Cから 6 0 (TCで溶融し、 光ファイバ接続器としての機能を損ない、 仮 に、 異常電池があればそこでの接続器の光損失が増大し、 透過光は減衰 し、 散乱光は増大する。 従って、 これらの光を検出すれば、 温度異常の あった電池が特定できる。  Compared to the first embodiment, this method makes the scattered light (Rayleigh scattering) and transmitted light much stronger, making detection easier. In addition, it is possible to use a material having a large linear expansion other than the electrode material in order to make the ripening remarkable. FIG. 5 shows an operation and maintenance management system for a NaZ pond according to a third embodiment of the present invention. What differs from the first and second embodiments is the method of measuring the pond temperature. A laser pulse 13 was injected into the optical fiber 11 and a low melting point alloy was used for the optical fiber connector 21 installed at the battery position. The low-melting alloy melts at 500 ° C to 60 ° C (TC) and impairs its function as an optical fiber connector.If there is an abnormal battery, the optical loss of the connector at that location increases, and the transmitted light is reduced. Attenuation and scattered light increase, so detecting these lights can identify the battery with abnormal temperature.
本方法は第 1 の実施例に比べ、 検出する散乱光 (レイ リイ散乱) や透 過光が格段に強くなり、 検出が容易となる。 産業上の利用可能性 Compared to the first embodiment, this method makes the scattered light (Rayleigh scattering) and transmitted light much stronger, making detection easier. Industrial applicability
本発明によれば、 集合電池内に異常電池が発生した場合にも、 異常電 池を検知し、 異常電池を他の健全電池から切り離して健全な電池の運転 を継続すると共に、 その後の異常電池の保守交換を容易にした夜間電力 貯蔵や電気自動車用電池の大電力貯蔵用の N a /溶融塩電池の運転 · 保 守管理システムが可能となり、 システムの信頼性と安全性が向上する。  According to the present invention, even when an abnormal battery occurs in the battery pack, the abnormal battery is detected, the abnormal battery is separated from other healthy batteries, the operation of the healthy battery is continued, and the subsequent abnormal battery is operated. The operation and maintenance management system of Na / molten salt batteries for nighttime power storage and large power storage for electric vehicle batteries that facilitated maintenance and replacement of batteries has become possible, improving the reliability and safety of the system.

Claims

請 求 の 範 囲 The scope of the claims
1 . ナ ト リウム (N a ) を必須成分とする負極活物質, 硫黄 ( S ) また は多硫化ナ卜リゥム等溶融塩を必須成分とする正極活物質, 前記負極活 物質と正極活物質間に介在し、 N aィオンが通過可能な固体電解質を主 たる構成要素とする N a Z溶融塩電池及び、 これらの 合 ^池において、 電池内の温度を検知する 段、 これらの温度情報を記憶し、 異常電池を 判定する手段、 異常電池を直並列に接続された健个電池と分離する手段 を設けたことを特徴とする N a 溶融塩電池の運転 · 保守管理システム。 1. A negative electrode active material containing sodium (Na) as an essential component, a positive electrode active material containing sulfur (S) or a molten salt such as sodium polysulfide as an essential component, and between the negative electrode active material and the positive electrode active material. NaZ molten salt batteries, which are mainly composed of a solid electrolyte through which Naion can pass, and a stage for detecting the temperature inside the batteries in these batteries, and these temperature information are stored. A means for determining an abnormal battery, and a means for separating the abnormal battery from healthy cells connected in series and parallel, the operation and maintenance management system of the Na molten salt battery.
2 . 特許請求の範囲第 1項に記載の N a /溶融塩電池の運転 · 保守管 ¾ システムにおいて、 温度を検知する手段として、 レーザーパルス光を光 フアイバに人射して、 そのラマン散乱光から各電池の温度を検知するこ とを特徴とする N aノ溶融塩電池の運転 · 保守管 31システム。 2. Operation of Na / molten salt battery and maintenance pipe according to claim 1. In the system, as a means for detecting temperature, a laser pulse light is projected on an optical fiber and the Raman scattered light is emitted. The operation and maintenance of 31 Na-molten salt batteries is characterized by detecting the temperature of each battery.
3 . 特許請求の範囲第 1 項に記載の N aノ溶融塩電池の運転 · 保守管理 システムにおいて、 温度を検知する手段として、 レーザ一パルス光を光 フアイバに入射して、 電池容器の異常発熱による伸びによるレーザー光 の遮光効果を利用して異常電池を検知することを特徴とする N a 溶融 塩電池の運 fc · 保守管理システム。  3. In the operation and maintenance management system of the Na molten salt battery described in claim 1, as a means for detecting temperature, laser one pulse light is injected into the optical fiber to cause abnormal heating of the battery container. An operation of a Na molten salt battery, characterized by detecting an abnormal battery by utilizing the light blocking effect of a laser beam caused by elongation caused by stretching. Fc · Maintenance management system.
4 . 特許請求の範囲第 1 項に記載の N aノ溶融塩電池の運転 · 保守管理 システムにおいて、 温度を検知する手段として、 レーザ一パルス光を光 フアイバに入射して、 光フアイバに設けた接続箇所に異常温度を感知し 接続機能を损なう手段を設けたことを特徴とする N aノ溶融塩電池の運 転 · 保守管理システム。  4. In the operation and maintenance management system of the Na molten salt battery described in claim 1, as a means for detecting a temperature, a laser single pulse light is incident on the optical fiber and provided on the optical fiber. An operation and maintenance management system for Na molten salt batteries, characterized in that means for detecting abnormal temperatures at connection points and providing connection functions are provided.
PCT/JP1996/002543 1996-09-06 1996-09-06 SYSTEM FOR OPERATING, MAINTAINING AND MANAGING Na/MOLTEN SALT CELL WO1998010478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/002543 WO1998010478A1 (en) 1996-09-06 1996-09-06 SYSTEM FOR OPERATING, MAINTAINING AND MANAGING Na/MOLTEN SALT CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/002543 WO1998010478A1 (en) 1996-09-06 1996-09-06 SYSTEM FOR OPERATING, MAINTAINING AND MANAGING Na/MOLTEN SALT CELL

Publications (1)

Publication Number Publication Date
WO1998010478A1 true WO1998010478A1 (en) 1998-03-12

Family

ID=14153776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002543 WO1998010478A1 (en) 1996-09-06 1996-09-06 SYSTEM FOR OPERATING, MAINTAINING AND MANAGING Na/MOLTEN SALT CELL

Country Status (1)

Country Link
WO (1) WO1998010478A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667376B2 (en) 2002-03-22 2003-12-23 Symyx Technologies, Inc. Control agents for living-type free radical polymerization and methods of polymerizing
US6803410B2 (en) 2001-07-20 2004-10-12 Symyx Technologies, Inc. Cellulose copolymers that modify fibers and surfaces
US6919409B2 (en) 2003-06-26 2005-07-19 Symyx Technologies, Inc. Removal of the thiocarbonylthio or thiophosphorylthio end group of polymers and further functionalization thereof
US6919707B2 (en) * 2002-01-10 2005-07-19 Panasonic Ev Energy Co., Ltd. Battery power source device, method for controlling the same, and method for providing address
WO2008019765A2 (en) * 2006-08-17 2008-02-21 Bayerische Motoren Werke Aktiengesellschaft Method for the allocation of addresses to the memory cells of a rechargeable energy accumulator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2622245A1 (en) * 1976-05-19 1977-12-01 Bbc Brown Boveri & Cie Discharge state indicator for sulphur sodium cells - with voltmeter across auxiliary anode and sulphur cathode
JPS5625331A (en) * 1979-08-03 1981-03-11 Yuasa Battery Co Ltd High temperature type battery connector
JPS59144536U (en) * 1983-03-17 1984-09-27 セイコーインスツルメンツ株式会社 fiber optic temperature sensor
JPS59203929A (en) * 1983-05-06 1984-11-19 Sumitomo Electric Ind Ltd Detection of temperature abnormality
JPH02122338U (en) * 1989-03-19 1990-10-05
JPH04216478A (en) * 1990-12-17 1992-08-06 Hitachi Ltd Apparatus for monitoring runway lights
JPH04286873A (en) * 1991-03-14 1992-10-12 Ngk Insulators Ltd Detection of failed cell
JPH04303723A (en) * 1991-03-29 1992-10-27 Sumitomo Electric Ind Ltd Abnormality monitoring system in tunnel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2622245A1 (en) * 1976-05-19 1977-12-01 Bbc Brown Boveri & Cie Discharge state indicator for sulphur sodium cells - with voltmeter across auxiliary anode and sulphur cathode
JPS5625331A (en) * 1979-08-03 1981-03-11 Yuasa Battery Co Ltd High temperature type battery connector
JPS59144536U (en) * 1983-03-17 1984-09-27 セイコーインスツルメンツ株式会社 fiber optic temperature sensor
JPS59203929A (en) * 1983-05-06 1984-11-19 Sumitomo Electric Ind Ltd Detection of temperature abnormality
JPH02122338U (en) * 1989-03-19 1990-10-05
JPH04216478A (en) * 1990-12-17 1992-08-06 Hitachi Ltd Apparatus for monitoring runway lights
JPH04286873A (en) * 1991-03-14 1992-10-12 Ngk Insulators Ltd Detection of failed cell
JPH04303723A (en) * 1991-03-29 1992-10-27 Sumitomo Electric Ind Ltd Abnormality monitoring system in tunnel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803410B2 (en) 2001-07-20 2004-10-12 Symyx Technologies, Inc. Cellulose copolymers that modify fibers and surfaces
US6919707B2 (en) * 2002-01-10 2005-07-19 Panasonic Ev Energy Co., Ltd. Battery power source device, method for controlling the same, and method for providing address
US6667376B2 (en) 2002-03-22 2003-12-23 Symyx Technologies, Inc. Control agents for living-type free radical polymerization and methods of polymerizing
US6919409B2 (en) 2003-06-26 2005-07-19 Symyx Technologies, Inc. Removal of the thiocarbonylthio or thiophosphorylthio end group of polymers and further functionalization thereof
WO2008019765A2 (en) * 2006-08-17 2008-02-21 Bayerische Motoren Werke Aktiengesellschaft Method for the allocation of addresses to the memory cells of a rechargeable energy accumulator
WO2008019765A3 (en) * 2006-08-17 2008-12-18 Bayerische Motoren Werke Ag Method for the allocation of addresses to the memory cells of a rechargeable energy accumulator
US7821226B2 (en) 2006-08-17 2010-10-26 Bayerische Motoren Werke Aktiengesellschaft Method for the allocation of addresses in the memory cells of a rechargeable energy accumulator

Similar Documents

Publication Publication Date Title
CN106537718B (en) Battery management
US8808890B2 (en) Battery system and battery safety alarm system
CN102263303B (en) Modular lithium power battery and management systems and management method thereof
JP6656396B2 (en) Control device for charging storage battery and method for charging storage battery
US8092081B2 (en) Battery thermal event detection system using an optical fiber
JP5773609B2 (en) Battery pack management apparatus, battery pack management method, and battery pack system
US20180248233A1 (en) Battery and Method for Operating Same
JPS62210841A (en) Silicon diode device forming closed circuit for battery protection
KR102044598B1 (en) Apparatus and method for detect malfunction of battery pack
US20210313817A1 (en) Method and device for warning overdischarge of battery, battery and aerial vehicle
JP2019512201A (en) Control device for charging storage battery and method of charging storage battery
CN105259458A (en) Device and method for verifying insulation monitoring accuracy and leakage protection of battery pack management system
WO1998010478A1 (en) SYSTEM FOR OPERATING, MAINTAINING AND MANAGING Na/MOLTEN SALT CELL
US20230391224A1 (en) System and method for battery diagnosis according to altitude using atmospheric pressure sensor
CN106458038B (en) It runs the method for Storage Unit, implement the battery management system of this method
CN112098046B (en) Detection system and detection method of semiconductor laser
CN114069776A (en) Solar charging control device, system and control method
JP2001006750A (en) Battery inspecting device
CN110224186A (en) Lithium battery security monitoring management system
WO2020233910A1 (en) Rechargeable battery with monitoring device
KR20040090420A (en) Device and method for monitoring an electrical battery in a submarine
KR20180026948A (en) Power suplly circuit, and battery pack including the same
JP4656677B2 (en) Deteriorated battery detector
JP2024509220A (en) battery monitoring unit
KR102659302B1 (en) Method for managing battery pack charging

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase