JPS6342183B2 - - Google Patents

Info

Publication number
JPS6342183B2
JPS6342183B2 JP54104828A JP10482879A JPS6342183B2 JP S6342183 B2 JPS6342183 B2 JP S6342183B2 JP 54104828 A JP54104828 A JP 54104828A JP 10482879 A JP10482879 A JP 10482879A JP S6342183 B2 JPS6342183 B2 JP S6342183B2
Authority
JP
Japan
Prior art keywords
heat exchanger
engine
cooling
radiator
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54104828A
Other languages
Japanese (ja)
Other versions
JPS5630570A (en
Inventor
Toshihiko Saito
Sei Hisaoka
Takashi Matsuzaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10482879A priority Critical patent/JPS5630570A/en
Publication of JPS5630570A publication Critical patent/JPS5630570A/en
Publication of JPS6342183B2 publication Critical patent/JPS6342183B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 この発明はエンジン駆動により冷暖房運転を行
なうエンジン駆動空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine-driven air conditioner that performs cooling and heating operation by being driven by an engine.

電動機によつてコンプレツサを駆動する冷暖房
機に代るものとして、エンジン駆動による空気調
和機が知られている。しかしながら、コンプレツ
サの能力可変を行なう場合、従来の電動機駆動に
おいてはステツプ制御あるいはインバーダ制御な
どを採用しているが、エンジン駆動の場合におい
てはその能力を可変し負荷に応じた適正の回転数
に制御できるものは知られていない。
2. Description of the Related Art Engine-driven air conditioners are known as an alternative to air conditioners whose compressors are driven by electric motors. However, when changing the compressor's capacity, conventional electric motor drives use step control or inverter control, but in the case of engine drives, the capacity is varied and the rotation speed is controlled to the appropriate speed according to the load. It is not known what can be done.

この発明は上記事情に着目してなされたもの
で、その目的とするところは、エンジンに燃料調
節用の比例弁を設け、負荷に応じてエンジンの回
転数を可変することによりコンプレツサを連続的
に能力可変できるエンジン駆動空気調和機を提供
しようとするものである。
This invention was made in view of the above circumstances, and its purpose is to continuously operate the compressor by providing a proportional valve for fuel adjustment in the engine and varying the engine speed according to the load. The present invention aims to provide an engine-driven air conditioner with variable capacity.

以下、この発明を図面に示す一実施例にもとず
いて説明する。第1図中1は水冷式のエンジンで
ある。このエンジン1はカツプリング2を介して
コンプレツサ3に連動している。このコンプレツ
サ3は四方弁4を介して室外熱交換器5に接続さ
れ、この室外熱交換器5は、並列に接続された逆
止弁6と膨張弁7を介してリキツドタンク8に接
続されている。このリキツドタンク8はキヤピラ
リチユーブ9を介して室内熱交換器10に接続さ
れ、この室内熱交換器10は上記四方弁4を介し
てコンプレツサ3のサクシヨンカツプ11に接続
されている。そして、上記室外熱交換器5には室
外フアン12、室内熱交換器10には室内フアン
13がそれぞれ対向して設けられヒートポンプ式
の冷凍サイクルを構成している。さらに、エンジ
ン1には冷却用熱交換器14が設けられている。
この冷却用熱交換器14の一端は第1の三方弁1
5に接続され、他端はポンプ16を介して第2の
三方弁17に接続されている。そして、第1と第
2の三方弁15,17間は上記室外熱交換器5に
併設したラジエタ18と接続されているととも
に、室内熱交換器10と四方弁4との間に設けた
冷媒加熱器19と接続され、冷却水循環路を構成
している。したがつて、第1、第2の三方弁1
5,17の切換えによつてラジエタ18または冷
媒加熱器19で放熱できるようになつている。
The present invention will be explained below based on an embodiment shown in the drawings. 1 in FIG. 1 is a water-cooled engine. This engine 1 is linked to a compressor 3 via a coupling 2. This compressor 3 is connected to an outdoor heat exchanger 5 via a four-way valve 4, and this outdoor heat exchanger 5 is connected to a liquid tank 8 via a check valve 6 and an expansion valve 7 that are connected in parallel. . The liquid tank 8 is connected to an indoor heat exchanger 10 via a capillary tube 9, and the indoor heat exchanger 10 is connected to a suction cup 11 of the compressor 3 via the four-way valve 4. The outdoor heat exchanger 5 is provided with an outdoor fan 12, and the indoor heat exchanger 10 is provided with an indoor fan 13, respectively, to form a heat pump type refrigeration cycle. Furthermore, the engine 1 is provided with a cooling heat exchanger 14.
One end of this cooling heat exchanger 14 is connected to the first three-way valve 1
5, and the other end is connected to a second three-way valve 17 via a pump 16. The first and second three-way valves 15 and 17 are connected to a radiator 18 attached to the outdoor heat exchanger 5, and a refrigerant heating unit is provided between the indoor heat exchanger 10 and the four-way valve 4. It is connected to the container 19 and constitutes a cooling water circulation path. Therefore, the first and second three-way valves 1
Heat can be radiated by the radiator 18 or the refrigerant heater 19 by switching between 5 and 17.

さらに、上記エンジン1には後述する比例弁2
0を介して燃料供給源21が接続されている。こ
の比例弁20は第2図で示すように、温度設定部
22と負荷温度検知部23とを比較部24によつ
て比較し、その温度差を電気信号に変換して増幅
部25により増幅する電子制御部26と電気的に
接続されている。そして、比例弁20は電子制御
部26からの出力信号によつて作動しエンジン1
への燃料供給量を連続的に調節できるようになつ
ている。また、負荷温度検知部23は上記室内熱
交換器10に付設した感温センサによつて形成さ
れ、負荷温度(室内温度)を検知するようになつ
ている。
Furthermore, the engine 1 has a proportional valve 2 which will be described later.
A fuel supply source 21 is connected via 0. As shown in FIG. 2, this proportional valve 20 compares a temperature setting section 22 and a load temperature detection section 23 using a comparison section 24, converts the temperature difference into an electric signal, and amplifies it using an amplification section 25. It is electrically connected to the electronic control section 26. The proportional valve 20 is actuated by an output signal from the electronic control section 26, and the engine 1
The fuel supply amount can be continuously adjusted. Further, the load temperature detection section 23 is formed by a temperature sensor attached to the indoor heat exchanger 10, and is adapted to detect the load temperature (indoor temperature).

しかして、冷房運転時にはエンジン1によつて
駆動するコンプレツサ3から吐出する高温高圧の
ガス冷媒は実線矢印で示すように四方弁4を介し
て室外熱交換器5に送られ、ここで、凝縮液化さ
れる。この液冷媒は逆止弁6、リキツドタンク
8、キヤピラリチユーブ9を介して室内熱交換器
10に流れ、ここで蒸発して室内冷房を行なう。
このとき、ポンプ16は作動しているため冷却水
はエンジン1の冷却用熱交換器14に送られエン
ジン1を冷却したのち第1の三方弁15を介して
室外熱交換器5に併設したラジエタ18に送り込
まれ、ここで放熱し、ついで第2の三方弁17を
介してポンプ16に戻る。したがつて、冷房運転
中は循環する冷却水がラジエタ18によつて放熱
され、エンジン1を冷却することになる。
During cooling operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 3 driven by the engine 1 is sent to the outdoor heat exchanger 5 via the four-way valve 4 as shown by the solid arrow, where it is condensed and liquefied. be done. This liquid refrigerant flows through the check valve 6, liquid tank 8, and capillary tube 9 to the indoor heat exchanger 10, where it evaporates and cools the room.
At this time, since the pump 16 is operating, the cooling water is sent to the cooling heat exchanger 14 of the engine 1, cools the engine 1, and then passes through the first three-way valve 15 to the radiator attached to the outdoor heat exchanger 5. 18, where it radiates heat, and then returns to the pump 16 via the second three-way valve 17. Therefore, during the cooling operation, the circulating cooling water radiates heat by the radiator 18 and cools the engine 1.

また、暖房運転を行なう場合には、四方弁4お
よび第1、第2の三方弁15,17を切換えるこ
とにより、コンプレツサ3から吐出する高温高圧
のガス冷媒は破線矢印で示すように、四方弁4を
介して室内熱交換器10に流れ、ここで放熱させ
ることにより室内暖房を行なう。このとき、ポン
プ16の作動によつて冷却水は冷却用熱交換器1
4→第1の三方弁15→冷媒加熱器19→第2の
三方弁17→ポンプ16の順に循環している。し
たがつて、エンジン1の冷却用熱交換器14によ
つて、熱交換された循環水は冷媒加熱器19で放
熱し、室内熱交換器10へ送り込む冷媒を加熱す
ることができ、暖房能力を向上することができ
る。
In addition, when performing heating operation, by switching the four-way valve 4 and the first and second three-way valves 15 and 17, the high temperature and high pressure gas refrigerant discharged from the compressor 3 is switched to the four-way valve as shown by the broken line arrow. 4 to the indoor heat exchanger 10, where the heat is radiated to heat the room. At this time, the cooling water is supplied to the cooling heat exchanger 1 by the operation of the pump 16.
4→first three-way valve 15→refrigerant heater 19→second three-way valve 17→pump 16. Therefore, the circulating water heat-exchanged by the cooling heat exchanger 14 of the engine 1 can radiate heat in the refrigerant heater 19 and heat the refrigerant sent to the indoor heat exchanger 10, increasing the heating capacity. can be improved.

このような冷房運転中もしくは暖房運転中、負
荷温度(室内温度)は負荷温度検知部23によつ
て検知され、この検知部23からの電気信号と温
度設定部22からの電気信号は比較部24によつ
て比較される。そして、この比較部24からの信
号は増幅部25を介して比例弁20に入力され、
比例弁20は設定した温度と負荷温度の差に比例
して作動し、燃料供給源21からエンジン1に供
給される燃料を連続的に制御することになる。し
たがつて、エンジン1の回転数が変化し、コンプ
レツサ3の能力を連続的に可変することができ
る。
During such cooling operation or heating operation, the load temperature (indoor temperature) is detected by the load temperature detection section 23, and the electrical signal from this detection section 23 and the electrical signal from the temperature setting section 22 are sent to the comparison section 24. compared by. Then, the signal from the comparison section 24 is inputted to the proportional valve 20 via the amplification section 25,
The proportional valve 20 operates in proportion to the difference between the set temperature and the load temperature, and continuously controls the fuel supplied to the engine 1 from the fuel supply source 21. Therefore, the rotational speed of the engine 1 changes, and the capacity of the compressor 3 can be varied continuously.

この発明は以上説明したように、エンジンと、
このエンジンに燃料を供給する燃料供給源との間
に燃料調節用の比例弁を設け、この比例弁を負荷
温度と設定温度との差に比例して作動させるよう
にしたから、負荷の変動に応じてエンジン回転数
を連続的に制御でき、コンプレツサの能力を連続
可変することができるという効果がある。
As explained above, this invention includes an engine,
A proportional valve for fuel adjustment is installed between the fuel supply source that supplies fuel to the engine, and this proportional valve is operated in proportion to the difference between the load temperature and the set temperature. This has the advantage that the engine speed can be continuously controlled accordingly, and the compressor capacity can be continuously varied.

さらに、エンジンに冷却用熱交換器を設け、こ
の熱交換器によつて熱交換された循環水を冷媒加
熱器で放熱することによつて室内熱交換器へ送り
込む冷媒を加熱することができ、暖房能力を向上
できるという効果もある。
Furthermore, the engine is provided with a cooling heat exchanger, and the refrigerant sent to the indoor heat exchanger can be heated by radiating heat from the circulating water heat-exchanged by the heat exchanger with a refrigerant heater, It also has the effect of improving heating capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すサイクルの
系統図、第2図は同じく比例弁の制御回路図であ
る。 1…エンジン、20…比例弁、21…燃料供給
源。
FIG. 1 is a cycle system diagram showing an embodiment of the present invention, and FIG. 2 is a control circuit diagram of a proportional valve. DESCRIPTION OF SYMBOLS 1... Engine, 20... Proportional valve, 21... Fuel supply source.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンと、このエンジンによつて駆動され
る能力可変型のコンプレツサ、四方弁、室外熱交
換器、膨張弁および室内熱交換器をこの順序で接
続することにより構成されたヒートポンプ式冷凍
サイクルと、前記エンジンに設けた冷却用熱交換
器と、前記四方弁と室内熱交換器との間に設けた
冷媒加熱器、前記室外熱交換器に並設したラジエ
ータ、前記冷却用熱交換器と冷媒加熱器との間を
結ぶ管路および前記冷却用熱交換器とラジエータ
とを結ぶ管路によつて構成された暖房時と冷房時
の2系統の冷却水循環路と、前記エンジンとこの
エンジンに燃料を供給する燃料供給源との間に設
けられ連続的に燃料供給量を調節する比例弁と、
この比例弁を負荷温度と設定温度との差に比例し
て作動させる制御手段とを設けたことを特徴とす
るエンジン駆動空気調和機。
1. A heat pump refrigeration cycle configured by connecting an engine, a variable capacity compressor driven by the engine, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger in this order; A cooling heat exchanger provided in the engine, a refrigerant heater provided between the four-way valve and the indoor heat exchanger, a radiator provided in parallel with the outdoor heat exchanger, and the cooling heat exchanger and refrigerant heating. two cooling water circulation paths for heating and cooling, each consisting of a pipe connecting the cooling heat exchanger and the radiator, and a pipe connecting the cooling heat exchanger and the radiator; a proportional valve that is provided between the fuel supply source and continuously adjusts the fuel supply amount;
An engine-driven air conditioner comprising a control means for operating the proportional valve in proportion to the difference between a load temperature and a set temperature.
JP10482879A 1979-08-17 1979-08-17 Engineedriven air conditioner Granted JPS5630570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10482879A JPS5630570A (en) 1979-08-17 1979-08-17 Engineedriven air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10482879A JPS5630570A (en) 1979-08-17 1979-08-17 Engineedriven air conditioner

Publications (2)

Publication Number Publication Date
JPS5630570A JPS5630570A (en) 1981-03-27
JPS6342183B2 true JPS6342183B2 (en) 1988-08-22

Family

ID=14391236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10482879A Granted JPS5630570A (en) 1979-08-17 1979-08-17 Engineedriven air conditioner

Country Status (1)

Country Link
JP (1) JPS5630570A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161438A (en) * 1981-03-30 1982-10-05 Sanyo Electric Co Ltd Equipment with cooling, heating and hot water supply functions combined
JPS57164242A (en) * 1981-03-31 1982-10-08 Kubota Ltd Engine driven type room airconditioner
JPS57164241A (en) * 1981-03-31 1982-10-08 Kubota Ltd Engine driven type room aircondtioner
JPS5888547A (en) * 1981-11-19 1983-05-26 Sanyo Electric Co Ltd Control device for air conditioner
JPS6416162U (en) * 1987-07-14 1989-01-26

Also Published As

Publication number Publication date
JPS5630570A (en) 1981-03-27

Similar Documents

Publication Publication Date Title
US5052186A (en) Control of outdoor air source water heating using variable-speed heat pump
KR100357988B1 (en) Heat pump type air conditioning apparatus
JPS622241Y2 (en)
JP2001248937A (en) Heat pump hot water supply air conditioner
JPH05270252A (en) Heating device for electric automobile
JPS6342183B2 (en)
JP3399023B2 (en) Vehicle air conditioner
JP2508528Y2 (en) Air conditioner
KR0141543B1 (en) Refrigerant Heating Air Conditioning Unit
JP3289373B2 (en) Heat pump water heater
JPH05330331A (en) Air conditioner for electric vehicle
JPH10160273A (en) Air conditioner
JPH07310945A (en) Refrigerant heating type cooler/heater
JPH09170799A (en) Control device for air conditioner system
JP3546102B2 (en) Engine driven air conditioner
JPS5854330B2 (en) Air conditioning equipment
JP3740234B2 (en) Control device for hot water heating system
JP3128518B2 (en) Temperature controller for combined hot water heating system
JP2998514B2 (en) Refrigerant heating and cooling machine
JPS5818137Y2 (en) Air conditioning equipment
JP2919317B2 (en) Control device for hot water heating system
JP2003042584A (en) Air conditioner
JP2919311B2 (en) Refrigerant heating type heating device
JPH0579894B2 (en)
JP3425306B2 (en) Hot water heating system