JPH01231315A - Device for manufacturing crystal semiconductor thin-film - Google Patents

Device for manufacturing crystal semiconductor thin-film

Info

Publication number
JPH01231315A
JPH01231315A JP5755588A JP5755588A JPH01231315A JP H01231315 A JPH01231315 A JP H01231315A JP 5755588 A JP5755588 A JP 5755588A JP 5755588 A JP5755588 A JP 5755588A JP H01231315 A JPH01231315 A JP H01231315A
Authority
JP
Japan
Prior art keywords
film
substrate
reaction chamber
belt
torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5755588A
Other languages
Japanese (ja)
Inventor
Toshio Hama
敏夫 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5755588A priority Critical patent/JPH01231315A/en
Publication of JPH01231315A publication Critical patent/JPH01231315A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin-film as a material for a solar cell of a high conversion-efficiency at a film formation rate higher than that of a plasma CVD method, by spraying an amorphous semiconductor particulate generated by a chemical reaction against a substrate, on which the film is shaped, on a belt, which is penetrated through a circumferential wall and moved, in a reaction chamber with an exhaust port, depositing the particulate and irradiating the substrate on the belt with laser beams. CONSTITUTION:A torch 2 is projected into a reaction chamber 1, and there is an endless belt 3 penetrated through a wall from the outside of the reaction chamber by two driving rolls 4, moved from the left to the right in the reaction chamber and projected outside the reaction chamber again in the lower section of the torch 2. A raw material gas composed of a monosilane derivative is introduced from an introducing pipe 61 and an addition gas for combustion from an introducing pipe 62 to the torch 2, and blown out of the torch 2. Amorphous silicon particulates are formed by a chemical reaction by these gases while a particulate flow 8 is sprayed against a substrate 7, on which a film is shaped, positioned on the belt 3 by gas pressure, and an amorphous silicon particulate layer is deposited on the substrate 7. When the particulate silicon layer is irradiated with layer beams 5, amorphous silicon is crystallized, and the crystal silicon thin-film is formed onto the substrate 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば太陽電池の光電変換層として用いられ
る結晶半導体薄膜の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for manufacturing a crystalline semiconductor thin film used as a photoelectric conversion layer of a solar cell, for example.

〔従来の技術〕[Conventional technology]

従来、低価格の太陽電池には、グロー放電プラズマを利
用したプラズマCVD装置で容易に形成できる非晶質シ
リコン薄膜が用いられていた。非晶質シリコン薄膜は、
真空排気された反応室中でヒータを内臓した基板装着用
支持台と対向電極との間に高周波電界を印加して、モノ
シランを主体とする原料ガスを分解してプラズマ状とし
、ヒータによって200〜300℃に加熱された基板上
d成膜する。
Conventionally, low-cost solar cells have used amorphous silicon thin films that can be easily formed using a plasma CVD apparatus that utilizes glow discharge plasma. Amorphous silicon thin film is
In an evacuated reaction chamber, a high-frequency electric field is applied between a substrate mounting support with a built-in heater and a counter electrode to decompose the raw material gas mainly consisting of monosilane into a plasma state. A film is formed on a substrate heated to 300°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の装置での非晶質シリコン薄膜の形
成速度は高々1秒当たり数人に過ぎず、容易にスループ
ットを揚げることはできない、また、反応室の基礎真空
度も10−’Torr程度が要求されるため、真空排気
系統を備える必要もあり、装置の設備費も高くなるため
、非晶質太陽電池の製造コストの低下が余り期待できな
いという問題があった。
However, the rate of formation of an amorphous silicon thin film in the above apparatus is only a few people per second, and the throughput cannot be easily increased, and the basic vacuum level of the reaction chamber is about 10-'Torr. Because of this requirement, it is necessary to provide a vacuum evacuation system, and the equipment cost of the device also increases, so there is a problem that it is difficult to expect much reduction in the manufacturing cost of amorphous solar cells.

一方、非晶質シリコンを用いた太陽電池は、単結晶ある
いは多結晶シリコンを用いた太陽電池に比して変換効率
が低いという欠点をもっている。
On the other hand, solar cells using amorphous silicon have a drawback of lower conversion efficiency than solar cells using single crystal or polycrystalline silicon.

しかし単結晶シリコンの材料費を低くするために薄い結
晶を形成する方法としてリボン結晶、フィルム結晶など
の開発が行われているが大面積化は難しく、多結晶シリ
コン薄膜も低い製造コストでは得られない。
However, ribbon crystals, film crystals, and other methods have been developed as methods for forming thin crystals in order to lower the material cost of single-crystal silicon, but it is difficult to achieve large-area applications, and polycrystalline silicon thin films cannot be obtained at low manufacturing costs. do not have.

本発明の課題は、上記の各欠点を利用してプラズマCV
D法よりも高い成膜速度で高変換効率太陽電池の材料と
して期待される結晶半導体薄膜を製造できる装置を提供
することにある。
The problem of the present invention is to utilize the above-mentioned drawbacks to improve plasma CV
The object of the present invention is to provide an apparatus capable of producing a crystalline semiconductor thin film, which is expected to be used as a material for high conversion efficiency solar cells, at a film formation rate higher than that of the D method.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明の装置は、排気口を
有する反応室に周壁を貫通して移動可能のベルト、その
ベルト上の被成膜基板に向かって化学反応によって生じ
た非晶質半導体微粒子を吹き付ける反応用トーチおよび
微粒子の沈着したベルト上の基板にレーザビームを照射
するレーザ発振器を備えたものである。
In order to solve the above problems, the apparatus of the present invention includes a belt that is movable through a peripheral wall of a reaction chamber having an exhaust port, and an amorphous crystal produced by a chemical reaction toward a substrate on which a film is formed on the belt. The system is equipped with a reaction torch that sprays fine semiconductor particles and a laser oscillator that irradiates a laser beam onto the substrate on the belt on which the fine particles are deposited.

〔作用〕[Effect]

化学反応により生ずる非晶質半導体微粒子の堆積速度は
プラズマCVD法による成膜速度よりはるかに大きく、
基板がベルトにより進行してレーザ光の照射領域に入る
と非晶質微粒子は瞬間的に結晶化して高いスループ7)
で半導体結晶薄膜を連続的に形成することができる。
The deposition rate of amorphous semiconductor particles caused by chemical reactions is much higher than the deposition rate by plasma CVD method.
When the substrate advances with the belt and enters the laser beam irradiation area, the amorphous particles instantaneously crystallize, resulting in a high sloop7)
A semiconductor crystal thin film can be continuously formed using this method.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示し、反応室lの中にトー
チ2が突出している。トーチ2の下方には二つの駆動ロ
ール4によって反応室外から壁を貫通して反応室内を図
における左方から右方へ移動し、再び反応室外へ出る無
端ベルト3が存在する。ベルト3のトーチ2の下方より
進行方向側、すなわち図における右側にレーザビーム5
が照射されるように、反応室外のレーザ発振器51.反
応室壁の入射窓52および反応室内のミラー53が備え
られている。トーチ2にはモノシラン(SiH4)また
は5IC71等のモノシラン誘導体からなる原料ガスが
導入管61から、C7□またはH2等の燃焼用付加ガス
が導入管62から導入され、トーチ2から吹き出される
。これらのガスは化学反応により一オーダの大きさの非
晶質シリコン微粒子を生成すると共に、ガス圧によって
ベルト3上に置かれた被成膜基板7に向かって微粒子流
8を吹き付け、基板7上に非晶質シリコン微粒子層を沈
着させる。未反応のガスはガス圧により排気口9から排
出されるので真空排気系は不要である。この微粒子シリ
コン層にCO! レーザ、NdjYAGレーザ等のレー
ザビーム5が照射されると、1000℃程度の温度で非
晶質シリコンは結晶化し、結晶シリコンyIW14が基
Fi、7上に形成される。原料ガスとして5IHaを1
0〜11005cc、付加ガ、;t、(Jlを200〜
600SCCM ’a I テiX人管61.62より
それぞれ導入して、トーチ2の前面空間テ5iHn+C
j x = Si + 2 HC7の化学反応を起こさ
せた時、非晶質シリコン微粒子の沈着速度は毎分0.1
〜5−であり、従来のプラズマCVDよりも約100倍
以上速かった0通常5000人の膜厚を得るためにはベ
ルトの移動速度は約20■1/分である。レーザビーム
5はパルス状にベルト3の移動方向に対し直角方向に照
射される。ビーム径を0.1鶴とし、ややデフォーカス
して照射した方が効果があった。原料ガスに’BzHb
あるいはB Cf 3、またはPH3あるいはP(J、
等のドーピングガスを混入すれば、pあるいはn型の半
導体薄膜を形成することができるのは言うまでもない、
基板としてガラス板を用い、あらかじめ透明電極として
Sn0g膜を被着したのちp形膜、n形膜を順次積層す
ればpn接合型の太陽電池を形成することができる。さ
らに原料ガス、付加ガスを変えることによりシリコン以
外の元素半導体あるいは化合物半導体の結晶薄膜も成膜
できる。また、ベルトを有端ベルトとして基板を兼ねさ
せることも可能である。なお、レーザ照射しないで反応
室外で熱温により基板を加熱して非晶質微粒子層を結晶
薄膜化することも可能であるがスループントが低くなり
、実用的でない。
FIG. 1 shows an embodiment of the invention, in which a torch 2 projects into a reaction chamber l. Below the torch 2, there is an endless belt 3 that is moved by two drive rolls 4 from outside the reaction chamber through the wall, moves from left to right in the figure within the reaction chamber, and exits again to the outside of the reaction chamber. The laser beam 5 is placed on the belt 3 from below the torch 2 in the traveling direction, that is, on the right side in the figure.
A laser oscillator 51. outside the reaction chamber is used to irradiate the laser oscillator 51. An entrance window 52 in the reaction chamber wall and a mirror 53 inside the reaction chamber are provided. A raw material gas consisting of monosilane (SiH4) or a monosilane derivative such as 5IC71 is introduced into the torch 2 through an inlet pipe 61, and an additional gas for combustion such as C7□ or H2 is introduced through an inlet pipe 62 and blown out from the torch 2. These gases generate amorphous silicon fine particles of one order of magnitude through a chemical reaction, and the gas pressure blows a fine particle stream 8 toward the substrate 7 placed on the belt 3 to form particles on the substrate 7. A layer of amorphous silicon particles is deposited on the wafer. Since unreacted gas is exhausted from the exhaust port 9 by gas pressure, a vacuum exhaust system is not required. CO! When irradiated with a laser beam 5 such as a laser or NdjYAG laser, the amorphous silicon is crystallized at a temperature of about 1000° C., and crystalline silicon yIW 14 is formed on the base Fi, 7. 5IHa as raw material gas
0~11005cc, additional gas, ;t, (Jl 200~
600SCCM 'a I
j x = Si + 2 When the chemical reaction of HC7 is caused, the deposition rate of amorphous silicon particles is 0.1 per minute.
~5-, which is about 100 times faster than conventional plasma CVD.Normally, in order to obtain a film thickness of 5000 mm, the belt movement speed is about 20 1/min. The laser beam 5 is irradiated in a pulsed manner in a direction perpendicular to the moving direction of the belt 3. It was more effective to irradiate with a beam diameter of 0.1 Tsuru and slightly defocused. 'BzHb in raw material gas
or B Cf 3, or PH3 or P(J,
It goes without saying that a p- or n-type semiconductor thin film can be formed by mixing doping gases such as
A pn junction type solar cell can be formed by using a glass plate as a substrate, depositing a Sn0g film as a transparent electrode in advance, and then sequentially stacking a p-type film and an n-type film. Furthermore, by changing the source gas and additional gas, crystal thin films of elemental semiconductors or compound semiconductors other than silicon can also be formed. Further, it is also possible to make the belt serve as a substrate by using an end belt. Although it is possible to heat the substrate at a thermal temperature outside the reaction chamber without laser irradiation to turn the amorphous fine particle layer into a crystalline thin film, the throughput becomes low and this is not practical.

〔発明の効果〕 本発明によれば、化学反応により生ずる半導体微粒子を
トーチよりベルト上に支持して基板に向かって吹き付け
て沈着させ、ベルトにより移動させてレーザビームの照
射により結晶薄膜とすることができ、プラズマCVD装
置による非晶質半導体薄膜より高い成膜速度で結晶半導
体薄膜が得られるため、変換効率が高く低価格の太陽電
池の製造に適用できる。
[Effects of the Invention] According to the present invention, semiconductor fine particles produced by a chemical reaction are supported on a belt from a torch, are blown toward a substrate and deposited, are moved by the belt, and are made into a crystalline thin film by irradiation with a laser beam. Since a crystalline semiconductor thin film can be obtained at a higher deposition rate than an amorphous semiconductor thin film using a plasma CVD apparatus, it can be applied to the production of low-cost solar cells with high conversion efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面模式図であるl:反応
室、2:トーチ、3:ベルト、5:レーザビーム、51
:レーザ発振器、61;原料ガス導入管、62:付加ガ
ス導入管、7:被成膜基板、8:非晶質Si微粒子流、
9二排気口。 第1図
FIG. 1 is a schematic cross-sectional view of one embodiment of the present invention. 1: reaction chamber, 2: torch, 3: belt, 5: laser beam, 51
: laser oscillator, 61; source gas introduction pipe, 62: additional gas introduction pipe, 7: film-forming substrate, 8: amorphous Si fine particle flow,
92 exhaust port. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)排気口を有する反応室に周壁を貫通して移動可能
のベルト、該ベルト上の被成膜基板に向かって化学反応
によって生じた非晶質半導体微粒子を吹き付ける反応用
トーチおよび該微粒子の沈着したベルト上の基板にレー
ザビームを照射するレーザ発振器を備えたことを特徴と
する結晶半導体薄膜製造装置。
(1) A belt that is movable through the peripheral wall of the reaction chamber having an exhaust port, a reaction torch that sprays amorphous semiconductor particles generated by a chemical reaction toward the substrate on which the film is to be formed, and A crystalline semiconductor thin film manufacturing apparatus characterized by comprising a laser oscillator that irradiates a laser beam onto a deposited substrate on a belt.
JP5755588A 1988-03-11 1988-03-11 Device for manufacturing crystal semiconductor thin-film Pending JPH01231315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5755588A JPH01231315A (en) 1988-03-11 1988-03-11 Device for manufacturing crystal semiconductor thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5755588A JPH01231315A (en) 1988-03-11 1988-03-11 Device for manufacturing crystal semiconductor thin-film

Publications (1)

Publication Number Publication Date
JPH01231315A true JPH01231315A (en) 1989-09-14

Family

ID=13059059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5755588A Pending JPH01231315A (en) 1988-03-11 1988-03-11 Device for manufacturing crystal semiconductor thin-film

Country Status (1)

Country Link
JP (1) JPH01231315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360745A (en) * 1992-09-08 1994-11-01 Mitsubishi Denki Kabushiki Kaisha Thin-film solar cell production method
US6258173B1 (en) 1998-01-29 2001-07-10 Nissin Electric Co. Ltd. Film forming apparatus for forming a crystalline silicon film
US7271042B2 (en) * 1996-12-12 2007-09-18 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and laser annealing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360745A (en) * 1992-09-08 1994-11-01 Mitsubishi Denki Kabushiki Kaisha Thin-film solar cell production method
US7271042B2 (en) * 1996-12-12 2007-09-18 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and laser annealing device
US7351646B2 (en) * 1996-12-12 2008-04-01 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and laser annealing device
US7687380B2 (en) 1996-12-12 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Laser annealing method and laser annealing device
US6258173B1 (en) 1998-01-29 2001-07-10 Nissin Electric Co. Ltd. Film forming apparatus for forming a crystalline silicon film

Similar Documents

Publication Publication Date Title
US20080023070A1 (en) Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
US8431996B2 (en) Plasma processing apparatus and method of producing amorphous silicon thin film using same
WO2000044033A1 (en) Method and apparatus for film deposition
JPH076960A (en) Forming method of polycrystalline semiconductor thin film
JPH0752718B2 (en) Thin film formation method
JPH07263732A (en) Polycrystalline silicon device
US20020160627A1 (en) Method and device for treating and/or coating a surface of an object
JPH02258689A (en) Method for forming crystalline thin film
JPH01231315A (en) Device for manufacturing crystal semiconductor thin-film
JPH05315269A (en) Forming method for thin film
JPH0692280B2 (en) Crystal thin film manufacturing method
JP2626701B2 (en) MIS type field effect semiconductor device
US4719122A (en) CVD method and apparatus for forming a film
JP2555209B2 (en) Thin film manufacturing method
JP2639616B2 (en) Semiconductor film formation method
JP2734474B2 (en) Method for producing amorphous silicon-based thin film
JPH0499313A (en) Amorphous silicon thin film and its manufacture
JPS59163831A (en) Manufacture of semiconductor device and manufacturing apparatus therefor
JPH02312286A (en) Manufacture of photoelectric transducer
JP3554032B2 (en) Film formation method from low-temperature condensed phase
JPH08100264A (en) Formation of thin film and device therefor
JPS62291908A (en) Polycrystaline silicon thin film and manufacture of the same
JPS625633A (en) Thin film forming method
JPH0547678A (en) Method and device for preparation of silicon film
JPH0522375B2 (en)