JP2008133544A - Conductive pattern and method for forming the same - Google Patents

Conductive pattern and method for forming the same Download PDF

Info

Publication number
JP2008133544A
JP2008133544A JP2008016029A JP2008016029A JP2008133544A JP 2008133544 A JP2008133544 A JP 2008133544A JP 2008016029 A JP2008016029 A JP 2008016029A JP 2008016029 A JP2008016029 A JP 2008016029A JP 2008133544 A JP2008133544 A JP 2008133544A
Authority
JP
Japan
Prior art keywords
sige
thin film
pattern
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008016029A
Other languages
Japanese (ja)
Other versions
JP4739356B2 (en
Inventor
Junichi Hanna
純一 半那
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008016029A priority Critical patent/JP4739356B2/en
Publication of JP2008133544A publication Critical patent/JP2008133544A/en
Application granted granted Critical
Publication of JP4739356B2 publication Critical patent/JP4739356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a conductive pattern composed of SiGe of low resistance controlled to P-type or N-type selectively on a substrate at a low temperature of less than 500°C. <P>SOLUTION: A thin film of aluminum or chromium is formed in a pattern on an amorphous substrate composed of glass or silicon oxide. The SiGe is selectively deposited only on the thin film of aluminum or chromium formed in the pattern by a thermal CVD method using germanium fluoride and disilane as raw materials. On the obtained conductive pattern, the SiGe film is selectively formed only on the thin film of aluminum or chromium formed in the pattern on the amorphous substrate and not directly formed on the amorphous substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、本発明は、電子デバイス等の接合層、電極とのオーミック層、配線などに用いる導電性パターンを基材上に形成する方法に関する。   The present invention relates to a method for forming a conductive pattern on a substrate for use in a bonding layer such as an electronic device, an ohmic layer with an electrode, wiring, or the like.

薄膜トランジスタをはじめとする各種Si系電子デバイスには、整合層、電極とのオーミック層、あるいは配線の形成のために、p型あるいn型に制御された低抵抗のSi系半導体層が広く用いられている。この半導体層の形成にあたって、必要とする特定の部分にのみ選択的に半導体層を形成することができればデバイス作製におけるプロセス行程の短縮と素子の微細化に伴う信頼性、歩留まりの向上に極めて有効である。こうした考えから、基材に単結晶Siを用いる高温プロセスを利用する半導体プロセスでは、HClを含むハロシラン類を原料とするCVD技術によって選択的に特定の部分にのみに半導体層を形成することが行なわれている。 Various Si-based electronic devices such as thin film transistors use a p-type or n-type controlled low-resistance Si-based semiconductor layer for the formation of matching layers, ohmic layers with electrodes, or wirings. It has been. In forming this semiconductor layer, if the semiconductor layer can be selectively formed only on a specific part that is required, it is extremely effective for shortening the process steps in device fabrication and improving the reliability and yield accompanying the miniaturization of elements. is there. Based on this idea, in a semiconductor process using a high-temperature process using single-crystal Si as a base material, a semiconductor layer is selectively formed only on a specific portion by CVD technology using halosilanes containing HCl as a raw material. It is.

しかしながら、安価な低融点基材を用いる薄膜トランジスタや太陽電池をはじめとする大面積電子デバイスの作製では材料作製に500℃以下の低温プロセスを必要とするため、特定の部分にのみ選択的にSi系半導体層を形成することが困難である。このため、一般に、これらの半導体層の形成には、各種CVD技術等を用いてまず均一に半導体層を形成した後、フォトリソグラフィ技術を用いてレジスト層をパターニングし、これをマスクとするエッチング等との組み合わせによって、特定の部分にのみ半導体層を形成することが行なわれる。このため、デバイス作製の際の工程数が増えるばかりでなく、素子の信頼性や歩留まりを損ねる要因の一つとなっている。   However, the fabrication of large area electronic devices such as thin film transistors and solar cells using inexpensive low-melting substrates requires a low-temperature process of 500 ° C. or lower for material fabrication. It is difficult to form a semiconductor layer. Therefore, in general, these semiconductor layers are formed by first forming a uniform semiconductor layer using various CVD techniques and the like, then patterning a resist layer using a photolithography technique, and etching using this as a mask. With the combination, the semiconductor layer is formed only in a specific portion. For this reason, not only the number of steps in device fabrication increases, but also one of the factors impairing the reliability and yield of elements.

本発明は、従来困難であった500℃以下の低温において、電子デバイスの接合層、電極とのオーミック層、素子間の配線などに用いる低抵抗の半導体層を特定の基材上にのみ選択的に形成する方法を提供することを目的とする。   In the present invention, a low-resistance semiconductor layer used for a bonding layer of an electronic device, an ohmic layer with an electrode, a wiring between elements, or the like is selectively formed only on a specific substrate at a low temperature of 500 ° C. or lower, which has been difficult in the past. It aims at providing the method of forming in.

本発明者は、研究の結果、ハロゲン化ゲルマニウムとシラン類との熱CVDにおいて、従来結晶質Si/SiO系、例えばSiOでパターニングされたSi基板などSi基材においてのみ見出されていたSiGeの選択成長が、ガラス、窒化ケイ素、あるいは、酸化ケイ素などの非晶質基材上、あるいは、サファイヤをはじめとする絶縁性結晶質基材上にパターン状に形成された各種無機導電性基材を用いても同様にSiGeをパターニングされた基材上にのみ選択的に成長することができることを見出した。 As a result of research, the present inventor has been found only in a Si base material such as a Si substrate patterned with a crystalline Si / SiO 2 system, for example, SiO 2 , in thermal CVD of germanium halide and silanes. Various inorganic conductive groups formed by selective growth of SiGe in a pattern on an amorphous substrate such as glass, silicon nitride, or silicon oxide, or on an insulating crystalline substrate such as sapphire It has been found that even when a material is used, it can be selectively grown only on a substrate patterned with SiGe.

さらに、当該熱CVD技術において、原料ガスに半導体プロセスで用いられるジボラン、フォスフィン、アルシン等のドーパントガスを添加しておくことによって、p型あるいはn型に制御された低抵抗のSiGeを堆積できることを確認した。この知見をもとに、前述の導電性材料でパターニングされた基材を用いて、ドーピングガスを含む原料ガスによる熱CVD法によりSiGeの堆積を行なうことによって、従来困難であった500℃以下の低温において、パターニングされた導電性の基材上にのみ選択的にp型あるいはn型に制御された低抵抗のSiGeからなる導電性パターンを容易に形成する技術を確立した。   Furthermore, in the thermal CVD technique, by adding a dopant gas such as diborane, phosphine, or arsine used in the semiconductor process to the source gas, it is possible to deposit low-resistance SiGe controlled to p-type or n-type. confirmed. Based on this knowledge, SiGe is deposited by a thermal CVD method using a source gas containing a doping gas using a base material patterned with the above-described conductive material, which has been difficult to achieve at a temperature of 500 ° C. or lower. A technology has been established for easily forming a conductive pattern made of low-resistance SiGe selectively controlled to be p-type or n-type only on a patterned conductive substrate at a low temperature.

本発明は、500℃以下の温度で、ジボラン、フォスフィン、アルシン等のドーパントガスを含むハロゲン化ゲルマニウムとシラン類を原料とする熱CVD法を用いて、基材上にパターン状に形成された導電性の基材上にp型あるいはn型に制御された低抵抗のSiGeを選択的に形成することを特徴とする導電性パターンの形成方法である。   The present invention is a conductive film formed in a pattern on a substrate using a thermal CVD method using germanium halide and silanes containing dopant gases such as diborane, phosphine, and arsine at a temperature of 500 ° C. or lower. The conductive pattern forming method is characterized in that low-resistance SiGe controlled to be p-type or n-type is selectively formed on a conductive substrate.

すなわち、本発明の導電性パターンの形成方法は、ガラス又は酸化ケイ素からなる非晶質基材上にアルミニウム薄膜又はクロム薄膜をパターン状に形成し、フッ化ゲルマニウムとジシランを原料とした熱CVD法によって、前記パターン状に形成されたアルミニウム薄膜又はクロム薄膜上にのみ選択的にSiGeを堆積することを特徴とする。このとき、前記原料がドーパントガスを含んでいるように構成されることが好ましい。That is, the conductive pattern forming method of the present invention is a thermal CVD method in which an aluminum thin film or a chromium thin film is formed in a pattern on an amorphous substrate made of glass or silicon oxide, and germanium fluoride and disilane are used as raw materials. Thus, SiGe is selectively deposited only on the aluminum thin film or chromium thin film formed in the pattern. At this time, it is preferable that the raw material is configured to include a dopant gas.

また、本発明の導電性パターンは、SiGe膜が、非晶質基材上にパターン状に形成されたアルミニウム薄膜又はクロム薄膜上にのみ選択的に形成され、前記非晶質基材上には形成されていないことを特徴とする。このとき、前記SiGe膜がp型又はn型であるように構成されることが好ましい。In the conductive pattern of the present invention, the SiGe film is selectively formed only on an aluminum thin film or a chromium thin film formed in a pattern on an amorphous base material. It is not formed. At this time, the SiGe film is preferably configured to be p-type or n-type.

本発明は、熱CVD法により500℃以下の低温で、p型またはn型に制御された低抵抗SiGeを導電性の基材上に選択的に堆積することによって導電性パターンを形成する方法である。これは、従来、大面積デバイスの作製などに用いられる500℃以下の低温プロセスでは実現が困難であった選択成長技術によって、特定の部分にのみ選択的にSi系低抵抗半導体層を形成することを可能にするものである。これによって、デバイスの接合層、活性層と電極をつなぐオーミック層、配線などを、膜成長とこれに引き続くフォトリソグラフィとエッチングプロセスによらないで形成することを可能にするもので、電子デバイスの作製に新たな発展をもたらすきわめて有益な発明である。   The present invention is a method of forming a conductive pattern by selectively depositing low-resistance SiGe controlled to p-type or n-type on a conductive substrate at a low temperature of 500 ° C. or less by a thermal CVD method. is there. This is because a Si-based low-resistance semiconductor layer is selectively formed only on a specific portion by a selective growth technique that has been difficult to realize by a low temperature process of 500 ° C. or lower, which is conventionally used for manufacturing a large area device. Is possible. This makes it possible to form device bonding layers, ohmic layers that connect active layers and electrodes, wiring, etc. without film growth and subsequent photolithography and etching processes. It is a very useful invention that brings about new development.

パターニングされた基材上への選択的なSiGeの堆積には、フッ化ゲルマニウムや塩化ゲルマニウムなどのハロゲン化ゲルマニウムとその還元に有効なシラン、ジシラン、あるいはそのハロゲン誘導体を原料ガスに用いることが重要である。この場合、原料ガスは、He、Ar、窒素などの不活性ガスや水素などで希釈して用いることが出来る。希釈ガスを選ぶことによって、選択的なSiGeの堆積が実現できる堆積温度や反応圧力などの作製条件の範囲を制御することが可能となる。 For selective deposition of SiGe on a patterned substrate, it is important to use germanium halides such as germanium fluoride and germanium chloride and silane, disilane, or their halogen derivatives effective for reduction as source gases. It is. In this case, the source gas can be diluted with an inert gas such as He, Ar, or nitrogen or hydrogen. By selecting a dilution gas, it is possible to control the range of production conditions such as deposition temperature and reaction pressure at which selective SiGe deposition can be realized.

原料ガスの流量比によって堆積するSiGeの組成をかえることができるが、ジシラン、フッ化ゲルマニウムを原料に用いる場合、その流量比(ジシラン/フッ化ゲルマニウム)は0.5〜40が適当であり、好ましくは0.5〜20とすることが望ましい。   The composition of SiGe deposited can be changed by the flow rate ratio of the source gas, but when disilane or germanium fluoride is used as the source material, the flow rate ratio (disilane / germanium fluoride) is suitably 0.5 to 40, Preferably it is 0.5-20.

本CVD系に見られる選択成長性は、表面での原料ガスの選択的な活性化が重要な役割を果たしていると考えられ、表面近傍での熱によるホモジニアスな原料ガスの分解が誘起される条件では選択性が消失する。したがって、選択性の実現にあたっては、基材の選択が重要であるとともに、膜の成長条件、特に表面近傍での原料ガス間の反応を支配する堆積温度および反応圧力が重要なパラメータとなる。該CVD系の膜堆積には250〜300℃以上の堆積温度を必要とするが、選択的な成長が実現できる温度領域は、一般的に比較的低い温度領域、500℃以下に限られる。また、反応圧力は堆積温度との関係で選択されるが、一般的な傾向として、表面近傍での反応が支配的となる圧力の高い条件では選択性は失われ、数十Torr以下の低圧ほど選択的な堆積が起こりやすい。   The selective growth property observed in this CVD system is considered to be due to the selective activation of the source gas on the surface playing an important role, and the conditions that induce the homogeneous source gas decomposition by heat near the surface. Then the selectivity disappears. Therefore, in realizing the selectivity, the selection of the substrate is important, and the film growth conditions, particularly the deposition temperature and reaction pressure that govern the reaction between the source gases near the surface are important parameters. The CVD film deposition requires a deposition temperature of 250 to 300 ° C. or higher, but the temperature range where selective growth can be realized is generally limited to a relatively low temperature range of 500 ° C. or lower. The reaction pressure is selected in relation to the deposition temperature. As a general tendency, the selectivity is lost under a high pressure condition where the reaction near the surface is dominant, and the lower the pressure is tens of Torr or less. Selective deposition is likely to occur.

p型SiGeの作製には、p型ドーパントとしてジボランが有効である。キャリア濃度は、ジボランの流量(シラン類に対し10ppm〜10%)によって制御可能であるが、導電率が10S/cm程度(キャリア濃度が1017〜1018cm−3)の場合には本系の固有の特徴からドーピングガスを用いなくとも作製が可能である。一方、n型SiGeの作製には、n型ドーパントガスを用いる必要があり、フォスフィン、アルシンが有効である。導電率、キャリア濃度は、同様にドーパントガスの流量(シラン類に対し10ppm〜10%)によって制御することができる。 For the production of p-type SiGe, diborane is effective as a p-type dopant. The carrier concentration can be controlled by the flow rate of diborane (10 ppm to 10% with respect to silanes). However, when the conductivity is about 10 S / cm (carrier concentration is 10 17 to 10 18 cm −3 ), this system is used. Because of its unique characteristics, it can be manufactured without using a doping gas. On the other hand, for the production of n-type SiGe, it is necessary to use an n-type dopant gas, and phosphine and arsine are effective. The conductivity and carrier concentration can be similarly controlled by the flow rate of the dopant gas (10 ppm to 10% with respect to silanes).

選択的にSiGeを堆積する基材は、無機導電性基材、例えば、アルミニウム、クロム、タングステン、ニッケル、銅、銀、金などの金属やその合金のほか、ITO、酸化スズなどの一部の導電性酸化物から選ぶことができる。酸化物の場合、それを構成する金属酸化物がシラン類によって一部還元されてできる金属が同様の膜の成長を促すことが考えられる。これらの基材をパターン状に前記基材上に形成することによって、選択的にSiGeからなる該導電性パターンを形成することができるが、これは、形状は特にパターンに限られるわけではない。   Base materials on which SiGe is selectively deposited include inorganic conductive base materials, for example, metals such as aluminum, chromium, tungsten, nickel, copper, silver, gold and alloys thereof, as well as some of ITO, tin oxide, and the like. It can be selected from conductive oxides. In the case of an oxide, it is conceivable that the metal formed by partially reducing the metal oxide constituting the oxide promotes the growth of a similar film. By forming these substrates in a pattern on the substrate, the conductive pattern made of SiGe can be selectively formed. However, the shape is not particularly limited to the pattern.

以下の実施例によって、本発明を詳細に説明するが、これらによって限定されるものではない。   The following examples illustrate the invention in detail, but are not limited thereto.

(実施例1)
Siウェーハの熱酸化によって形成したSiO上にアルミニウム薄膜をパターン状に形成した基板を用いて、フッ化ゲルマニウムとジシランをそれぞれ2.7sccmおよび20sccm、希釈のためにHeを300sccm反応容器に流し、圧力を0.45torr、基板温度を325℃で20分堆積を行なったところ、アルミニウム上にのみ選択的にSiGeが0.38μm堆積した。堆積膜はp型で導電率は10〜15S/cmであった。さらに、基板温度を変化させて成長を行なったところ、375℃までは選択成長性が維持され、基板温度が400℃では非選択的なSiGe膜の堆積が見られた。膜厚は、350℃では0.55μm、375℃では1.1μmであった。膜厚が大きくなるにつれて導電率が上昇する傾向は見られるが、いずれの膜も電気特性に大きな変化が見られなかった。
(Example 1)
Using a substrate in which an aluminum thin film is formed in a pattern on SiO 2 formed by thermal oxidation of a Si wafer, germanium fluoride and disilane are flowed in a reaction vessel of 2.7 sccm and 20 sccm, respectively, and He is diluted for 300 sccm. When deposition was performed at a pressure of 0.45 torr and a substrate temperature of 325 ° C. for 20 minutes, 0.38 μm of SiGe was selectively deposited only on aluminum. The deposited film was p-type and the conductivity was 10-15 S / cm. Further, when the growth was carried out while changing the substrate temperature, selective growth was maintained up to 375 ° C., and non-selective SiGe film deposition was observed at a substrate temperature of 400 ° C. The film thickness was 0.55 μm at 350 ° C. and 1.1 μm at 375 ° C. Although there was a tendency for the conductivity to increase as the film thickness increased, none of the films showed a significant change in electrical properties.

(実施例2)
ガラス基板上にアルミニウム薄膜をパターン状に形成した基板を用いて実施例1と同じ条件で膜を成長したところ、アルミニウム上にのみ選択的にSiGeが0.4μm堆積した。基板材質をSiOからガラスに代えても、膜の電気特性を含む選択性成長の特性には大きな違いは見られなかった。
(Example 2)
When a film was grown under the same conditions as in Example 1 using a substrate in which an aluminum thin film was formed in a pattern on a glass substrate, 0.4 μm of SiGe was selectively deposited only on aluminum. Even when the substrate material was changed from SiO 2 to glass, there was no significant difference in the selective growth characteristics including the electrical characteristics of the film.

(実施例3)
実施例1と同様な条件下で、Siウェーハの熱酸化によって形成したSiO2上にクロム薄膜をパターン状に形成した基板を用いて膜の堆積を行なったところ、クロム上にのみ選択的に0.17μmのSiGeが堆積した。堆積膜の導電率は実施例1と同様であった。さらに、基板温度を変化させて成長を行なったところ、375℃までは選択成長性が維持され、基板温度が400℃では非選択的なSiGe膜の堆積が見られた。膜厚は、350℃では0.35μm、375℃では0.7μmであった。いずれの膜も電気特性には大きな違いは見られなかった。
(Example 3)
Under the same conditions as in Example 1, a film was deposited using a substrate in which a chromium thin film was formed in a pattern on SiO2 formed by thermal oxidation of a Si wafer. 17 μm of SiGe was deposited. The conductivity of the deposited film was the same as in Example 1. Further, when the growth was carried out while changing the substrate temperature, selective growth was maintained up to 375 ° C., and non-selective SiGe film deposition was observed at a substrate temperature of 400 ° C. The film thickness was 0.35 μm at 350 ° C. and 0.7 μm at 375 ° C. None of the films showed a significant difference in electrical properties.

(実施例4)
実施例2と同様に、ガラス基板上にクロム薄膜をパターン状に形成したガラス基板を用いて膜を成長したところ、0.2μmのSiGe膜が選択的にクロム上に堆積した。堆積膜の電気特性は、実施例1と同じであった。
Example 4
Similarly to Example 2, when a film was grown using a glass substrate in which a chromium thin film was formed in a pattern on a glass substrate, a 0.2 μm SiGe film was selectively deposited on the chromium. The electrical characteristics of the deposited film were the same as in Example 1.

(実施例5)
Siウェーハの熱酸化によって形成したSiO上にアルミニウム薄膜をパターン状に形成した基板を用いて、フッ化ゲルマニウムとジシランをそれぞれ2sccm、15sccm、n型ドーパントガスとしてジシランに対しフォスフィン濃度を1000ppm、希釈のためにArを300sccm反応容器に流し、圧力を1torr、基板温度を350℃で20分堆積を行なったところ、アルミニウム上にのみ選択的にSiGeが0.6μm堆積した。膜はn型で、導電率は45S/cmであった。
(Example 5)
Using a substrate in which an aluminum thin film is formed in a pattern on SiO 2 formed by thermal oxidation of a Si wafer, germanium fluoride and disilane are respectively 2 sccm and 15 sccm, and n-type dopant gas is diluted with phosphine concentration of 1000 ppm with respect to disilane. For this purpose, Ar was allowed to flow in a 300 sccm reaction vessel, and deposition was performed at a pressure of 1 torr and a substrate temperature of 350 ° C. for 20 minutes. As a result, 0.6 μm of SiGe was selectively deposited only on aluminum. The film was n-type and the conductivity was 45 S / cm.

(実施例6)
実施例5と同様な条件下で、p型ドーパントガスとしてジボランを1000ppm含むジシランを用いてCVDを行なったところ、アルミニウム上にのみSiGe膜が0.5μm堆積した。堆積膜はp型で、導電率は22S/cmであった。
(Example 6)
Under the same conditions as in Example 5, CVD was performed using disilane containing 1000 ppm of diborane as a p-type dopant gas. As a result, a SiGe film of 0.5 μm was deposited only on aluminum. The deposited film was p-type and the conductivity was 22 S / cm.

実施例1および3において、アルミニウム上(上)およびクロム上(下)に選択的に形成されたSiGe膜の電子顕微鏡写真である。平坦に見える部分がSiGeの堆積が見られないSiO部分である。In Example 1 and 3, it is an electron micrograph of the SiGe film | membrane selectively formed on aluminum (top) and chromium (bottom). The portion that looks flat is the SiO 2 portion where no SiGe deposition is seen.

Claims (4)

ガラス又は酸化ケイ素からなる非晶質基材上にアルミニウム薄膜又はクロム薄膜をパターン状に形成し、An aluminum thin film or a chromium thin film is formed in a pattern on an amorphous substrate made of glass or silicon oxide,
フッ化ゲルマニウムとジシランを原料とした熱CVD法によって、前記パターン状に形成されたアルミニウム薄膜又はクロム薄膜上にのみ選択的にSiGeを堆積する、導電性パターンの形成方法。A method for forming a conductive pattern, wherein SiGe is selectively deposited only on the aluminum thin film or chromium thin film formed in the pattern by a thermal CVD method using germanium fluoride and disilane as raw materials.
前記原料がドーパントガスを含む、請求項1に記載の導電性パターンの形成方法。The method for forming a conductive pattern according to claim 1, wherein the raw material contains a dopant gas. SiGe膜が、非晶質基材上にパターン状に形成されたアルミニウム薄膜又はクロム薄膜上にのみ選択的に形成され、前記非晶質基材上には形成されていない、導電性パターン。A conductive pattern in which a SiGe film is selectively formed only on an aluminum thin film or a chromium thin film formed in a pattern on an amorphous substrate, and is not formed on the amorphous substrate. 前記SiGe膜がp型又はn型である、請求項3に記載の導電性パターン。The conductive pattern according to claim 3, wherein the SiGe film is p-type or n-type.
JP2008016029A 2008-01-28 2008-01-28 Conductive pattern Expired - Lifetime JP4739356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016029A JP4739356B2 (en) 2008-01-28 2008-01-28 Conductive pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016029A JP4739356B2 (en) 2008-01-28 2008-01-28 Conductive pattern

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10878496A Division JP4093604B2 (en) 1996-03-25 1996-03-25 Method for forming conductive pattern

Publications (2)

Publication Number Publication Date
JP2008133544A true JP2008133544A (en) 2008-06-12
JP4739356B2 JP4739356B2 (en) 2011-08-03

Family

ID=39558583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016029A Expired - Lifetime JP4739356B2 (en) 2008-01-28 2008-01-28 Conductive pattern

Country Status (1)

Country Link
JP (1) JP4739356B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795316A (en) * 2015-04-17 2015-07-22 上海华虹宏力半导体制造有限公司 Manufacturing method of integrated resistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270177A (en) * 1990-03-20 1991-12-02 Fujitsu Ltd Semiconductor photodetection device and its manufacture
JPH05315269A (en) * 1992-03-11 1993-11-26 Central Glass Co Ltd Forming method for thin film
JPH07235502A (en) * 1993-12-27 1995-09-05 Fujitsu Ltd Method of manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270177A (en) * 1990-03-20 1991-12-02 Fujitsu Ltd Semiconductor photodetection device and its manufacture
JPH05315269A (en) * 1992-03-11 1993-11-26 Central Glass Co Ltd Forming method for thin film
JPH07235502A (en) * 1993-12-27 1995-09-05 Fujitsu Ltd Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4739356B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
US10546741B2 (en) Selective growth method
TWI567218B (en) Method of epitaxial doped germanium tin alloy formation
JP2007535147A5 (en)
TW200808995A (en) Methods and systems for selectively depositing Si-containing films using chloropolysilanes
JP2009522197A5 (en)
JP2010509171A5 (en)
JP5031313B2 (en) External environment nanowire sensor and method of manufacturing external environment nanowire sensor
TW201214526A (en) Methods and apparatus for selective epitaxy of Si-containing materials and substitutionally doped crystalline Si-containing material
JP2007511892A5 (en)
TWI524392B (en) Stable silicide films and methods for making the same
TWI460793B (en) Methods for depositing germanium-containing layers
KR20130088487A (en) Method for forming ruthenium thin film by atomic layer deposition and ruthenium thin film using the same
US8507381B2 (en) Method for fabricating silicon and/or germanium nanowires
JP6702268B2 (en) Epitaxial wafer manufacturing method
JP6005361B2 (en) Method for selective deposition of semiconductor material
JP4739356B2 (en) Conductive pattern
JP4093604B2 (en) Method for forming conductive pattern
JP2018520510A5 (en) Method of manufacturing multilayer structure
JP2010064951A5 (en)
TWI517265B (en) Manufacturing method of thin film transistor
JP2009021525A (en) Manufacturing method of polycrystalline silicon thin film, polycrystalline silicon thin film substrate and polycrystalline silicon thin film type solar battery
JP4576201B2 (en) Method for preparing molybdenum trioxide layer
CN109867276B (en) Method for directly preparing graphene on substrate
TWI573288B (en) Light emitting diode and manufacture method for same
TWI548041B (en) Semiconductor device and producing metal contact and growing carbon nanotube structure to connect semiconductor terminal with metal layer in a semiconductor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term