JPS6343314A - Manufacture of amorphous semiconductor thin film - Google Patents

Manufacture of amorphous semiconductor thin film

Info

Publication number
JPS6343314A
JPS6343314A JP61186480A JP18648086A JPS6343314A JP S6343314 A JPS6343314 A JP S6343314A JP 61186480 A JP61186480 A JP 61186480A JP 18648086 A JP18648086 A JP 18648086A JP S6343314 A JPS6343314 A JP S6343314A
Authority
JP
Japan
Prior art keywords
thin film
substrate
amorphous semiconductor
heated
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61186480A
Other languages
Japanese (ja)
Inventor
Shoji Nakagama
詳治 中釜
Hideo Itozaki
糸崎 秀夫
Tadashi Tomikawa
唯司 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61186480A priority Critical patent/JPS6343314A/en
Publication of JPS6343314A publication Critical patent/JPS6343314A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve photoelectric characteristics, by radiating intermittently a light which raises mainly the temperature of the surface layer to grow a thin film on a substrate, and forming an amorphous semiconductor thin film applying a CVD method. CONSTITUTION:A substrate 5 is retained in a vacuum chamber 1, which is evacuated to reduce pressure. The substrate is moderately heated by a heater 9 arranged on an opposite side of a holder 6 with a spacing from the substrate 5. A material gas is supplied uniformly on the substrate 5, and an RF voltage is applied to an electrode 8 to generate the plasma of material gas by glow discharge. While the surface to grow a thin film on the substrate 5 is irradiated by an excimer laser beam from a light source 2 via a quartz window 4, an amorphous thin film is formed on the substrate. During this process, only the substrate surface is heated by ultra-violet ray, and Si-H2, etc. being higher-order hydrogen bond reach the growing surface of thin film. At the same time, H is separated and Si-H, etc. being lower-order hydrogen bond materials in preference to others deposit. Further, H does not separate from the deposited Si-H, etc. because the surface only is heated. Therefor, even in the case of multi-layer structure, the boundary surface deterioration caused by atom diffusion does not generate. By controlling the bonding form of H taken into the thin film, photoelectric characteristics can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCVD法によシ非晶質シリコン、非晶質ケ゛ル
マニウム等の非晶質半導体薄膜を基板上に形成する非晶
質薄膜の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the production of an amorphous thin film by forming an amorphous semiconductor thin film such as amorphous silicon or amorphous kermanium on a substrate by a CVD method. Regarding the method.

〔従来の技術〕[Conventional technology]

非晶質/リコン(以下a−3iと略記する)、非晶質7
リコンケ゛ルマニウム(以下a−5iGcと略記する)
等は優れた光電特性を有することから、太陽電池、電子
写真感光体、光センサ−、薄膜トランジスタ等の広範な
分野に薄膜として利用されている。
Amorphous/Recon (hereinafter abbreviated as a-3i), Amorphous 7
Reconstituted manium (hereinafter abbreviated as a-5iGc)
Because they have excellent photoelectric properties, they are used as thin films in a wide range of fields such as solar cells, electrophotographic photoreceptors, optical sensors, and thin film transistors.

これらa−5i等の半導体薄膜の製造方法としてはイオ
ンブレーティング法、スパッタリング法。
Methods for producing semiconductor thin films such as these a-5i include ion blating method and sputtering method.

真空蒸着法、化学気相成長(Chemic&L’ Va
perDeposition : CV D )法等が
あるが、SiH4のようなシラン類(S!nH2n+2
 )等の原料ガスをグロー放電によシ分解して生成させ
たプラズマからa−8iを基板上に堆積させるプラズマ
CVD法が一般的に使用されている。
Vacuum deposition method, chemical vapor deposition (Chemical &L' Va
perDeposition: CVD) method, etc., but silanes such as SiH4 (S!nH2n+2
A plasma CVD method is generally used in which a-8i is deposited on a substrate from plasma generated by decomposing a raw material gas such as ) by glow discharge.

また最近では、光エネルギーを利用して原料ガスを励起
し、ラジカルを生成させて基板上に水素を含むa−8i
等の薄膜を堆積させる光CVD法が提案され、この方法
には直接励起法と水銀増感励起法とがある。直接励起法
はエキシマレーザ−等の極めて強い光を原料ガスに照射
して原料ガスを直接励起する方法であり、他方、水銀増
感励起法は原料ガスに微量の水銀蒸気を1゛−プし、低
圧水銀ランプからの光を原料ガスに照射して水銀を励起
し、生成した水銀ラジカルと原料ガスとの反応により薄
膜を基板上に堆積させる方法である。
Recently, light energy has been used to excite the raw material gas to generate radicals and deposit hydrogen-containing a-8i on the substrate.
A photo-CVD method has been proposed for depositing thin films such as, for example, a direct excitation method and a mercury-sensitized excitation method. The direct excitation method is a method in which the source gas is irradiated with extremely strong light such as an excimer laser to directly excite the source gas.On the other hand, the mercury-sensitized excitation method is a method in which the source gas is irradiated with a trace amount of mercury vapor. This is a method in which a source gas is irradiated with light from a low-pressure mercury lamp to excite mercury, and a thin film is deposited on a substrate by the reaction between the generated mercury radicals and the source gas.

しかし、従来のプラズマCVD法及び光CVD法では、
非晶質半導体薄膜、特にa−3i又はa−3iGe等の
二元系化合物で、例えば太陽電池に代表される光起電力
素子に応用できるような良好な光導電率を有する薄膜を
製造することはできなかった。
However, in the conventional plasma CVD method and photoCVD method,
To produce an amorphous semiconductor thin film, especially a thin film made of a binary compound such as a-3i or a-3iGe, and having good photoconductivity, which can be applied to photovoltaic devices such as solar cells. I couldn't.

上記いずれの方法でも薄膜中に取り込まれる水素の1及
び結合形態を任意に制御することが不可能であシ、好ま
しいとされるS i −H及びG e −f−1の結合
形態の水素より5i−H2、Ge−H2、Si −H3
、Ge−H3。
In any of the above methods, it is impossible to arbitrarily control the 1 and bonding forms of hydrogen incorporated into the thin film, and it is difficult to control hydrogen in the preferable bonding forms of S i -H and G e -f-1. 5i-H2, Ge-H2, Si-H3
, Ge-H3.

・・・・・・S 1−Hn、 Ge −Hn等の高次の
水素結合が多いことが原因とされている。即ち、5i−
H及びGe−Hの形で薄膜に水素を取り込むために、ヒ
ーターで基板全体の温度を200〜300C程度に高め
て基板に堆積したS 1−82 、 Ge−1−12等
の高次水素結合から水素を脱離させることが一般に行わ
れているが、水素の脱離が5i−H及びGe−Hからも
起って逆に薄膜中にダングリングボンドが増加したり、
多層構造のデ・ぐイス作製時には層間で原子の拡散を生
じ、界面が劣化する等の問題点があった。
It is said that this is caused by a large number of higher-order hydrogen bonds such as S1-Hn and Ge-Hn. That is, 5i-
In order to incorporate hydrogen into the thin film in the form of H and Ge-H, higher-order hydrogen bonds such as S 1-82 and Ge-1-12 are deposited on the substrate by increasing the temperature of the entire substrate to about 200 to 300 C using a heater. Although hydrogen is generally desorbed from 5i-H and Ge-H, hydrogen desorption also occurs from 5i-H and Ge-H, resulting in an increase in dangling bonds in the thin film.
When producing a multilayer structure, there were problems such as diffusion of atoms between layers and deterioration of the interface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、CVD法により基板上に非晶質半導体薄膜を
形成する際に、薄膜中に取シ込まれる水素の結合形態を
制御することによシ薄膜の光電特性を向上させ、且つ制
御することのできる、非晶質半導体薄膜の製造方法を提
供することを目的とする。
The present invention improves and controls the photoelectric properties of a thin film by controlling the bonding form of hydrogen incorporated into the thin film when forming an amorphous semiconductor thin film on a substrate by the CVD method. An object of the present invention is to provide a method for manufacturing an amorphous semiconductor thin film.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の化学気相成長(CVD)法により基板上に非晶
質半導体薄膜を製造する方法は、基板の薄膜成長表面に
該表面層を主に昇温する光を間欠的に照射することを特
徴としている。
The method of manufacturing an amorphous semiconductor thin film on a substrate by the chemical vapor deposition (CVD) method of the present invention involves intermittently irradiating the thin film growth surface of the substrate with light that mainly raises the temperature of the surface layer. It is a feature.

使用する光としては紫外光、特にエキシマレーザ−光が
成長表面層のみの加熱に適しており、これを間欠的に照
射すれば基板及び薄膜内部の加熱を一層抑えることがで
きる。
As for the light used, ultraviolet light, especially excimer laser light, is suitable for heating only the growing surface layer, and if it is irradiated intermittently, heating of the substrate and the inside of the thin film can be further suppressed.

本発明の方法を薄膜製造装置の一例を示しだ第1図によ
り具体的に説明する。
The method of the present invention will be specifically explained with reference to FIG. 1, which shows an example of a thin film manufacturing apparatus.

この薄膜製造装置は真空チャン・ゞ−1内に基板ホルダ
ー6とRF電極8を平行に設置したプラズマCVD装置
であるが、真空チャン・々−1の外側にエキ/マレ−デ
ー等の紫外光を発生する光源2を設けてあり、紫外光を
反射鏡3で反射させて石英窓4から基板ホルダー6に保
持した基板5の表面に照射できるようになっている。
This thin film manufacturing apparatus is a plasma CVD apparatus in which a substrate holder 6 and an RF electrode 8 are installed in parallel in a vacuum chamber 1. A light source 2 that generates ultraviolet light is provided, and ultraviolet light can be reflected by a reflecting mirror 3 and irradiated through a quartz window 4 onto the surface of a substrate 5 held in a substrate holder 6.

真空チャン・ζ−1内に基板5を保持し、内部を排気ロ
アを介して減圧し、基板ホルダー6の反対側に基板5と
離して設置したヒーター9で基板5を適度に加熱する。
The substrate 5 is held in a vacuum chamber ζ-1, the internal pressure is reduced through an exhaust lower, and the substrate 5 is heated appropriately by a heater 9 installed on the opposite side of the substrate holder 6 and separated from the substrate 5.

原料ガスとしてS i H4等のシラン類(5z11−
f241+2 )またばGeH4、Ge21(6等、若
しくはこれらのフッ化物、塩化物等をシャワ一方式によ
り基板5上に均一に供給する。R1’電極8にRF’電
圧を印加してグロー放電により原料ガスのプラズマを発
生させ、光源2からの紫外光を石英窓4を通して基板5
の薄膜成長表面に照射しながら基板5上に薄膜を形成す
る。
Silanes such as S i H4 (5z11-
f241+2), or GeH4, Ge21 (6, etc.), or their fluorides, chlorides, etc., are uniformly supplied onto the substrate 5 using one shower system.The RF' voltage is applied to the R1' electrode 8, and the raw material is discharged by glow discharge. A gas plasma is generated and the ultraviolet light from the light source 2 is passed through the quartz window 4 to the substrate 5.
A thin film is formed on the substrate 5 while irradiating the thin film growth surface of the substrate.

〔作用〕[Effect]

本発明方法におし・では、基板5全体の(高度を過度に
上昇させることなく、光の照射により基板5の薄膜が成
長している°表面のみを加熱できる。例えば、第2図に
示すように、赤外光を照射した場合には基板が内部まで
加熱されるが、紫外光によれば基板の表面のみの加熱が
可能である。その結果、高次水素結合のSi −82、
Ge−H2等が基板の薄膜成長表面に到達すると同時に
水素が脱離され、5i−H及びGe−H等の低次水素結
合の形のものが侵先的に堆積する。更に、基板の薄膜成
長表面のみが加熱されるので、すでに堆積した5i−H
及びGe−Hから水素が脱離することがないし、多層構
造のデ・ζイス作製時に層間で原子の拡散を生じ界面が
劣化することもない。
In the method of the present invention, only the surface of the substrate 5 on which the thin film is growing can be heated by irradiation of light without excessively increasing the altitude of the entire substrate 5. For example, as shown in FIG. When irradiated with infrared light, the substrate is heated to the inside, but with ultraviolet light, only the surface of the substrate can be heated.As a result, Si-82 of higher-order hydrogen bonds,
At the same time that Ge-H2 and the like reach the thin film growth surface of the substrate, hydrogen is desorbed, and lower-order hydrogen bond forms such as 5i-H and Ge-H are aggressively deposited. Furthermore, since only the thin film growth surface of the substrate is heated, the already deposited 5i-H
Also, hydrogen does not desorb from Ge-H, and when manufacturing a multilayer device, atoms do not diffuse between layers and the interface does not deteriorate.

〔実施例〕〔Example〕

第1図のプラズマCVD装置を用い、原料ガスとして1
00%SiH420sccm及び100 % GeH4
6secmを10Crn角のガラス板の基板5上にンヤ
ワ一方弐で供給し、圧力0.5Torr、基板温度20
0C及びR,F・ξワーフ5チでプラズマを発生させ、
同時・てエキシマレーザー(波長1930m)を用いて
10mJ/ノSルス、繰返し100Hzで、10tMX
5mmの7−トピームを基板5の薄膜成長表面ばスキャ
ンさせながら、基板5上に膜厚1μmのa−3iGc薄
膜を成膜速度3、j/secで形成させた。
Using the plasma CVD apparatus shown in Fig. 1, 1 is used as the raw material gas.
00% SiH420sccm and 100% GeH4
6 sec was supplied on one side onto the substrate 5 of a 10 Crn square glass plate, and the pressure was 0.5 Torr and the substrate temperature was 20.
Generate plasma at 0C, R, F, ξ wharf 5chi,
Simultaneously, using excimer laser (wavelength 1930m), 10mJ/noS, repetition rate 100Hz, 10tMX
While scanning the thin film growth surface of the substrate 5 with a 5 mm 7-topeme, an a-3iGc thin film with a thickness of 1 μm was formed on the substrate 5 at a deposition rate of 3, j/sec.

この時、ヒーター9で200Cに加熱した基板5の温度
が、赤外線温度検出器により薄膜成長表面で3000に
上昇していることが確認された。
At this time, it was confirmed by the infrared temperature detector that the temperature of the substrate 5, which had been heated to 200C by the heater 9, had risen to 3000C on the thin film growth surface.

比較のために、エキシマレーザ−を照射しないこと以外
は上記と同様にして、従来例のa−5iGe薄膜を形成
した。
For comparison, a conventional a-5iGe thin film was formed in the same manner as above except that excimer laser irradiation was not performed.

得られた各a−5iGe薄膜の特性を下表に示す。The properties of each obtained a-5iGe thin film are shown in the table below.

本発明    従来例 Eg (eV)     1.49     1.−1
8σph(0cm−1)  lXl0−5   1XI
O−6ad (ΩCrn−1)1×10−91×10〜
9更に、フーリエ変換赤外線吸収ス梨りトルにより各a
−8iGe薄膜の水素結合を解析した結果を第3図に示
した。本発明では5i−H及びGe−Hの好ましい結合
形態が大部分であるのに対して、従来例においてはSi
 −H2、Ge−H2、5i−H3、Ge−1−13等
の高次の水素結合が多く存在していることが解る。
Present invention Conventional example Eg (eV) 1.49 1. -1
8σph(0cm-1) lXl0-5 1XI
O-6ad (ΩCrn-1)1×10-91×10~
9 Furthermore, by Fourier transform infrared absorption filter, each a
Figure 3 shows the results of analyzing the hydrogen bonds in the -8iGe thin film. In the present invention, the preferred bonding forms are mostly 5i-H and Ge-H, whereas in the conventional example, Si
It can be seen that there are many higher-order hydrogen bonds such as -H2, Ge-H2, 5i-H3, and Ge-1-13.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、CVD法により基板上に非晶質半導体
薄膜を形成する際に、薄膜中に取り込まれる水素の結合
形態を低次の結合形態に制御できるので、均一で優れた
光電特性の非晶質半導体薄膜を製造できる。
According to the present invention, when an amorphous semiconductor thin film is formed on a substrate by the CVD method, the bonding form of hydrogen incorporated into the thin film can be controlled to a low-order bonding form, so that uniform and excellent photoelectric properties can be achieved. Amorphous semiconductor thin films can be manufactured.

また、照射する光の強度等をコントロールすれば、薄膜
中の水素量及び水素結合形態を制御できるので、任意の
光電特性の非晶質半導体薄膜を得ることができるし、成
膜装置によって得られる薄膜に、高次の水素結合形態を
有する面内分布がある場合でも、その部分の水素結合形
態を選択的に低次のものにし、全体に均一な光電特性の
薄膜を大面積で形成できる。
In addition, by controlling the intensity of the irradiated light, etc., the amount of hydrogen in the thin film and the form of hydrogen bonding can be controlled, so it is possible to obtain an amorphous semiconductor thin film with arbitrary photoelectric properties, and it is possible to obtain an amorphous semiconductor thin film with arbitrary photoelectric properties. Even if a thin film has an in-plane distribution with a high-order hydrogen bonding form, the hydrogen bonding form in that portion can be selectively made low-order, and a thin film with uniform photoelectric properties can be formed over a large area.

更に、光の照射により基板表面を加熱できるので、形成
すべき薄膜の条件によっては加熱用のヒーターを必要と
せず、成膜装置を簡素化できる利点もある。
Furthermore, since the surface of the substrate can be heated by irradiation with light, depending on the conditions of the thin film to be formed, there is no need for a heating heater, which has the advantage of simplifying the film forming apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するためのプラズマCVD
法による成膜装置の一具体例を示す概略断面図であわ、
第2図は照射光の違いによる薄膜の膜厚方向の温度分布
を示すグラフであり、第3図は本発明と従来のa−8i
Ge薄膜のフーリエ変換赤外吸収ス被りトルを示すグラ
フである。 1・・・真空チャン・ζ−12・・・光源、3・・・反
射鏡、5・・・基板、6・・・基板ボルダ−18・・・
RI’電極、9・・・ヒーター。 第1図
FIG. 1 shows plasma CVD for carrying out the method of the present invention.
This is a schematic cross-sectional view showing a specific example of a film forming apparatus using the method.
Figure 2 is a graph showing the temperature distribution in the film thickness direction of the thin film due to the difference in irradiation light, and Figure 3 is a graph showing the temperature distribution of the present invention and the conventional a-8i.
2 is a graph showing the Fourier transform infrared absorption spread of a Ge thin film. 1... Vacuum chamber ζ-12... Light source, 3... Reflector, 5... Substrate, 6... Substrate boulder-18...
RI' electrode, 9... heater. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)化学気相成長(CVD)法により基板上に非晶質
半導体薄膜を製造する方法において、基板の薄膜成長表
面に該表面層を主に昇温する光を間欠的に照射すること
を特徴とする非晶質半導体薄膜の製造方法。
(1) In a method of manufacturing an amorphous semiconductor thin film on a substrate by chemical vapor deposition (CVD), the surface of the substrate on which the thin film is grown is intermittently irradiated with light that mainly raises the temperature of the surface layer. A method for producing a characterized amorphous semiconductor thin film.
(2)照射する光がエキシマレーザー光であることを特
徴とする、特許請求の範囲(1)項記載の非晶質半導体
薄膜の製造方法。
(2) The method for producing an amorphous semiconductor thin film according to claim (1), wherein the irradiated light is excimer laser light.
JP61186480A 1986-08-08 1986-08-08 Manufacture of amorphous semiconductor thin film Pending JPS6343314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61186480A JPS6343314A (en) 1986-08-08 1986-08-08 Manufacture of amorphous semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61186480A JPS6343314A (en) 1986-08-08 1986-08-08 Manufacture of amorphous semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS6343314A true JPS6343314A (en) 1988-02-24

Family

ID=16189218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61186480A Pending JPS6343314A (en) 1986-08-08 1986-08-08 Manufacture of amorphous semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS6343314A (en)

Similar Documents

Publication Publication Date Title
US5214002A (en) Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step
JPH02197117A (en) Manufacture of carbon-containing amorphous silicon thin film
JPS59198718A (en) Manufacture of film according to chemical vapor deposition
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS6343314A (en) Manufacture of amorphous semiconductor thin film
JPS6355929A (en) Manufacture of semiconductor thin film
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JPH0587171B2 (en)
JPH02208925A (en) Formation of semiconductor film
JPS6343313A (en) Manufacture of amorphous semiconductor thin film
JP3084395B2 (en) Semiconductor thin film deposition method
JPS6314420A (en) Manufacture of thin film
JPS63152120A (en) Thin film formation
JPS63317675A (en) Plasma vapor growth device
JPS63258016A (en) Manufacture of amorphous thin film
JPS629189B2 (en)
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPH04105314A (en) Manufacture of amorphous silicon
JP2654456B2 (en) Manufacturing method of high quality IGFET
JPS63234513A (en) Deposition film formation
Nakayama et al. Effects of initial transient states in the plasma during the preparation of a-Si: H/a-Si3N4: H multilayer structures
Nara et al. Synchrotron radiation-assisted silicon film growth by irradiation parallel to the substrate
JPH01129975A (en) Formation of amorphous thin film
Suzuki et al. Ultraviolet photon induced stimulation of surface reaction during growth of hydrogenated amorphous silicon: Estimation of the lifetime of film precursors
JPH01231315A (en) Device for manufacturing crystal semiconductor thin-film