JPH06204139A - Manufacture of silicon crystal film by thermal cvd - Google Patents

Manufacture of silicon crystal film by thermal cvd

Info

Publication number
JPH06204139A
JPH06204139A JP34776292A JP34776292A JPH06204139A JP H06204139 A JPH06204139 A JP H06204139A JP 34776292 A JP34776292 A JP 34776292A JP 34776292 A JP34776292 A JP 34776292A JP H06204139 A JPH06204139 A JP H06204139A
Authority
JP
Japan
Prior art keywords
film
gas
substrate
silicon
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34776292A
Other languages
Japanese (ja)
Inventor
Yasunori Sagawa
泰紀 寒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP34776292A priority Critical patent/JPH06204139A/en
Publication of JPH06204139A publication Critical patent/JPH06204139A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high quality silicon crystal film at a temperature lower than the conventional case, without using a film forming equipment applying high vacuum. CONSTITUTION:Film forming gas composed of SiH4 and SiF4 gas which is hard to be thermally decomposed are supplied to the inside of a film forming chamber 11 set in the state of vacuum at about 1X10<-5>Torr, and an epitaxial silicon thin film is continuously formed on a silicon single crystal substrate 14 heated at 700 deg.C. Since the SiF4 gas reacts with radical component of thermally decomposed SiH4, and the thermal decomposition is accelerated, high density fluorine based radicals locally exist in the region in the vicinity of the substrate where many SiH4 radical components are present. Hence impurities mixed in a substrate or a growing silicon film are eliminated by the etching action of the fluorine based radicals, so that the substrate heating temperature can be lowered. On the other hand, since SiF4 is hard to be thermally decomposed, the concentration of the fluorine based radicals in the film forming chamber is low, so that generation of floating foreign matter caused by corrosion action of the fluorine based radicals can be restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜トランジスタや太
陽電池等に利用されるシリコン結晶膜の製造方法に係
り、特に、高真空な製膜装置を適用することなく従来よ
り低温条件で良質なシリコン結晶膜を製膜できる熱CV
Dによるシリコン結晶膜の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon crystal film used in a thin film transistor, a solar cell or the like, and more particularly, to a high-quality silicon under a lower temperature condition than before without applying a high vacuum film forming apparatus. Thermal CV capable of forming crystalline film
The present invention relates to a method for producing a silicon crystal film by D.

【0002】[0002]

【従来の技術】熱CVD法によるシリコン結晶膜の製造
方法として、従来、特開昭58−172217号公報に
記載された方法が知られている。
2. Description of the Related Art As a method for producing a silicon crystal film by a thermal CVD method, a method described in Japanese Patent Laid-Open No. 172217/58 is known.

【0003】すなわち、この製造方法は、基板を配置し
た製膜室内にシラン化合物より成る製膜ガスを供給し、
この製膜ガスを加熱された上記基板近傍で熱分解させて
この基板上にシリコン結晶膜を製膜する方法であった。
That is, in this manufacturing method, a film-forming gas made of a silane compound is supplied into a film-forming chamber in which a substrate is arranged,
This is a method of thermally decomposing this film-forming gas near the heated substrate to form a silicon crystal film on this substrate.

【0004】ところで、この方法において、上記製膜ガ
ス内に含まれる不純物や製膜ガスの熱分解に起因して発
生した不純物等のシリコン結晶膜内への混入を防止する
ためには、上記基板を900℃以上の温度に加熱し基板
上若しくは成長中のシリコン膜に混入された上記不純物
を熱分解させて取除くことを要し、この基板加熱に多量
の熱エネルギーが必要となる欠点があった。
By the way, in this method, in order to prevent impurities contained in the film-forming gas and impurities generated by thermal decomposition of the film-forming gas from entering the silicon crystal film, It is necessary to heat the substrate to a temperature of 900 ° C. or higher to thermally decompose and remove the impurities mixed in the substrate or the growing silicon film, and there is a drawback that a large amount of thermal energy is required for heating the substrate. It was

【0005】一方、製膜開始前における製膜室内の真空
度を高めこれにより製膜室内の不純物を可及的に除去し
て投入する熱エネルギーの低減を図った方法も提案され
ているが、この方法の実施に当たっては製膜室内を高真
空に設定できる高価な製膜装置が必要になるため、その
分、シリコン結晶膜の製造コストが割高になってしまう
欠点があった。
On the other hand, a method has been proposed in which the degree of vacuum in the film forming chamber is increased before the film formation is started to remove impurities in the film forming chamber as much as possible to reduce the heat energy to be input. In carrying out this method, since an expensive film forming apparatus capable of setting a high vacuum in the film forming chamber is required, there is a disadvantage in that the manufacturing cost of the silicon crystal film becomes high accordingly.

【0006】このため、最近、低温条件でシリコン結晶
膜を製造できるプラズマCVD法が注目されている(例
えば、特開昭63−157872号公報、特開昭63−
175417号公報参照)。すなわち、これ等公報に開
示されている方法は、製膜室内にシリコン原子、ハロゲ
ン原子、及び、水素原子を含有する原料ガスを供給し、
かつ、この原料ガスをプラズマ化すると共に基板上で反
応させてシリコン結晶膜を製膜する方法で、プラズマ化
されたハロゲン原子のエッチング作用により基板上若し
くは成長中のシリコン膜に混入された不純物が除去され
るため熱CVD法に較べて低温条件での製膜が可能とな
る方法であった。
Therefore, recently, a plasma CVD method capable of producing a silicon crystal film under a low temperature condition has been attracting attention (for example, Japanese Patent Laid-Open Nos. 63-157872 and 63-63).
175417). That is, the methods disclosed in these publications supply a source gas containing a silicon atom, a halogen atom, and a hydrogen atom into the film forming chamber,
In addition, this source gas is made into plasma and reacted on the substrate to form a silicon crystal film, and the impurities mixed in the substrate or the growing silicon film by the etching action of the halogen atoms turned into plasma are Since it was removed, it was a method that enables film formation under low temperature conditions as compared with the thermal CVD method.

【0007】[0007]

【発明が解決しようとする課題】しかし、このプラズマ
CVD法においては上述したように低温製膜が可能にな
る反面、製膜工程中において粉状の浮遊異物が製膜室内
に多量に発生し易く、この浮遊異物が製膜途上のシリコ
ン結晶膜内に混入されてその膜特性を劣化させてしまう
欠点があった。
However, in this plasma CVD method, low temperature film formation is possible as described above, but on the other hand, a large amount of powdery suspended foreign matter is likely to occur in the film formation chamber during the film formation process. However, there is a drawback that the floating foreign matter is mixed into the silicon crystal film during film formation and deteriorates the film characteristics.

【0008】すなわち、このプラズマCVD法において
は製膜室内のプラズマ形成領域にプラズマ化された原料
ガスが一様に分布しかつこのプラズマ化された原料ガス
は励起状態にあるため、製膜室内の任意の空間において
原料ガスが互いに反応してシリコンの粉状体を生成した
り、基板以外の部位すなわち製膜室の内壁面においてプ
ラズマ化された原料ガスが反応してシリコンが析出しこ
れが粉状体となって剥離する等粉状の浮遊異物が多量に
発生し易い状態にあり、かつ、上記ハロゲン原子のエッ
チング作用により製膜室の内壁面や内部治具表面も腐食
され易くこの腐食面が剥離して上記浮遊異物に加わるこ
とになる。
That is, in this plasma CVD method, the plasma-formed raw material gas is uniformly distributed in the plasma forming region in the film forming chamber, and the plasma-converted raw material gas is in an excited state. The raw material gases react with each other in an arbitrary space to generate a powdery substance of silicon, or the raw material gas that has been turned into plasma reacts on a portion other than the substrate, that is, the inner wall surface of the film forming chamber, and silicon is deposited to form a powdery substance. A large amount of powder-like floating foreign matter that is peeled off as a body is likely to be generated, and the inner wall surface of the film forming chamber and the inner jig surface are easily corroded by the etching action of the halogen atoms. It peels off and joins the floating foreign matter.

【0009】このように、プラズマCVD法においては
低温製膜が可能になる反面、製膜工程中に粉状の浮遊異
物が製膜室内に多量に発生し易くこれが成長中のシリコ
ン結晶膜内に混入されてその膜特性を劣化させてしまう
欠点があり、プラズマCVD法では良質なシリコン結晶
膜を製造し難い問題点があった。
As described above, although low temperature film formation is possible in the plasma CVD method, a large amount of powdery suspended foreign matter is likely to be generated in the film formation chamber during the film formation process, which is generated in the growing silicon crystal film. There is a defect that the film characteristics are deteriorated by being mixed, and there is a problem that it is difficult to manufacture a high-quality silicon crystal film by the plasma CVD method.

【0010】また、このプラズマCVD法においてはそ
の実施に当たりプラズマ形成手段を備えた高価な製膜装
置が必要になるため、高真空な製膜装置を適用した上記
熱CVD法と同様にシリコン結晶膜の製造コストが割高
になる問題点があった。
Further, in this plasma CVD method, an expensive film forming apparatus equipped with a plasma forming means is required for carrying out the plasma CVD method. Therefore, like the above-mentioned thermal CVD method using a high vacuum film forming apparatus, a silicon crystal film is formed. There was a problem that the manufacturing cost of was expensive.

【0011】本発明はこのような問題点に着目してなさ
れたもので、その課題とするところは、高真空な製膜装
置を適用することなく従来より低温条件で浮遊異物等の
混入のない良質なシリコン結晶膜を製造できる熱CVD
によるシリコン結晶膜の製造方法を提供することにあ
る。
The present invention has been made by paying attention to such a problem, and its object is to prevent the inclusion of floating foreign matters under a lower temperature condition than before without applying a high vacuum film forming apparatus. Thermal CVD that can produce high quality silicon crystal film
Another object of the present invention is to provide a method for manufacturing a silicon crystal film according to.

【0012】[0012]

【課題を解決するための手段】このような技術的背景の
下、本発明者はプラズマCVD法におけるハロゲン原子
のエッチング作用に着目し、シラン化合物等の製膜ガス
に対し熱分解され難いSiF4 ガスを配合させた熱CV
D法の改良を試みたところ、このSiF4 ガスは意外に
も熱分解された製膜ガスのラジカル成分との反応により
その熱分解が促進されると共に、この分解により生じた
フッ素系ラジカルのエッチング作用により基板加熱温度
の低減が図れることを見出だし本発明を完成するに至っ
たものである。
Under such a technical background, the present inventor pays attention to the etching action of halogen atoms in the plasma CVD method, and SiF 4 which is hardly decomposed by the film-forming gas such as silane compound. Thermal CV mixed with gas
When an attempt was made to improve the D method, this SiF 4 gas was unexpectedly promoted by the reaction with the radical components of the thermally decomposed film-forming gas, and the fluorine-based radicals produced by this decomposition were etched. It was found that the substrate heating temperature can be reduced by the action, and the present invention has been completed.

【0013】すなわち、請求項1に係る発明は、基板を
配置した製膜室内にシリコン原子が含まれる製膜ガスを
供給し、この製膜ガスを加熱された上記基板近傍で熱分
解させてこの基板上にシリコン結晶膜を製膜する熱CV
Dによるシリコン結晶膜の製造方法を前提とし、上記製
膜ガスにSiF4 ガスを配合させると共に、熱分解され
た製膜ガスのラジカル成分と上記SiF4 ガスとの反応
により生じたフッ素系ラジカルをエッチング成分として
作用させながら上記基板上にシリコン結晶膜を製膜する
ことを特徴とするものである。
That is, according to the first aspect of the invention, a film-forming gas containing silicon atoms is supplied into the film-forming chamber in which the substrate is arranged, and the film-forming gas is thermally decomposed in the vicinity of the heated substrate to form the film-forming gas. Thermal CV for forming a silicon crystal film on a substrate
Based on the method for producing a silicon crystal film by D, SiF 4 gas is mixed with the above film-forming gas, and a fluorine-based radical generated by the reaction between the radical component of the thermally decomposed film-forming gas and the above SiF 4 gas is added. It is characterized in that a silicon crystal film is formed on the substrate while acting as an etching component.

【0014】そして、この請求項1に係る発明において
はハロゲン原子を放出するガスとして熱分解を受け難い
SiF4 ガスが適用されているため、このガスが熱分解
され難い分、製膜室内におけるフッ素系ラジカル濃度は
低い状態になっている。
In the invention according to the first aspect, since SiF 4 gas, which is hard to undergo thermal decomposition, is used as the gas for releasing the halogen atom, the amount of fluorine in the film forming chamber that is difficult to thermally decompose is used. The system radical concentration is low.

【0015】従って、上記プラズマCVD法に較べて製
膜室内の任意の空間において上記製膜ガスがフッ素系ラ
ジカルと反応してシリコン粉状体を生成したり、あるい
は、製膜室の内壁面や内部治具表面が上記フッ素系ラジ
カルの作用を受けて腐食される可能性が低いため、ハロ
ゲン原子を放出するSiF4 ガスを適用しているにも拘
らず製膜室内における浮遊異物の発生を防止することが
可能となる。
Therefore, as compared with the plasma CVD method, the film-forming gas reacts with the fluorine-based radicals to generate silicon powder in an arbitrary space in the film-forming chamber, or the inner wall surface of the film-forming chamber or Since the surface of the inner jig is less likely to be corroded by the action of the above-mentioned fluorine-based radicals, the generation of floating foreign matter in the film forming chamber is prevented despite the use of SiF 4 gas that releases halogen atoms. It becomes possible to do.

【0016】一方、上記SiF4 ガスは熱分解を受けに
くい反面、熱分解されたシラン化合物等製膜ガスのラジ
カル成分との反応によりその熱分解が促進されるため、
上記ラジカル成分の多い領域、すなわち、基板近傍領域
において分解を受け易くこの領域に高濃度のフッ素系ラ
ジカルが偏在することになる。
On the other hand, while the SiF 4 gas is less susceptible to thermal decomposition, its thermal decomposition is accelerated by the reaction with the radical components of the thermally decomposed film-forming gas such as a silane compound.
In the region where the radical component is large, that is, in the region near the substrate, the fluorine-containing radicals of high concentration are unevenly distributed in this region.

【0017】従って、基板上若しくは成長中のシリコン
膜に混入された不純物のみが選択的にエッチングを受け
て取除かれることになるため、その分、高真空な製膜装
置を適用することなく基板加熱温度の低減が図れる。
Therefore, only the impurities mixed in the silicon film on the substrate or during the growth are selectively removed by etching, so that the substrate is correspondingly removed without applying a high vacuum film forming apparatus. The heating temperature can be reduced.

【0018】尚、熱CVD法においては、製膜処理中に
この製膜室内の真空度を略一定に維持するためその下流
側において継続して排気処理を行っており、エッチング
作用に供されたフッ素系ラジカルあるいは余剰のフッ素
系ラジカルは上記排気処理により製膜室から外部へ排除
されている。
Incidentally, in the thermal CVD method, in order to maintain the vacuum degree in the film forming chamber substantially constant during the film forming process, the exhaust process is continuously performed on the downstream side of the film forming process, which is used for the etching action. Fluorine-based radicals or surplus fluorine-based radicals are removed from the film forming chamber to the outside by the exhaust treatment.

【0019】このような技術的手段においてシリコン原
子が含まれる上記製膜ガスとしては、熱分解され易いS
iH4、Si26、Si38 等の水素化珪素やSiHm
4-m(但し、mは1〜3、好ましくは2〜3、XはC
l又はF原子、好ましくはF原子である)で示されるハ
ロゲン化シラン等が適用できる。尚、この製膜ガス内に
水素ガスを添加してもよい。この水素系ラジカルも上記
SiF4 ガスに作用してその分解を促進させるからであ
る。
In such a technical means, the film-forming gas containing silicon atoms is easily decomposed by S.
iH 4 , Si 2 H 6 , Si 3 H 8 and other silicon hydrides and SiH m
X 4-m (where m is 1 to 3, preferably 2 to 3, X is C
1 or an F atom, preferably an F atom), or the like. Incidentally, hydrogen gas may be added to the film forming gas. This hydrogen-based radical also acts on the SiF 4 gas to promote its decomposition.

【0020】ここで、製膜ガスとして後者のハロゲン化
シランガスを適用した場合、このハロゲン化シランガス
の配合割合が高過ぎると製膜室内に上述した浮遊異物が
生ずることがある。従って、SiHm4-mで示されるハ
ロゲン化シランガスを適用する場合にはその配合割合を
SiF4 より少なく設定することが望ましい。
Here, when the latter halogenated silane gas is applied as the film-forming gas, the above-mentioned floating foreign matter may occur in the film-forming chamber if the mixing ratio of the halogenated silane gas is too high. Therefore, when the halogenated silane gas represented by SiH m X 4-m is applied, it is desirable to set the compounding ratio thereof to be smaller than that of SiF 4 .

【0021】また、上記製膜ガス中に希釈ガスとして、
ヘリウム、ネオン、アルゴン等の不活性ガスを加えても
よい。
Further, as a diluent gas in the film forming gas,
You may add inert gas, such as helium, neon, and argon.

【0022】そして、上述した水素化珪素等の製膜ガス
とSiF4 ガスの配合割合をその容積比で1:5〜10
程度に設定し、必要に応じ上記水素ガスや不活性ガス等
を配合して原料ガスとし、これを製膜室内に導入すると
共に、加熱された基板近傍で熱分解させてこの基板上に
シリコン結晶膜を製膜する方法である。
Then, the mixing ratio of the above-mentioned film forming gas such as silicon hydride and the SiF 4 gas is 1: 5 to 10 by volume ratio.
The raw material gas is mixed with the above-mentioned hydrogen gas or inert gas, etc., if necessary, and introduced into the film forming chamber, and is thermally decomposed in the vicinity of the heated substrate to cause silicon crystals on the substrate. It is a method of forming a film.

【0023】尚、上記基板としては任意の耐熱性材料が
適用でき、例えば、シリコン単結晶基板を適用した場合
にはシリコン単結晶膜が求められ、また、ガラス基板、
セラミックス基板、金属基板、炭素系基板等シリコン単
結晶基板以外の基板を適用した場合にはシリコン多結晶
膜が求められる。
Any heat resistant material can be applied to the substrate. For example, when a silicon single crystal substrate is applied, a silicon single crystal film is required, and a glass substrate,
When a substrate other than a silicon single crystal substrate such as a ceramic substrate, a metal substrate, or a carbon-based substrate is applied, a silicon polycrystalline film is required.

【0024】このように、この発明においては製膜開始
前における製膜室の真空度をこの製膜室内に不純物が若
干残留する程度(10-5Torr程度)に設定し、か
つ、その基板加熱温度を700℃程度の低温条件に設定
しても、上記フッ素系ラジカルのエッチング作用により
不純物は選択的に除去され、また、浮遊異物の発生も殆
ど起らずシリコン膜内への混入が起こり難いためシリコ
ン結晶膜の膜特性に悪影響を及ぼす可能性がほとんどな
い。
As described above, in the present invention, the degree of vacuum in the film forming chamber before the start of film forming is set to such a degree that some impurities remain in the film forming chamber (about 10 -5 Torr), and the substrate is heated. Even if the temperature is set to a low temperature of about 700 ° C., the impurities are selectively removed by the etching action of the fluorine-based radicals, and the generation of floating foreign matter hardly occurs, so that the impurities are not easily mixed into the silicon film. Therefore, there is almost no possibility of adversely affecting the film characteristics of the silicon crystal film.

【0025】従って、高真空に設定できる高価な製膜装
置を適用することなく従来より低温条件で良質なシリコ
ン結晶膜を製造できる利点を有している。
Therefore, there is an advantage that a high-quality silicon crystal film can be manufactured under a lower temperature condition than before without applying an expensive film forming apparatus capable of setting a high vacuum.

【0026】[0026]

【作用】請求項1に係る発明によれば、シリコン原子が
含まれる製膜ガスにSiF4 ガスを配合させると共に、
熱分解された製膜ガスのラジカル成分と上記SiF4
スとの反応により生じたフッ素系ラジカルをエッチング
成分として作用させながら基板上にシリコン結晶膜を製
膜することを特徴としている。
According to the invention of claim 1, SiF 4 gas is mixed with the film-forming gas containing silicon atoms, and
The present invention is characterized in that a silicon crystal film is formed on a substrate while a fluorine-based radical generated by the reaction of the thermally decomposed radical component of the film forming gas and the SiF 4 gas is used as an etching component.

【0027】そして、ハロゲン原子を放出するガスとし
て熱分解を受け難いSiF4 ガスが適用されており、こ
のガスが熱分解され難い分、製膜室内におけるフッ素系
ラジカル濃度は低い状態になっているため、上記プラズ
マCVD法に較べて製膜室内の任意の空間において製膜
ガスがフッ素系ラジカルと反応してシリコン粉状体を生
成したり、あるいは、製膜室の内壁面や内部治具表面が
上記フッ素系ラジカルの作用を受けて腐食される可能性
が極端に低くなり、ハロゲン原子を放出するSiF4
スを適用しているにも拘らず製膜室内における浮遊異物
の発生を確実に防止することが可能となる。
SiF 4 gas, which is not easily decomposed by heat, is used as the gas for releasing halogen atoms, and the fluorine-containing radical concentration in the film forming chamber is low because the gas is hardly decomposed by heat. Therefore, as compared with the above-mentioned plasma CVD method, the film-forming gas reacts with a fluorine-based radical to generate a silicon powder in an arbitrary space in the film-forming chamber, or the inner wall surface of the film-forming chamber or the inner jig surface. Is extremely unlikely to be corroded by the action of the above-mentioned fluorine-based radicals, and it is possible to reliably prevent the generation of floating foreign matter in the film forming chamber, even though SiF 4 gas that releases halogen atoms is used. It becomes possible to do.

【0028】また、上記SiF4 ガスは製膜ガスのラジ
カル成分(SiHx ラジカル、H系ラジカル等)との反
応によりその熱分解が促進され、従って、このラジカル
成分の多い基板近傍領域に高濃度のフッ素系ラジカルが
偏在し易くなるため、基板上若しくは成長中のシリコン
膜に混入された不純物のみを選択的にエッチングするこ
とができ、その分、高真空な製膜装置を適用することな
く基板加熱温度の低減を図ることが可能となる。
Further, the above-mentioned SiF 4 gas is accelerated in its thermal decomposition by the reaction with the radical components (SiH x radicals, H-based radicals, etc.) of the film-forming gas. Since the fluorine-based radicals are easily unevenly distributed, it is possible to selectively etch only the impurities mixed in the silicon film on the substrate or during growth, and the substrate can be correspondingly etched without applying a high-vacuum film forming apparatus. It is possible to reduce the heating temperature.

【0029】[0029]

【実施例】以下、本発明の実施例について詳細に説明す
るが本発明はこれ等実施例によって限定されるものでは
ない。
EXAMPLES Examples of the present invention will now be described in detail, but the present invention is not limited to these examples.

【0030】尚、図1は実施例で適用された熱CVD装
置の概略構成を示した説明図で、図中11は密閉された
製膜室、13はヒータ15が組込まれた基板ホルダー、
14はこの基板ホルダー13に取付けられた基板、1
6、17は原料ガスの供給源、及び、18は調圧弁19
を介し製膜室11に接続された減圧ポンプをそれぞれ示
している。
FIG. 1 is an explanatory view showing a schematic structure of a thermal CVD apparatus applied in the embodiment. In the figure, 11 is a closed film forming chamber, 13 is a substrate holder in which a heater 15 is incorporated,
14 is a substrate attached to the substrate holder 13, 1
6 and 17 are supply sources of raw material gas, and 18 is a pressure regulating valve 19
The decompression pumps connected to the film forming chamber 11 via the respective are shown.

【0031】[実施例1]予め、1×10-5Torrの
真空にした製膜室11内に、SiH4とSiF4との混合
ガス(ガス比率は容積比でSiH4:SiF4=1:10
である)を原料ガスとして80SCCMで供給し、か
つ、原料ガスの圧力を0.1Torrに調整した状態で
700℃に加熱されたシリコン単結晶基板上にエピタキ
シャルシリコン薄膜を連続的に製膜し、膜厚1μmのエ
ピタキシャルシリコン薄膜を製造した。
[Embodiment 1] A mixed gas of SiH 4 and SiF 4 (a gas ratio of SiH 4 : SiF 4 = 1 in volume ratio) was set in a film forming chamber 11 which had been previously evacuated to 1 × 10 -5 Torr. : 10
Is supplied as a source gas at 80 SCCM, and an epitaxial silicon thin film is continuously formed on a silicon single crystal substrate heated to 700 ° C. in a state where the pressure of the source gas is adjusted to 0.1 Torr, An epitaxial silicon thin film having a film thickness of 1 μm was manufactured.

【0032】そして、得られた薄膜についてラマン分光
分析を行ったところ、520cm-1の位置に半値巾3.
5cm-1の結晶シリコンに基づく非常にシャープなスペ
クトルが観測された。
Raman spectroscopic analysis was carried out on the obtained thin film, and the half width at the position of 520 cm -1 was 3.
A very sharp spectrum based on crystalline silicon at 5 cm -1 was observed.

【0033】また、求められたエピタキシャルシリコン
薄膜内の欠陥密度を測定したところ、結晶性が良好と評
価される105 〜106 ( /cm2 )程度の値を示す
と共に、不純物の混入も極めて少なかった。
Further, when the defect density in the obtained epitaxial silicon thin film was measured, it showed a value of about 10 5 to 10 6 (/ cm 2 ) at which the crystallinity was evaluated as good, and impurities were extremely mixed. There were few.

【0034】更に、反射高速電子線回折(RHEED)
によってシリコン結晶薄膜の評価を行ったところ、スト
リークパターンと菊池ラインが観測され良好な単結晶で
あることが確認された。
Furthermore, reflection high-energy electron diffraction (RHEED)
When the silicon crystal thin film was evaluated by, a streak pattern and a Kikuchi line were observed, and it was confirmed that the film was a good single crystal.

【0035】この薄膜の比抵抗は0.1〜1Ω・cmで
あり、電子移動度をファンデアポー法を適用したホール
効果測定装置により求めたところ600cm2 /V・S
であった。
The specific resistance of this thin film was 0.1 to 1 Ω · cm, and the electron mobility was determined to be 600 cm 2 / V · S by a Hall effect measuring device applying the van der Apo method.
Met.

【0036】[実施例2]予め、1×10-5Torrの
真空にした製膜室11内に、SiH4、SiF4、及び、
2 の混合ガス(ガス比率は容積比でSiH4:Si
4:H2 =1:10:1である)を原料ガスとして8
0SCCMで供給し、かつ、原料ガスの圧力を0.1T
orrに調整した状態で700℃に加熱されたガラス基
板上にシリコン多結晶膜を連続的に製膜し、膜厚1μm
のシリコン多結晶膜を製造した。
[Embodiment 2] SiH 4 , SiF 4 , and SiF 4 were placed in the film forming chamber 11 which was previously evacuated to 1 × 10 -5 Torr.
Mixed gas of H 2 (gas ratio is SiH 4 : Si in volume ratio)
F 4 : H 2 = 1: 10: 1) as source gas
Supply at 0 SCCM and set the source gas pressure to 0.1T
A silicon polycrystalline film is continuously formed on a glass substrate heated to 700 ° C. in a state adjusted to orr, and the film thickness is 1 μm.
Was manufactured.

【0037】尚、比較例としてプラズマCVD法により
同様のシリコン多結晶膜を製造したところ実施例に係る
シリコン多結晶膜の膜特性が格段に優れていた。
As a comparative example, when a similar silicon polycrystal film was manufactured by the plasma CVD method, the film characteristics of the silicon polycrystal film according to the example were remarkably excellent.

【0038】[0038]

【発明の効果】請求項1に係る発明によれば、ハロゲン
原子を放出するガスとして熱分解を受け難いSiF4
スが適用されており、このガスが熱分解され難い分、製
膜室内におけるフッ素系ラジカル濃度は低い状態になっ
ているため、上記プラズマCVD法に較べて製膜室内の
任意の空間において製膜ガスがフッ素系ラジカルと反応
してシリコン粉状体を生成したり、あるいは、製膜室の
内壁面や内部治具表面が上記フッ素系ラジカルの作用を
受けて腐食される可能性が極端に低くなり、ハロゲン原
子を放出するSiF4 ガスを適用しているにも拘らず製
膜室内における浮遊異物の発生を確実に防止することが
可能となる。
According to the first aspect of the present invention, SiF 4 gas, which is less susceptible to thermal decomposition, is used as the gas that releases halogen atoms. Since the system radical concentration is low, the film-forming gas reacts with the fluorine-based radicals to form a silicon powder in an arbitrary space in the film-forming chamber as compared with the above-mentioned plasma CVD method. It is extremely unlikely that the inner wall surface of the film chamber or the inner jig surface is corroded by the action of the above-mentioned fluorine-based radicals, and the film is formed despite the use of SiF 4 gas that releases halogen atoms. It is possible to reliably prevent the generation of floating foreign matter in the room.

【0039】また、上記SiF4 ガスは製膜ガスのラジ
カル成分(SiHx ラジカル、H系ラジカル等)との反
応によりその熱分解が促進されることからこのラジカル
成分の多い基板近傍領域に高濃度のフッ素系ラジカルが
偏在し易くなるため、基板上若しくは成長中のシリコン
膜に混入された不純物のみを選択的にエッチングするこ
とができ、その分、高真空な製膜装置を適用することな
く基板加熱温度の低減を図ることが可能となる。
Further, since the SiF 4 gas is accelerated in its thermal decomposition due to the reaction with the radical components (SiH x radicals, H-based radicals, etc.) of the film-forming gas, it is highly concentrated in the region near the substrate where the radical components are large. Since the fluorine-based radicals are easily unevenly distributed, it is possible to selectively etch only the impurities mixed in the silicon film on the substrate or during growth, and the substrate can be correspondingly etched without applying a high-vacuum film forming apparatus. It is possible to reduce the heating temperature.

【0040】従って、高真空な熱CVD装置を適用する
ことなく従来より低温条件で浮遊異物等の混入のない良
質なシリコン結晶膜を製造できる効果を有している。
Therefore, there is an effect that a high-quality silicon crystal film free from inclusion of floating foreign matters can be produced under a lower temperature condition than before without applying a high-vacuum thermal CVD apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例において適用された熱CVD装置の概略
構成説明図。
FIG. 1 is a schematic configuration explanatory view of a thermal CVD apparatus applied in an example.

【符号の説明】[Explanation of symbols]

11 製膜室 13 基板ホルダー 14 基板 15 ヒータ 16 原料ガス供給源 17 原料ガス供給源 18 減圧ポンプ 19 調圧弁 11 film forming chamber 13 substrate holder 14 substrate 15 heater 16 source gas supply source 17 source gas supply source 18 pressure reducing pump 19 pressure regulating valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板を配置した製膜室内にシリコン原子が
含まれる製膜ガスを供給し、この製膜ガスを加熱された
上記基板近傍で熱分解させてこの基板上にシリコン結晶
膜を製膜する熱CVDによるシリコン結晶膜の製造方法
において、 上記製膜ガスにSiF4 ガスを配合させると共に、熱分
解された製膜ガスのラジカル成分と上記SiF4 ガスと
の反応により生じたフッ素系ラジカルをエッチング成分
として作用させながら上記基板上にシリコン結晶膜を製
膜することを特徴とする熱CVDによるシリコン結晶膜
の製造方法。
1. A film forming gas containing silicon atoms is supplied into a film forming chamber in which a substrate is arranged, and the film forming gas is thermally decomposed in the vicinity of the heated substrate to form a silicon crystal film on the substrate. In a method for producing a silicon crystal film by thermal CVD for film formation, a SiF 4 gas is mixed with the above film-forming gas, and a fluorine-based radical generated by a reaction between a radical component of the thermally decomposed film-forming gas and the SiF 4 gas. A method for producing a silicon crystal film by thermal CVD, which comprises forming a silicon crystal film on the substrate while acting as an etching component.
JP34776292A 1992-12-28 1992-12-28 Manufacture of silicon crystal film by thermal cvd Pending JPH06204139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34776292A JPH06204139A (en) 1992-12-28 1992-12-28 Manufacture of silicon crystal film by thermal cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34776292A JPH06204139A (en) 1992-12-28 1992-12-28 Manufacture of silicon crystal film by thermal cvd

Publications (1)

Publication Number Publication Date
JPH06204139A true JPH06204139A (en) 1994-07-22

Family

ID=18392411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34776292A Pending JPH06204139A (en) 1992-12-28 1992-12-28 Manufacture of silicon crystal film by thermal cvd

Country Status (1)

Country Link
JP (1) JPH06204139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100692262B1 (en) * 2002-12-05 2007-03-09 샤프 가부시키가이샤 Nonvolatile semiconductor memory device
KR100705352B1 (en) * 2002-06-25 2007-04-10 샤프 가부시키가이샤 Memory cell and memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705352B1 (en) * 2002-06-25 2007-04-10 샤프 가부시키가이샤 Memory cell and memory device
KR100692262B1 (en) * 2002-12-05 2007-03-09 샤프 가부시키가이샤 Nonvolatile semiconductor memory device

Similar Documents

Publication Publication Date Title
JP3728465B2 (en) Method for forming single crystal diamond film
US4608271A (en) Method for the manufacture of metal silicide layers by means of reduced pressure gas phase deposition
US7192626B2 (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
Seto Deposition of polycrystalline silicon by pyrolysis of silane in argon
JPS61153277A (en) Production of thin fine crystal silicon film
CN110817852B (en) Graphene preparation method based on water treatment auxiliary mechanism
JPH0948693A (en) Method for forming diamond single crystal film
EP1189706A1 (en) Method and apparatus for metal oxide chemical vapor deposition on a substrate surface
JPS5884111A (en) Improved plasma deposition for silicon
JPH05315269A (en) Forming method for thin film
JPH06204139A (en) Manufacture of silicon crystal film by thermal cvd
WO1988004333A1 (en) Production of silicon carbide
EP0240314B1 (en) Method for forming deposited film
JPH06204142A (en) Manufacture of silicon crystal film by thermal cvd
JPH06204141A (en) Manufacture of silicon crystal film by thermal cvd
JPH06204140A (en) Manufacture of silicon crystal film by thermal cvd
EP0240305B1 (en) Method for forming a deposited film
Kotaki et al. Deposition of diamond from a plasma jet with dichlorobenzene as carbon source
JPH06168886A (en) Formation of thin film by plasma cvd
JP3219832B2 (en) Manufacturing method of silicon carbide thin film
JP3024543B2 (en) Crystalline silicon film and method of manufacturing the same
JP3190100B2 (en) Carbon material production equipment
JPH0645257A (en) Method for forming semiconductor thin film
JPH0597582A (en) Method for depositing thin film of diamond
Yu et al. Low Temperature Deposition of Polycrystalline Silicon thin Films by Hot-Wire CVD