JPH05315269A - Forming method for thin film - Google Patents

Forming method for thin film

Info

Publication number
JPH05315269A
JPH05315269A JP3048193A JP3048193A JPH05315269A JP H05315269 A JPH05315269 A JP H05315269A JP 3048193 A JP3048193 A JP 3048193A JP 3048193 A JP3048193 A JP 3048193A JP H05315269 A JPH05315269 A JP H05315269A
Authority
JP
Japan
Prior art keywords
substrate
gef
film
ge
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3048193A
Other languages
Japanese (ja)
Inventor
Junichi Hanna
Masato Miyauchi
Masashi Yamamoto
純一 半那
正人 宮内
雅司 山本
Original Assignee
Central Glass Co Ltd
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP4-52804 priority Critical
Priority to JP5280492 priority
Application filed by Central Glass Co Ltd, セントラル硝子株式会社 filed Critical Central Glass Co Ltd
Priority to JP3048193A priority patent/JPH05315269A/en
Publication of JPH05315269A publication Critical patent/JPH05315269A/en
Application status is Granted legal-status Critical

Links

Abstract

PURPOSE: To react GeF4 with silane gas and to deposit a uniform SiGe thin film at a low temperature by supplying mixture gas of the GeF4 and the silane gas to a substrate heated to a special temperature.
CONSTITUTION: An Si single crystalline substrate is mounted on a substrate holder 3, which is evacuated to 10-6Torr or less through an evacuation system 4. The substrate is heated by a heater contained therein to 200-600°C, and held thereat. After the temperature of the substrate is stabilized, GeF4, SiH4 are introduced from a nozzle 2 through a gas tube 1, and He is further introduced. It is so held that an entire pressure becomes 520mTorr, and a Ge epitaxial thin film is deposited. A suitable flow rate ratio of the used GeF4 and silane gas is 0.5-20. Thus, the GeF4 and the silane gas are reacted to easily form a Ge or SiGe deposited film at a low temperature.
COPYRIGHT: (C)1993,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、CVD法により薄膜デバイスに用いるGe、SiGe薄膜を基板上に堆積せしめるようにした薄膜の製膜方法に関する。 The present invention relates, Ge used in thin film device, CVD relates film forming method of the thin film so as allowed to deposit a SiGe thin film on the substrate.

【0002】 [0002]

【従来の技術およびその発明が解決しようとする問題点】Ge、SiGeの堆積薄膜は、太陽電池、光センサー、薄膜トランジスタ等の薄膜デバイスに広く利用されている。 BACKGROUND OF THE INVENTION Problems to be Solved] Ge, deposited film of SiGe is a solar cell, light sensor, it is widely used in thin film devices such as thin film transistors. これらの薄膜の製造法についてもいくつか提案されており、真空蒸着法、イオンプレーテイング法、スパッタリング法、CVD法等がよく知られている。 For the preparation of these films have been proposed some well, vacuum deposition, ion plating queuing method, a sputtering method, CVD method and the like are well known.

【0003】特に、Geのエピタキシャル膜の形成には、気相エピタキシーと液相エピタキシーが挙げられるが、一般に液相エピタキシーは高い結晶性が得られるものの膜厚が不均一で表面状態が悪くかつ量産性も悪いためあまり用いられない。 In particular, the formation of an epitaxial film of Ge, including but vapor phase epitaxy and liquid phase epitaxy, typically liquid phase epitaxy high crystallinity thickness of those obtained are uneven and poor surface state mass sex is not used much for worse.

【0004】一方、気相エピタキシーは、上記真空蒸着法、イオンプレーテイング法、スパッタリング法、CV [0004] On the other hand, vapor phase epitaxy, the vacuum deposition method, ion plating queuing method, a sputtering method, CV
D法等で行われるが、例えば、CVD法においては、原料物質の分解を誘起し、それを維持するために何らかのエネルギーを供給する必要がある。 Is carried out at D method, for example, in the CVD method, to induce decomposition of the source material, it is necessary to supply some energy to maintain it. プラズマCVD法においては、プラズマ中の高エネルギー電子との衝突によって与えられ、熱CVD法や光CVD法においては、それぞれ基板加熱や光照射によって与えられる。 In the plasma CVD method, it is given by collisions with high-energy electrons in the plasma, in the thermal CVD method, a photo CVD method, provided by the substrate heating or light irradiation, respectively.

【0005】しかしながら、これらの方法よる堆積膜の形成において、エネルギーの供給手段そのものがその有用性や実用性などを制限することが多い。 However, in the formation of these methods by the deposited film, often supply means itself energy limit and its usefulness and practicality. 熱CVD法において、例えばGe薄膜を堆積させる場合500℃以上の温度を必要とし、基板材料の選択が制限され装置そのものも複雑化し工業的規模で生産される技術は確立されていない。 In thermal CVD method, for example, when depositing a Ge thin film requires a temperature of over 500 ° C., technology selection of the substrate material is produced in a limited device itself also complicated industrial scale has not been established.

【0006】本発明の目的はGe、SiGe薄膜の形成において、物質のもつ物理的性質と化学的性質を考慮した出発原料の選択や作製プロセスの設計により、低温でかつ均一な薄膜の合理的な作製技術を提供することにある。 An object of the present invention is Ge, the formation of the SiGe film, the chemical and physical properties design choice and the manufacturing process of the starting material was considered to have a material, reasonable low temperature and uniform film It is to provide a manufacturing technique.

【0007】 [0007]

【問題点を解決するための手段】本発明者らは、これらの問題点について種々検討の結果、GeF 4とシランガス(Si n2n+2 ,nは1〜3の整数)とを反応させることによりGe、SiGe薄膜を堆積させる方法を見出し本発明に到達した。 The present inventors have problems To achieve the] a result of various investigations on these problems, GeF 4 and silane gas (Si n H 2n + 2, n is an integer of 1 to 3) is reacted with It reached Ge, heading present invention a method of depositing a thin SiGe film by.

【0008】すなわち本発明は、基板温度が、200〜 That is, the present invention provides a substrate temperature is 200
600℃の温度範囲である加熱基板上に、GeF 4とシランガス(Si n2n+2 ,nは1〜3の整数)の混合ガスを供給することによりGeあるいはSiGe薄膜を堆積させることを特徴とする薄膜の製膜方法である。 A heating substrate which is a temperature range of 600 ° C., GeF 4 and silane gas (Si n H 2n + 2, n is an integer of 1 to 3), wherein the depositing a Ge or SiGe thin film by supplying a mixed gas of a film forming method of a thin film to be.

【0009】本発明は、基板温度が、200〜600℃ [0009] The present invention is, the substrate temperature is, 200~600 ℃
の温度範囲である加熱基板上に、GeF 4とシランガス(Si n2n+2 ,nは1〜3の整数)の混合ガスを供給することによりGe、SiGe薄膜を堆積させるものであるが、基板温度が200℃より低い場合は、反応速度が遅く熱分解が不十分となり膜の堆積が起こらず好ましくない。 On a heated substrate which is the temperature range, GeF 4 and silane gas (Si n H 2n + 2, n is an integer of 1 to 3) Ge by supplying a mixed gas, but is intended to deposit a SiGe film, If the substrate temperature is lower than 200 ° C. is not preferable not occur deposition of the reaction rate becomes slow insufficient pyrolysis film. また、600℃以上になると原料ガスの分解が起こり均一な膜の生成ができないため好ましくない。 Also, undesirable because the decomposition of the raw material gas becomes more than 600 ° C. occur can not produce a uniform film. 特に、好ましくは300〜450℃の範囲で反応させるのが最適である。 In particular, preferably optimal to react in the range of 300 to 450 ° C..

【0010】本発明において、キャリアーガスは、必要に応じてH 2 、N 2 、He、Arを用いることもできる。 [0010] In the present invention, the carrier gas may also be used H 2, N 2, He, Ar , if necessary. 本発明において、用いる基板材料としてSiまたはGe等の単結晶基板を用いることが好ましいが、その他ガラス基板、Si多結晶基板、Siアモルファス基板、 In the present invention, it is preferable to use a single crystal substrate such as Si or Ge as a substrate material to be used, other glass substrates, Si polycrystalline substrate, Si amorphous substrate,
Ge多結晶基板、Geアモルファス基板等が用いられ、 Ge polycrystalline substrate, Ge amorphous substrate or the like is used,
これらに限定されるものではない。 But it is not limited thereto. 特にエピタキシャル成長では、Geの堆積速度は基板の面方位に影響される。 In particular the epitaxial growth, the deposition rate of the Ge is affected by the plane orientation of the substrate. Si基板の場合、(100)面への堆積速度が高く、次いで(110)面で、(111)面には殆ど堆積しない。 For the Si substrate, (100) high deposition rate to the surface, followed by (110) plane, hardly deposited on the (111) plane.

【0011】次に本発明において、シランガス(Si n [0011] Next, in the present invention, silane gas (Si n
2n+2 ,nは1〜3の整数)を導入することにより、G H 2n + 2, n is by introducing integer of 1 to 3), G
eF 4からGeあるいはSiGe薄膜を堆積させることができるが、条件の選択によりSiの混入あるいは合金の生成を抑えGeエピタキシャル薄膜を堆積させることができることは極めて有益なことである。 can be deposited Ge or SiGe film from eF 4, it is that very beneficial to be able to deposit a mixed or Ge epitaxial film suppresses the formation of an alloy of Si by selective conditions. GeF 4単独あるいはキャリアーガスと共に分解反応させるだけでは薄膜を堆積させることはできない。 GeF 4 alone is alone or decomposition reaction with carrier gas can not be deposited thin films. 特に、Si基板に堆積させる場合、GeF 4単独またはキャリアーガスと共に導入するとSi基板はエッチングされ、シランガス(Si n2n+2 ,nは1〜3の整数)が存在しなければ、エッチングの起こりは大きくなり、その速度は数十〜百Å/sとなる。 In particular, when deposited on the Si substrate, Si substrate is introduced along with GeF 4 alone or carrier gas is etched, if silane (Si n H 2n + 2, n is an integer of 1 to 3) is present, it occurs in the etching becomes large, the speed is several tens to hundred Å / s.

【0012】本発明において、用いられるGeF 4とシランガス(Si n2n+2 ,nは1〜3の整数)との量の割合は、成膜条件等により異なるが、流量比〔シランガス(Si n2n+2 ,nは1〜3の整数)/GeF 4 〕は0.5〜20が適当であり、好ましくは0.5〜10とするのが望ましい。 [0012] In the present invention, the amount ratio of a GeF 4 and silane gas used (Si n H 2n + 2, n is an integer of 1 to 3) varies depending on the deposition conditions, the flow rate ratio [silane gas (Si n H 2n + 2, n is an integer of 1 to 3) / GeF 4] is suitably from 0.5 to 20 is preferably is desirably 0.5 to 10. また、堆積薄膜の堆積速度は、シランガス(Si n2n+2 ,nは1〜3の整数)の分圧が高くなるほど、また基板温度が高くなるほど高くなる。 Further, the deposition rate of the deposited film, the more the partial pressure of silane gas (Si n H 2n + 2, n is an integer of 1 to 3) is increased, also the higher the substrate temperature increases.

【0013】本発明において、Ge堆積薄膜等の堆積方法は低圧CVD法のみならず、高真空蒸着法等も利用できる。 [0013] In the present invention, a method such as deposition Ge deposited film not only a low pressure CVD method, high-vacuum deposition method or the like can also be used. 圧力は、一般に低圧下が望ましいが、希釈率を考慮すれば大気圧でも十分堆積が可能で圧力範囲については、特に制限されない。 The pressure is generally but low pressure is desired, for sufficient deposition possible pressure range at atmospheric pressure considering the dilution factor is not particularly limited.

【0014】 [0014]

【実施例】以下、実施例によって本発明を詳細に説明するが、これらにより限定されるものではない。 EXAMPLES The following examples illustrate the present invention in detail, but the invention is not limited thereto.

【0015】実施例 1 図1に示した基板ホルダー3にSi単結晶基板を取付け、排気系4を介して10 -6 Torr以下に減圧した。 [0015] Mounting the Si single crystal substrate in the substrate holder 3 shown in Example 1 1, was via the exhaust system 4 is reduced to 10 -6 Torr or less.
ノズル2と基板との距離は40mmである。 Nozzle 2 and the distance between the substrate is 40 mm. 内蔵されたヒーターにより基板を375℃に加熱し保持した。 And held substrate is heated to 375 ° C. by the built-in heater. 基板温度が安定した後、ガス導入管1を経てノズル2よりG After the substrate temperature became stable, G from the nozzle 2 through the gas inlet pipe 1
eF 4 5sccm、SiH 4 30sccmを導入し、さらにHeを導入して全圧を520mTorrになるよう保持し、Geエピタキシャル薄膜を堆積させた。 eF 4 5 sccm, introducing SiH 4 30 sccm, further the total pressure was held to be the 520mTorr by introducing He, were deposited Ge epitaxial film. このときの成膜速度は1Å/sであった。 The film formation rate at this time was 1Å / s. この堆積膜をX線光電子分光法、ラマン分光法、X線回折および電子線回折法によるRHEEDパターンにより分析した結果、(1 The deposited film X-ray photoelectron spectroscopy, Raman spectroscopy, was analyzed by RHEED pattern by X-ray diffraction and electron diffraction, (1
00)面のGeエピタキシャル薄膜であった。 00) surface was Ge epitaxial thin film of.

【0016】実施例 2 SiO 2でパターニングしたSi(100)基板を用い、実施例1と同じ条件で調整し、基板温度が安定した後、ノズル2よりGeF 4 5sccm、SiH 4 30s [0016] Using the patterned Si (100) substrate in Example 2 SiO 2, prepared in the same conditions as in Example 1, after the substrate temperature was stabilized, the nozzle 2 GeF 4 5sccm, SiH 4 30s
ccmを導入し、さらにHeを導入して全圧を520m Introduced ccm, 520m the total pressure further by introducing He
Torrになるよう保持し、Ge薄膜を堆積させた。 Held to be in Torr, it was deposited Ge film. この堆積膜をX線光電子分光法、ラマン分光法、X線回折および電子線回折法によるRHEEDパターン、走査型電子顕微鏡により分析した結果、SiO 2上には膜の堆積がみられずSi(100)面上に選択的にGeエピタキシャル薄膜の堆積が認められた。 The deposited film X-ray photoelectron spectroscopy, Raman spectroscopy, RHEED pattern by X-ray diffraction and electron diffraction, was analyzed by scanning electron microscope, on the SiO 2 showed no deposition of film Si (100 ) selectively in Ge epitaxial film deposited on the surface it was observed.

【0017】実施例3 実施例1と同じ条件で調整し、基板温度が安定した後、 [0017] prepared in the same conditions as in Example 3 Example 1, after the substrate temperature was stabilized,
ノズル2よりGeF 4 30sccm、SiH 4 30sc GeF 4 30 sccm from the nozzle 2, SiH 4 30sc
cmを導入し、さらにHeを導入して全圧を520mT Introduced cm, 520mT the total pressure further by introducing He
orrになるよう保持し、Geエピタキシャル薄膜を堆積させた。 Held so as to be orr, it was deposited Ge epitaxial film. このときの成膜速度は0.5Å/sであった。 The film formation rate at this time was 0.5Å / s. この堆積膜をX線光電子分光法、ラマン分光法、X The deposited film X-ray photoelectron spectroscopy, Raman spectroscopy, X
線回折および電子線回折法によるRHEEDパターンにより分析した結果、(100)面のGeエピタキシャル薄膜であった。 Was analyzed by RHEED pattern by ray diffraction and electron diffraction method, it was Ge epitaxial thin film of (100) plane.

【0018】実施例 4 SiO 2でパターニングしたSi(100)基板を用い、実施例1と同じ条件で調整し、基板温度が安定した後、ノズル2よりGeF 4 1.5sccm、Si [0018] Example 4 using the patterned Si (100) substrate with SiO 2, prepared in the same conditions as in Example 1, after the substrate temperature was stabilized, GeF 4 1.5 sccm from the nozzle 2, Si 26 2 H 6
15sccmを導入し、さらにHeを導入して全圧を4 Introducing 15 sccm, 4 a total pressure further by introducing He
20mTorrになるよう保持し、Ge薄膜を堆積させた。 Held so as to be 20 mTorr, it was deposited Ge film. このときの成膜速度は6.5Å/sであった。 The film formation rate at this time was 6.5Å / s. この堆積膜をX線光電子分光法、ラマン分光法、X線回折および電子線回折法によるRHEEDパターン、走査型電子顕微鏡により分析した結果、Si基板上に選択成長が見られ成長したGeは(400)面配向のエピタキシャル薄膜であった。 The deposited film X-ray photoelectron spectroscopy, Raman spectroscopy, RHEED pattern by X-ray diffraction and electron diffraction, was analyzed by scanning electron microscopy, Ge selected growth seen grown on Si substrate is (400 ) was an epitaxial thin film of surface orientation.

【0019】実施例 5 ガラス基板を用いて実施例1と同じ条件で調整し、基板温度を420℃に保持し安定した後、ノズル2よりGe [0019] Using Example 5 glass substrate prepared in the same conditions as in Example 1, after holding the substrate temperature at 420 ° C. stable, Ge from the nozzle 2
4 10sccm、Si 26 30sccmを導入し、 F 4 10 sccm, introducing Si 2 H 6 30sccm,
さらにHeを導入して全圧を600mTorrになるよう保持し、Ge薄膜を堆積させた。 Furthermore the total pressure was held to be the 600mTorr by introducing He, depositing a Ge film. このときの成膜速度は50Å/sであった。 The film formation rate at this time was 50Å / s. この堆積膜をX線光電子分光法、ラマン分光法、X線回折および電子線回折法によるRHEEDパターンにより分析した結果、Ge多結晶薄膜であった。 The deposited film X-ray photoelectron spectroscopy, Raman spectroscopy, was analyzed by RHEED pattern by X-ray diffraction and electron beam diffraction method, it was Ge polycrystalline thin film.

【0020】実施例 6 基板ホルダー3にSiのアモルファス基板を取付け、排気系4を介して10 -6 Torr以下に減圧した。 [0020] Mounting the amorphous substrate Si Example 6 substrate holder 3, and through the exhaust system 4 is reduced to 10 -6 Torr or less. ノズル2と基板との距離は40mmである。 Nozzle 2 and the distance between the substrate is 40 mm. 内蔵されたヒーターにより基板を350℃に加熱し保持した。 And held substrate is heated to 350 ° C. by the built-in heater. 基板温度が安定した後、ノズル2よりGeF 4 5sccm、SiH After the substrate temperature became stable, GeF 4 5 sccm from the nozzle 2, SiH
4 20sccmを導入し、さらにHeを導入して全圧を550mTorrになるよう保持し、Geエピタキシャル薄膜を堆積させた。 4 20 sccm was introduced and further the total pressure was held to be the 550mTorr by introducing He, it was deposited Ge epitaxial film. このときの成膜速度は0.6Å/ The film deposition rate here 0.6Å /
sであった。 It was s. この堆積膜をX線光電子分光法、ラマン分光法、X線回折および電子線回折法によるRHEEDパターンにより分析した結果、(100)面のGe多結晶薄膜であった。 The deposited film X-ray photoelectron spectroscopy, Raman spectroscopy, was analyzed by RHEED pattern by X-ray diffraction and electron beam diffraction method, it was Ge polycrystalline thin film (100) plane.

【0021】実施例 7 実施例1と同じ条件で調整し、内蔵されたヒーターにより基板を420℃に加熱し保持した。 [0021] prepared in the same conditions as in Example 7 Example 1 was kept heated the substrate to 420 ° C. by the built-in heater. 基板温度が安定した後、ノズル2よりGeF 4 2.7sccm、Si 2 After the substrate temperature became stable, GeF 4 2.7sccm from the nozzle 2, Si 2 H
6 30sccmを導入し、さらにHeを導入して全圧を600mTorrになるよう保持し、薄膜を堆積させた。 Introduced 6 30 sccm, further the total pressure was held to be the 600mTorr by introducing He, it was deposited a thin film. このときの成膜速度は45Å/sであった。 The film formation rate at this time was 45Å / s. この堆積膜をX線光電子分光法、ラマン分光法、X線回折および電子線回折法により分析した結果、SiGe多結晶薄膜であった。 The deposited film X-ray photoelectron spectroscopy, Raman spectroscopy, was analyzed by X-ray diffraction and electron beam diffraction method, it was SiGe polycrystalline thin film.

【0022】比較例 1 実施例1と同じ条件で調整し、基板温度が安定した後、 [0022] prepared in the same conditions as in Comparative Example 1 Example 1, after the substrate temperature was stabilized,
ノズル2よりGeF 4 30sccmを導入し、さらにH Introducing GeF 4 30 sccm from the nozzle 2, further H
eを導入して全圧を520mTorrになるよう保持し、Geエピタキシャル薄膜の堆積を試みたが、基板上には堆積膜は確認できなかった。 By introducing e the total pressure was held to be the 520MTorr, tried deposition of Ge epitaxial thin film, on the substrate deposition film was not confirmed. このときSi基板はエッチングされていた。 In this case the Si substrate was etched.

【0023】 [0023]

【発明の効果】本発明の方法によれば、GeあるいはS According to the method of the present invention, Ge or S
iGe堆積膜を従来の方法よりも低温でかつ複雑な製造設備を必要とせずに形成することを可能にした。 The iGe deposited film than the conventional method has made it possible to form without requiring low temperatures and complex manufacturing equipment.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明に用いた薄膜堆積装置の概略図を示す。 1 shows a schematic view of a thin film deposition apparatus used in the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1. 1. ガス導入管 2. Gas inlet tube 2. ノズル 3. Nozzle 3. 基板ホルダー 4. The substrate holder 4. 排気系 Exhaust system

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】基板温度が、200〜600℃の温度範囲である加熱基板上に、GeF 4とシランガス(Si n 1. A substrate temperature, on a heated substrate at a temperature range of 200 to 600 ° C., GeF 4 and silane gas (Si n H
    2n+2 ,nは1〜3の整数)の混合ガスを供給することによりGeあるいはSiGe薄膜を堆積させることを特徴とする薄膜の製膜方法。 2n + 2, n is film forming method of the thin film characterized by depositing a Ge or SiGe thin film by supplying the integer of 1 to 3) gas mixture.
JP3048193A 1992-03-11 1993-02-19 Forming method for thin film Granted JPH05315269A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4-52804 1992-03-11
JP5280492 1992-03-11
JP3048193A JPH05315269A (en) 1992-03-11 1993-02-19 Forming method for thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3048193A JPH05315269A (en) 1992-03-11 1993-02-19 Forming method for thin film

Publications (1)

Publication Number Publication Date
JPH05315269A true JPH05315269A (en) 1993-11-26

Family

ID=26368843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048193A Granted JPH05315269A (en) 1992-03-11 1993-02-19 Forming method for thin film

Country Status (1)

Country Link
JP (1) JPH05315269A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211653A (en) * 1994-01-26 1995-08-11 Central Glass Co Ltd Deposition of ge thin film
US5879970A (en) * 1996-09-05 1999-03-09 Nec Corporation Process of growing polycrystalline silicon-germanium alloy having large silicon content
US6958253B2 (en) * 2001-02-12 2005-10-25 Asm America, Inc. Process for deposition of semiconductor films
JP2007013194A (en) * 2006-08-07 2007-01-18 Dainippon Printing Co Ltd Semiconductor substrate and method of manufacturing same
JP2007165921A (en) * 2007-01-19 2007-06-28 Dainippon Printing Co Ltd Semiconductor base material and production method thereof
JP2008133544A (en) * 2008-01-28 2008-06-12 Dainippon Printing Co Ltd Conductive pattern and method for forming the same
US7413967B2 (en) 2004-05-19 2008-08-19 International Business Machines Corporation Yield improvement in silicon-germanium epitaxial growth
JP2011223020A (en) * 2003-03-19 2011-11-04 Taiwan Semiconductor Manufactuaring Co Ltd Method of producing high quality relaxed silicon germanium layer
US8878244B2 (en) 2002-05-31 2014-11-04 Renesas Electronics Corporation Semiconductor device having strained silicon film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211653A (en) * 1994-01-26 1995-08-11 Central Glass Co Ltd Deposition of ge thin film
US5879970A (en) * 1996-09-05 1999-03-09 Nec Corporation Process of growing polycrystalline silicon-germanium alloy having large silicon content
US6958253B2 (en) * 2001-02-12 2005-10-25 Asm America, Inc. Process for deposition of semiconductor films
US7186582B2 (en) 2001-02-12 2007-03-06 Asm America, Inc. Process for deposition of semiconductor films
US8878244B2 (en) 2002-05-31 2014-11-04 Renesas Electronics Corporation Semiconductor device having strained silicon film
JP2011223020A (en) * 2003-03-19 2011-11-04 Taiwan Semiconductor Manufactuaring Co Ltd Method of producing high quality relaxed silicon germanium layer
US7413967B2 (en) 2004-05-19 2008-08-19 International Business Machines Corporation Yield improvement in silicon-germanium epitaxial growth
JP2007013194A (en) * 2006-08-07 2007-01-18 Dainippon Printing Co Ltd Semiconductor substrate and method of manufacturing same
JP4527090B2 (en) * 2006-08-07 2010-08-18 純一 半那 Manufacturing method of semiconductor substrate
JP2007165921A (en) * 2007-01-19 2007-06-28 Dainippon Printing Co Ltd Semiconductor base material and production method thereof
JP2008133544A (en) * 2008-01-28 2008-06-12 Dainippon Printing Co Ltd Conductive pattern and method for forming the same
JP4739356B2 (en) * 2008-01-28 2011-08-03 純一 半那 Conductive pattern

Similar Documents

Publication Publication Date Title
JP3442033B2 (en) Cold synthesis method of carbon nanotubes using carbon source gas decomposing catalyst metal film
US7396743B2 (en) Low temperature epitaxial growth of silicon-containing films using UV radiation
US5281274A (en) Atomic layer epitaxy (ALE) apparatus for growing thin films of elemental semiconductors
US20040106269A1 (en) Novel hot-filament chemical vapor deposition chamber and process with multiple gas inlets
US5316804A (en) Process for the synthesis of hard boron nitride
US5018479A (en) Remote plasma enhanced CVD method and apparatus for growing an epitaxial semconductor layer
US5607722A (en) Process for titanium nitride deposition using five-and six-coordinate titanium complexes
US20060134895A1 (en) Method for preparing ge1-x-ysnxey (e=p, as, sb) semiconductors and related si-ge-sn-e and si-ge-e analogs
JP2995509B2 (en) Thin film How to Create
US20050100670A1 (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
US5236545A (en) Method for heteroepitaxial diamond film development
CA1238822A (en) Method for the manufacture of metal silicide layers by means of reduced pressure gas phase deposition
JP2005503000A (en) Film formation on mixed substrate using trisilane
US5635258A (en) Method of forming a boron-doped diamond film by chemical vapor deposition
US5695819A (en) Method of enhancing step coverage of polysilicon deposits
US5248621A (en) Method for producing solar cell devices of crystalline material
EP1604391B1 (en) Method of producing high quality relaxed silicon germanium layers
JP2822536B2 (en) Method of forming cubic boron nitride thin film
Cifre et al. Polycrystalline silicon films obtained by hot-wire chemical vapour deposition
EP0192143A2 (en) Permeable polymer membrane for desiccation of gas
EP0245688A1 (en) Method of forming diamond film
US4421592A (en) Plasma enhanced deposition of semiconductors
JP3728465B2 (en) Method for forming single crystal diamond film
JP3707726B2 (en) Silicon carbide manufacturing method, composite material manufacturing method
US4363828A (en) Method for depositing silicon films and related materials by a glow discharge in a disiland or higher order silane gas