JPH09170799A - Control device for air conditioner system - Google Patents

Control device for air conditioner system

Info

Publication number
JPH09170799A
JPH09170799A JP7330913A JP33091395A JPH09170799A JP H09170799 A JPH09170799 A JP H09170799A JP 7330913 A JP7330913 A JP 7330913A JP 33091395 A JP33091395 A JP 33091395A JP H09170799 A JPH09170799 A JP H09170799A
Authority
JP
Japan
Prior art keywords
temperature
humidity
flow rate
hot water
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7330913A
Other languages
Japanese (ja)
Inventor
Shigeaki Yasui
繁明 安井
Ikuro Adachi
郁朗 足立
Yukihiro Suzuki
幸弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP7330913A priority Critical patent/JPH09170799A/en
Publication of JPH09170799A publication Critical patent/JPH09170799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve an accuracy in temperature of an indoor device under a dehumidifying operation. SOLUTION: Variation characteristic data of cooling capability with a surrounding air temperature, an indoor air temperature and an indoor humidity for every operation frequency of a compressor 21 are stored in advance. An actual cooling capability at an operating frequency determined in reference to a temperature difference between the set temperature and the indoor air temperature and a humidity difference between a set humidity and a detected humidity is calculated on the basis of the data. A required heat quantity radiated by a heating heat exchanger 16 is calculated in reference to the set temperature and the indoor air temperature. A supplementing cooling heat quantity and a required heat calorie are added and a passing flow rate is calculated in response to the heat calorie and a temperature of flowing-out hot water at the heating heat exchanger 16. The thermal radiation amount at the heating heat exchanger 16 is determined in reference to a temperature difference between a temperature of flowing-in hot water and a temperature of flowed-out hot water and a passing flow rate, hot water of specified temperature is supplied to the heating heat exchanger 16, so that a flow rate variable valve 14 is controlled in such a way that a detected flow rate of a water amount sensor 18 may become a calculated flow rate and thus a superior accurate dehumidifying operation can be carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、温水を循環させる
暖房用熱交換器と冷凍サイクルの蒸発器とを室内機に備
え、室内の除湿(ドライ運転)を行うエアコンシステム
の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an air conditioner system, which is provided with an indoor unit equipped with a heating heat exchanger for circulating hot water and an evaporator for a refrigerating cycle to dehumidify (dry) the room.

【0002】[0002]

【従来の技術】温水循環回路を設けてバーナ等により加
熱された温水を室内機に循環させる温水暖房システムで
は、設定温度と室内温度との温度差に基づいて室内機で
放熱すべき必要熱量が算出され、必要熱量に応じて温水
を加熱するバーナ等の燃焼量が制御されて、室内機で必
要熱量が放熱されるものがある。
2. Description of the Related Art In a hot water heating system in which a hot water circulation circuit is provided to circulate hot water heated by a burner or the like to an indoor unit, the necessary amount of heat to be radiated by the indoor unit is determined based on the temperature difference between the set temperature and the indoor temperature. There is one in which the required heat amount is radiated by the indoor unit by controlling the combustion amount of a burner or the like which is calculated and which heats hot water according to the required heat amount.

【0003】室内機のみでなく室内の床面に設置した床
暖房パネルにも温水を循環させるために、温水循環回路
を並列に設けた複合温水暖房システムがある。こうした
温水暖房システムでは、床暖房パネルによる暖房能力を
調節するために、バーナによって加熱される温水の温度
が一定温度になるように、バーナの加熱量を調節し、床
暖房パネルへの温水循環回路に設けた床暖制御弁の開放
率を設定された暖房能力に応じて可変することによって
循環する温水水量を調節し、それによって床面温度を調
節している。
There is a combined hot water heating system in which hot water circulation circuits are provided in parallel in order to circulate hot water not only in the indoor unit but also in the floor heating panel installed on the floor of the room. In such a hot water heating system, in order to adjust the heating capacity of the floor heating panel, the heating amount of the burner is adjusted so that the temperature of the hot water heated by the burner becomes a constant temperature, and the hot water circulation circuit to the floor heating panel is adjusted. By changing the open rate of the floor heating control valve provided in the above according to the set heating capacity, the circulating hot water amount is adjusted, and thereby the floor surface temperature is adjusted.

【0004】[0004]

【発明が解決しようとする課題】上記のとおり、室内機
と床暖房パネルとにそれぞれ温水を循環させる温水暖房
システムでは、室内機単独で運転を行う場合には、安定
した温度管理ができるが、室内機と床暖房パネルとの両
方で暖房を行う場合には、バーナの加熱量は単に温水温
度を一定温度に維持するように制御されるため、床暖房
パネルを循環する温水量の変化に伴って室内機による放
熱量が変化し、室内機の放熱量を正確に管理することが
できず、室内温度を安定させることができにくいという
問題がある。
As described above, in the hot water heating system in which hot water is circulated between the indoor unit and the floor heating panel, stable temperature control can be performed when the indoor unit is operated alone. When heating is performed by both the indoor unit and the floor heating panel, the heating amount of the burner is controlled so as to simply maintain the hot water temperature at a constant temperature. As a result, the amount of heat released by the indoor unit changes, the amount of heat released by the indoor unit cannot be accurately controlled, and it is difficult to stabilize the indoor temperature.

【0005】また、暖房用の温水循環回路のみでなく、
冷房用の冷凍サイクルを併設して、冷房および除湿運転
を行うものが考えられている。しかし、冷凍サイクルに
よる空気の冷却能力は、単純に圧縮機の回転数のみで決
まらず、冷凍サイクルによって冷却される室内の温度及
び冷凍サイクルの放熱を行う凝縮器が配置される室外の
温度、また室内の湿度等によって変動する。このため、
除湿運転として、冷凍サイクルによって冷却を行った空
気を温水循環回路で加熱して室内温度を制御する場合に
は、室内の温度管理が複雑になり、室内温度を安定させ
ることが困難になる。
In addition to the hot water circulation circuit for heating,
It is considered that a refrigerating cycle for cooling is installed to perform cooling and dehumidifying operation. However, the cooling capacity of the air by the refrigeration cycle is not simply determined by the number of revolutions of the compressor, but the temperature inside the room cooled by the refrigeration cycle and the temperature outside the condenser where heat dissipation of the refrigeration cycle is arranged, It varies depending on the indoor humidity. For this reason,
As the dehumidifying operation, when the air cooled by the refrigeration cycle is heated by the hot water circulation circuit to control the indoor temperature, the indoor temperature management becomes complicated and it becomes difficult to stabilize the indoor temperature.

【0006】本発明は、温水循環回路の温水を室内機に
循環させるとともに冷凍サイクルを併用して除湿運転を
行うエアコンシステムにおいて、室内の温度管理が容易
で、必要熱量を確実に室内機で放出させることができる
温水エアコンシステムの制御装置を提供することを目的
とする。
According to the present invention, in an air conditioner system in which hot water in a hot water circulation circuit is circulated to an indoor unit and a dehumidifying operation is performed in combination with a refrigeration cycle, indoor temperature control is easy and a necessary amount of heat is surely released in the indoor unit. An object of the present invention is to provide a control device for a hot water air conditioner system.

【0007】[0007]

【課題を解決するための手段】本発明のエアコンシステ
ムでは、圧縮機回転数決定手段により決定される圧縮機
の回転数毎に、冷凍サイクルにおける冷却能力の室外温
度センサの検知する室外温度と室温センサの検知する室
内温度とに応じた温度補正値をあらかじめ冷却能力温度
補正値記憶手段に記憶しており、また、圧縮機回転数決
定手段により決定される圧縮機の回転数毎に、冷凍サイ
クルにおける冷却能力の湿度センサの検知湿度に応じた
補正値をあらかじめ冷却能力湿度補正値記憶手段に記憶
している。
In the air conditioner system of the present invention, the outdoor temperature and the room temperature detected by the outdoor temperature sensor for the cooling capacity in the refrigeration cycle are determined for each rotation speed of the compressor determined by the compressor rotation speed determination means. A temperature correction value corresponding to the indoor temperature detected by the sensor is stored in advance in the cooling capacity temperature correction value storage means, and the refrigeration cycle is set for each rotation speed of the compressor determined by the compressor rotation speed determination means. A correction value corresponding to the detected humidity of the humidity sensor of the cooling capacity in is stored in the cooling capacity humidity correction value storage means in advance.

【0008】必要熱量算出手段によって設定温度と室内
温度との温度差に基づいて暖房用熱交換器によって放出
すべき必要熱量を算出し、また、冷凍サイクル内に冷媒
を循環させる圧縮機の回転数を、室温設定手段に設定さ
れた設定温度と室温センサに検知された室内温度との温
度差及び湿度設定手段に設定された湿度と湿度センサに
検知された湿度との湿度差に基づいて圧縮機回転数決定
手段により決定すると、補正冷却能力決定手段は、圧縮
機回転数決定手段により決定された回転数における圧縮
機の標準冷却能力を、冷却能力温度補正値記憶手段に記
憶された温度補正値と冷却能力湿度補正値記憶手段に記
憶された湿度補正値とに基づいて補正する。
The necessary heat quantity calculating means calculates the necessary heat quantity to be released by the heating heat exchanger based on the temperature difference between the set temperature and the room temperature, and the rotation speed of the compressor for circulating the refrigerant in the refrigeration cycle. The compressor is based on the temperature difference between the set temperature set by the room temperature setting means and the room temperature detected by the room temperature sensor, and the humidity difference between the humidity set by the humidity setting means and the humidity detected by the humidity sensor. When determined by the rotation speed determination means, the corrected cooling capacity determination means determines the standard cooling capacity of the compressor at the rotation speed determined by the compressor rotation speed determination means as the temperature correction value stored in the cooling capacity temperature correction value storage means. And the humidity correction value stored in the cooling capacity humidity correction value storage means.

【0009】熱量加算手段は、必要熱量算出手段により
算出された必要熱量と補正冷却能力決定手段により決定
された補正冷却能力により冷却される分の熱量を補充す
るための補充熱量とを加算すると、流量算出手段は熱量
加算手段により算出された加算熱量と流出温水温度検知
手段により検知された暖房用熱交換器の流出温水温度と
から流量可変弁によって調整すべき流量を算出する。流
量可変弁制御手段は、流量算出手段の算出した算出流量
と流量センサにより検出する暖房用熱交換器を通過する
温水流量とに基づいて流量可変弁を制御する。
The heat quantity adding means adds the necessary heat quantity calculated by the necessary heat quantity calculating means and the replenishment heat quantity for replenishing the heat quantity to be cooled by the correction cooling capacity determined by the correction cooling capacity determining means, The flow rate calculation means calculates a flow rate to be adjusted by the flow rate variable valve from the added heat quantity calculated by the heat quantity addition means and the outflow hot water temperature of the heating heat exchanger detected by the outflow hot water temperature detection means. The flow rate variable valve control means controls the flow rate variable valve based on the calculated flow rate calculated by the flow rate calculation means and the hot water flow rate passing through the heating heat exchanger detected by the flow rate sensor.

【0010】このように、本発明では、除湿運転とし
て、あらかじめ試験等でよって得られた外気温度、室内
温度および湿度と冷凍サイクルの冷却能力の変化に関す
るデータを記憶しておき、冷凍サイクルの圧縮機の制御
では、設定温度と室内温度との温度差と、設定湿度と室
内の湿度との湿度差とから作動周波数を決定し、決定さ
れた作動周波数における標準冷却能力を、そのときの外
気温度、室内温度および湿度に応じて記憶されているデ
ータに基づいて補正して、実際の冷却能力を求める。こ
のため、冷凍サイクルによって冷却される熱量の演算の
精度が増し、設定温度と室内温度とに応じて算出される
室内機で放熱するのに必要な熱量に、冷却される熱量分
を上乗せした熱量を暖房用熱交換器で放出するように、
温水回路の流量可変弁を制御するだけでよい。
As described above, according to the present invention, as the dehumidifying operation, data relating to changes in the outside air temperature, the room temperature and the humidity and the cooling capacity of the refrigeration cycle, which have been obtained in advance by a test or the like, are stored, and the compression of the refrigeration cycle is performed. In machine control, the operating frequency is determined from the temperature difference between the set temperature and the room temperature, and the humidity difference between the set humidity and the room humidity, and the standard cooling capacity at the determined operating frequency is determined by the outside air temperature at that time. , The actual cooling capacity is obtained by making a correction based on the stored data according to the room temperature and the humidity. Therefore, the accuracy of the calculation of the amount of heat cooled by the refrigeration cycle is increased, and the amount of heat to be cooled is added to the amount of heat required to dissipate heat in the indoor unit calculated according to the set temperature and the indoor temperature. To be released by the heat exchanger for heating,
It is only necessary to control the variable flow valve of the hot water circuit.

【0011】また、室内機で放熱される熱量は、温水が
暖房用熱交換器で低下した温度と流量とから決まるた
め、決定された流量になるように流量可変弁を制御する
だけで、必要熱量に応じた熱量が、室内機で放熱され
る。従って、外気温度、室内温度、湿度に応じた適切な
熱量が確実に室内機で放熱され、精度のよい除湿運転を
行うことができる。また、温水回路が、床暖房パネルに
対する循環回路を形成していても、加熱源によって加熱
された温水温度が一定であるため、上記の制御によって
確実に室内機における放熱量を管理できるため、精度の
よい除湿運転を行うことができる。
Further, the amount of heat radiated in the indoor unit is determined by the temperature and the flow rate of the hot water lowered in the heating heat exchanger, and therefore it is necessary only by controlling the flow rate variable valve so that the determined flow rate is achieved. The amount of heat corresponding to the amount of heat is radiated by the indoor unit. Therefore, an appropriate amount of heat according to the outside air temperature, the indoor temperature, and the humidity is surely radiated by the indoor unit, and the dehumidifying operation can be performed with high accuracy. In addition, even if the hot water circuit forms a circulation circuit for the floor heating panel, the temperature of the hot water heated by the heating source is constant, so the amount of heat radiated in the indoor unit can be reliably managed by the above control, so that the accuracy is improved. A good dehumidifying operation can be performed.

【0012】[0012]

【発明の実施の形態】次に本発明を、以下に示す実施例
に基づいて説明する。図1は、本発明に係わる温水暖房
式エアコンシステムの実施例を示す。図1において、1
は加熱源及び冷却源を有し屋外に設置される室外機、2
は室内上方の壁部に配置される室内機であり、温水配管
及び冷却用配管によって室外機1と接続されており、3
は放熱用温水配管を有し室内の床面に配置される床暖房
パネルであり、温水配管によって室外機1と接続されて
いる。この室外機1、室内機2、床暖房パネル3及び温
水配管、冷却配管により暖房用の温水回路10および冷
凍サイクル20がそれぞれ形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described based on the following embodiments. FIG. 1 shows an embodiment of a hot water heating type air conditioner system according to the present invention. In FIG. 1, 1
Is an outdoor unit having a heating source and a cooling source and installed outdoors, 2
Is an indoor unit arranged on the wall above the room, and is connected to the outdoor unit 1 by a hot water pipe and a cooling pipe.
Is a floor heating panel which has hot water pipes for heat radiation and is arranged on the floor surface in the room, and is connected to the outdoor unit 1 by the hot water pipes. The outdoor unit 1, the indoor unit 2, the floor heating panel 3, the hot water pipe, and the cooling pipe form a hot water circuit 10 for heating and a refrigeration cycle 20, respectively.

【0013】室外機1には、温水回路10の構成とし
て、加熱用熱交換器11、一定回転で駆動される循環ポ
ンプ12、床暖熱動弁13、ニードルをステッピングモ
ータで駆動して流量を制御する流量可変弁14、プレッ
シャータンク15、水量センサ18が設けられ、加熱源
としてのガスバーナ100が備えられている。冷凍サイ
クル20の構成としては、インバータ制御されるモータ
により駆動されて冷媒であるフロンガスを圧縮する圧縮
機21、凝縮器22、ストレーナ23、キャピラリチュ
ーブ24が設けられ、凝縮器22には放熱ファン26が
備えられている。
In the outdoor unit 1, as a constitution of the hot water circuit 10, a heat exchanger 11 for heating, a circulation pump 12 driven at a constant rotation, a floor warming valve 13, and a needle are driven by a stepping motor to change the flow rate. A variable flow valve 14 for controlling, a pressure tank 15, a water amount sensor 18 are provided, and a gas burner 100 as a heating source is provided. The refrigeration cycle 20 is provided with a compressor 21, a condenser 22, a strainer 23, and a capillary tube 24, which are driven by an inverter-controlled motor to compress Freon gas that is a refrigerant, and the condenser 22 has a radiating fan 26. Is provided.

【0014】室内機2には、温水回路10の構成として
暖房用熱交換器16が設けられ、冷凍サイクル20の構
成として冷房用熱交換器(蒸発器)25が設けられ、各
熱交換器16,25に対して、室内空気を循環させる対
流ファン200が備えられていて、室内空気を冷房用熱
交換器25→暖房用熱交換器16の順で通過させて、再
び室内へ送り出す。
The indoor unit 2 is provided with a heat exchanger 16 for heating as a constitution of the hot water circuit 10, and a heat exchanger (evaporator) 25 for cooling as a constitution of the refrigeration cycle 20, and each heat exchanger 16 is provided. , 25, a convection fan 200 that circulates the indoor air is provided, and the indoor air passes through the cooling heat exchanger 25 and the heating heat exchanger 16 in this order, and is sent out to the room again.

【0015】室外機1、室内機2及び床暖房パネル3に
おいて、温水回路10は、循環ポンプ12の吐出側に加
熱用熱交換器11の流入側が接続され、加熱用熱交換器
11の流出側には、流量可変弁14を介して室内機2の
暖房用熱交換器16の流入側が接続されている。加熱用
熱交換器11の流入側と循環ポンプ12の吐出側との間
で温水配管は分岐して、分岐した温水配管は床暖熱動弁
13を介して床暖房パネル3の流入側と接続されてい
る。暖房用熱交換器16の流出側の温水配管と床暖房パ
ネル3の流出側の温水配管は合流し、プレッシャータン
ク15を介して循環ポンプ12の吸引側に接続されてい
る。
In the outdoor unit 1, the indoor unit 2 and the floor heating panel 3, in the hot water circuit 10, the inflow side of the heating heat exchanger 11 is connected to the discharge side of the circulation pump 12, and the outflow side of the heating heat exchanger 11 is connected. Is connected to the inflow side of the heating heat exchanger 16 of the indoor unit 2 via the variable flow rate valve 14. The hot water pipe is branched between the inflow side of the heating heat exchanger 11 and the discharge side of the circulation pump 12, and the branched hot water pipe is connected to the inflow side of the floor heating panel 3 via the floor warming valve 13. Has been done. The hot water pipe on the outflow side of the heating heat exchanger 16 and the hot water pipe on the outflow side of the floor heating panel 3 join together and are connected to the suction side of the circulation pump 12 via the pressure tank 15.

【0016】なお、温水配管は加熱用熱交換器11の流
出側で分岐して、室内機2と床暖房パネル3をバイパス
して小流量の温水を加熱用熱交換器11から循環ポンプ
12へ直接帰還させるバイパス管17となっており、バ
イパス管17の流出側は、循環ポンプ12の吸引側に接
続されて、プレッシャータンク15の流出側と合流して
いる。
The hot water pipe is branched on the outflow side of the heating heat exchanger 11, bypasses the indoor unit 2 and the floor heating panel 3, and a small amount of hot water is passed from the heating heat exchanger 11 to the circulation pump 12. It is a bypass pipe 17 for direct return, and the outflow side of the bypass pipe 17 is connected to the suction side of the circulation pump 12 and joins with the outflow side of the pressure tank 15.

【0017】以上の構成を有する温水回路10では、循
環ポンプ12の作動によって、主に、循環ポンプ12→
加熱用熱交換器11→流量可変弁14→暖房用熱交換器
16→プレッシャータンク15→循環ポンプ12の循環
回路で、バーナ100によって高温に加熱された加熱用
熱交換器11内の高温水を循環させる高温水循環回路を
形成するとともに、循環ポンプ12→床暖熱動弁13→
床暖房パネル3→プレッシャータンク15→循環ポンプ
12の循環回路で、循環ポンプ12に帰還した低温水を
循環させる低温水循環回路を形成する。
In the hot water circuit 10 having the above structure, the circulation pump 12 is mainly operated to operate the circulation pump 12 →
In the circulation circuit of the heat exchanger 11 for heating → the variable flow valve 14 → the heat exchanger 16 for heating → the pressure tank 15 → the circulation pump 12, the high temperature water in the heat exchanger 11 for heating heated to high temperature by the burner 100 A circulation pump 12 → floor warming valve 13 →
A low temperature water circulation circuit for circulating the low temperature water returned to the circulation pump 12 is formed by the circulation circuit of the floor heating panel 3 → the pressure tank 15 → the circulation pump 12.

【0018】バーナ100によって加熱された加熱用熱
交換器11内の高温水は、循環ポンプ12→加熱用熱交
換器11→バイパス管17→循環ポンプ12の循環回路
でも循環して、床暖房パネル3へ循環する低温水循環回
路の温水を加熱する。
The high-temperature water in the heating heat exchanger 11 heated by the burner 100 circulates in the circulation circuit of the circulation pump 12 → the heating heat exchanger 11 → the bypass pipe 17 → the circulation pump 12 and the floor heating panel. Heat the hot water in the low-temperature water circulation circuit that circulates to 3.

【0019】他方、冷凍サイクル20では、フロン冷媒
は、冷媒圧縮機21→凝縮器22→ストレーナ23→キ
ャピラリチューブ24→冷房用熱交換器25→冷媒圧縮
機21を循環し、循環中に、冷媒は凝縮器22で気相→
液相の状態変化をして熱の放出を行い、冷房用熱交換器
25で液相(霧状)→気相の状態変化をして熱の吸収を
行って室内空気を冷却する。
On the other hand, in the refrigeration cycle 20, the CFC refrigerant circulates through the refrigerant compressor 21 → condenser 22 → strainer 23 → capillary tube 24 → cooling heat exchanger 25 → refrigerant compressor 21, and the refrigerant is circulated during the circulation. Is in the vapor phase in the condenser 22 →
The state of the liquid phase is changed to release heat, and the heat exchanger 25 for cooling changes the state of the liquid phase (fog) to the vapor phase to absorb heat and cool the indoor air.

【0020】制御装置400は、使用者によって操作さ
れるリモコン4に応じて各種の運転をマイコンによって
制御するもので、主部は室外機1に備えられているが、
室内機2には、リモコン4の赤外線操作信号を受信する
ための受信部と、室内機2に備えられた各種センサによ
る検知を行う検知部と、対流ファン200を駆動するた
めの駆動部と、これらの室内機2の各部と室外機1の主
部との間で制御信号を通信する通信部とが備えられてい
る。
The control device 400 controls various operations by a microcomputer according to the remote controller 4 operated by the user, and the main part is provided in the outdoor unit 1,
In the indoor unit 2, a receiving unit for receiving an infrared operation signal of the remote controller 4, a detecting unit for performing detection by various sensors provided in the indoor unit 2, a driving unit for driving the convection fan 200, A communication unit that communicates control signals between each unit of the indoor unit 2 and the main unit of the outdoor unit 1 is provided.

【0021】また、主部においては、ガスを燃料とする
バーナ100の燃焼制御等の暖房運転を含む主動作用の
マイコンとは別に、冷房運転および除湿運転における冷
凍サイクル20の圧縮機21の作動を制御するための冷
房用マイコンが別途に設けられている。
In addition, in the main part, the operation of the compressor 21 of the refrigeration cycle 20 in the cooling operation and the dehumidifying operation is performed separately from the microcomputer for the main operation including the heating operation such as the combustion control of the burner 100 using gas as fuel. A cooling microcomputer for controlling is separately provided.

【0022】制御装置400は、各種の制御を行うため
に、加熱用熱交換器11の流出側に高温水サーミスタ4
01、循環ポンプ12の吐出側と床暖熱動弁13との間
に低温水サーミスタ402、室内機2の暖房用熱交換器
16の流出側に室内温水サーミスタ403、冷却用熱交
換器25に室内凍結サーミスタ404、室内機2内に室
温サーミスタ405及び湿度センサ406、室外機1に
外気温度サーミスタ407を備えている。
The control device 400 controls the hot water thermistor 4 on the outflow side of the heating heat exchanger 11 in order to perform various controls.
01, the low temperature water thermistor 402 between the discharge side of the circulation pump 12 and the floor heating valve 13, the indoor hot water thermistor 403, the cooling heat exchanger 25 on the outflow side of the heating heat exchanger 16 of the indoor unit 2. The indoor freezing thermistor 404, the room temperature thermistor 405 and the humidity sensor 406 in the indoor unit 2, and the outdoor air temperature thermistor 407 in the outdoor unit 1.

【0023】以上の構成からなるエアコンシステムは、
制御装置400によって、室内機2のみによる単独暖房
運転、床暖房パネル3のみによる床単独運転、床暖房パ
ネル3と室内機2によるデュエット暖房運転、室内機2
のみによるドライ運転、床暖房パネル3と室内機2によ
るデュエットドライ運転、室内機2による冷房運転がそ
れぞれ制御される。
The air-conditioning system having the above structure is
By the control device 400, the independent heating operation using only the indoor unit 2, the floor independent operation using only the floor heating panel 3, the duet heating operation using the floor heating panel 3 and the indoor unit 2, the indoor unit 2
Dry operation by only the floor heating panel 3, duet dry operation by the indoor unit 2 and cooling operation by the indoor unit 2 are controlled.

【0024】各運転において、バーナ100の燃焼制御
としては、各運転のオン操作に応じて、燃焼ファン10
1でプレパージを行った後に、所定のシーケンスで電磁
弁102、103および比例弁104を制御してバーナ
100へ燃料を供給して点火電極105で火花放電を発
生させて燃焼を開始する点火制御を行い、フレームロッ
ド106による着火検知後は、燃焼ファン101および
比例弁104を制御してバーナ100の燃焼量を制御す
る。また、運転終了後には、バーナ100の燃焼停止
後、2分を経過してから循環ポンプ12の作動を停止す
る。圧縮機21を駆動するインバータ制御としては、冷
房運転および各ドライ運転において、圧縮機21の回転
数が制御される。
In each operation, the combustion control of the burner 100 is performed according to the ON operation of each operation.
After performing the pre-purge with No. 1, the solenoid valves 102, 103 and the proportional valve 104 are controlled in a predetermined sequence to supply fuel to the burner 100 to generate spark discharge at the ignition electrode 105 and start ignition control. After the ignition is detected by the flame rod 106, the combustion fan 101 and the proportional valve 104 are controlled to control the combustion amount of the burner 100. Further, after the operation is completed, the operation of the circulation pump 12 is stopped 2 minutes after the combustion of the burner 100 is stopped. As the inverter control for driving the compressor 21, the rotation speed of the compressor 21 is controlled in the cooling operation and each dry operation.

【0025】ここでは、室内機2のみによる単独暖房運
転、床暖房パネル3のみによる床単独運転、床暖房パネ
ル3と室内機2によるデュエット暖房運転、床暖房パネ
ル3と室内機2によるデュエットドライ運転について以
下に説明する。
Here, the independent heating operation using only the indoor unit 2, the floor independent operation using only the floor heating panel 3, the duet heating operation using the floor heating panel 3 and the indoor unit 2, the duet dry operation using the floor heating panel 3 and the indoor unit 2 Will be described below.

【0026】〔単独暖房運転〕単独暖房運転は、室内機
2のみによって室内を暖房するものである。単独暖房運
転では、リモコン4の暖房運転のオン操作に応じて循環
ポンプ12の駆動を開始しバーナ100の燃焼を開始す
るとともに、流量可変弁14を全開にして、リモコン4
によって設定される目標室内温度Tsと室温サーミスタ
405によって検知される室内温度Trとから目標湯温
を58℃〜85℃の間で決定し、高温水サーミスタ40
1によって検知される湯温が目標湯温になるようにバー
ナ100の燃焼量を制御する。また、室内機2の対流フ
ァン200は、バーナ100の燃焼量に比例して、8段
階に制御される。この単独暖房運転では、低温水循環回
路の床暖熱動弁13は閉じられる。
[Independent Heating Operation] In the independent heating operation, the room is heated only by the indoor unit 2. In the independent heating operation, the circulation pump 12 is started in response to the ON operation of the heating operation of the remote controller 4, the combustion of the burner 100 is started, and the flow rate variable valve 14 is fully opened to make the remote controller 4 operate.
The target hot water temperature is set between 58 ° C. and 85 ° C. based on the target indoor temperature Ts set by the room temperature Tr and the indoor temperature Tr detected by the room temperature thermistor 405.
The combustion amount of the burner 100 is controlled so that the hot water temperature detected by 1 becomes the target hot water temperature. Further, the convection fan 200 of the indoor unit 2 is controlled in eight stages in proportion to the combustion amount of the burner 100. In this single heating operation, the floor warming valve 13 of the low temperature water circulation circuit is closed.

【0027】〔床単独運転〕床単独運転は、床暖房パネ
ル3のみによって暖房運転を行うものである。床単独運
転では、リモコン4の床暖房運転のオン操作に応じて床
暖房ホットダッシュ動作を行う。以下に床暖房ホットダ
ッシュ動作を説明する。床暖房ホットダッシュ動作で
は、始めに室内機2の対流ファン200を一定時間(数
十秒間)微風で駆動し、これにより、室内空気を対流さ
せる。その後、室内機2に備えられた室温サーミスタ4
05により室内温度Trを検知する。
[Floor alone operation] In the floor alone operation, heating operation is performed only by the floor heating panel 3. In the floor alone operation, the floor heating hot dash operation is performed according to the ON operation of the floor heating operation of the remote controller 4. The floor heating hot dash operation will be described below. In the floor heating hot dash operation, first, the convection fan 200 of the indoor unit 2 is driven by a slight breeze for a certain period of time (tens of seconds), thereby convection the indoor air. After that, the room temperature thermistor 4 provided in the indoor unit 2
The indoor temperature Tr is detected by 05.

【0028】この検知により床温を推定して、その温度
に基づいて床暖熱動弁13を連続して開放する床暖房ホ
ットダッシュ時間tpを算出する。この床暖房ホットダ
ッシュ時間tpは、検知された室内温度Trが高い場合
には短く、低いほど長くなるように算出する。
The floor temperature is estimated by this detection, and the floor heating hot dash time tp for continuously opening the floor warming valve 13 is calculated based on the temperature. The floor heating hot dash time tp is calculated to be short when the detected room temperature Tr is high, and to be long when the detected room temperature Tr is low.

【0029】床暖房ホットダッシュ動作では、循環ポン
プ12の駆動を開始するとともにバーナ100の燃焼を
開始する。床暖房ホットダッシュ時間tpの間、床暖熱
動弁13を開放し、高温水サーミスタ401によって検
知される温度が80℃になるように燃焼ファン101及
び比例弁104を制御する。これにより、バーナ100
によって80℃に加熱された温水が、運転開始直後から
床暖房ホットダッシュ時間tpの間連続して床暖房パネ
ル3を通過して放熱するため、暖房開始初期に十分な床
暖房能力が確保でき、室内温度の立ち上がりが向上す
る。
In the floor heating hot dash operation, the drive of the circulation pump 12 is started and the combustion of the burner 100 is started. During the floor heating hot dash time tp, the floor heating valve 13 is opened, and the combustion fan 101 and the proportional valve 104 are controlled so that the temperature detected by the high temperature water thermistor 401 becomes 80 ° C. This allows the burner 100
Since the hot water heated to 80 ° C. continuously passes through the floor heating panel 3 for the floor heating hot dash time tp immediately after the start of operation and radiates heat, a sufficient floor heating capacity can be secured at the beginning of heating, The indoor temperature rise is improved.

【0030】床暖房ホットダッシュ時間tpが経過した
後は、リモコン4によって7段階のうちから設定される
床暖房レベルに応じて、床暖熱動弁13の開放時間と遮
断時間との割合が決定されて、決定された割合で床暖熱
動弁13が開閉制御される。このとき、バーナ100の
燃焼量は、低温水サーミスタ402によって検知される
温度が60℃になるように制御される。
After the floor heating hot dash time tp elapses, the ratio of the opening time and the shut-off time of the floor heating valve 13 is determined according to the floor heating level set by the remote controller 4 out of seven stages. Then, the floor warming / heat valve 13 is controlled to open / close at the determined ratio. At this time, the combustion amount of the burner 100 is controlled so that the temperature detected by the low temperature water thermistor 402 is 60 ° C.

【0031】この床暖熱動弁13の開放時間と遮断時間
との割合は、20分間の周期において開放される時間
が、最大床暖房レベルでは20分間、最小床暖房レベル
では3分間、その間の床暖房レベルでは、3分間から2
0分間の間の時間がそれぞれ設定されるものである。な
お、床暖熱動弁13は、熱により開閉制御するものであ
り、開閉に時間が掛かるが、温水の循環を停止させる
際、大きな作動力により確実に温水循環回路を閉鎖する
ことができる。なお、床暖房運転の場合には、流量可変
弁14は閉じられる。
The ratio of the opening time and the shut-off time of the floor heating valve 13 is such that the opening time in a cycle of 20 minutes is 20 minutes at the maximum floor heating level, 3 minutes at the minimum floor heating level, and in that period. Underfloor heating level from 3 minutes to 2
The time between 0 minutes is set respectively. The floor warming valve 13 controls opening and closing by heat, and although it takes time to open and close, when the circulation of hot water is stopped, the hot water circulation circuit can be reliably closed by a large operating force. In the floor heating operation, the variable flow valve 14 is closed.

【0032】〔デュエット暖房運転〕デュエット暖房運
転は、室内機2と床暖房パネル3とにより室内の暖房を
行うものである。デュエット暖房運転では、床暖房パネ
ル3については、上記の床単独運転の場合と同様に床暖
房ホットダッシュ動作の制御を行い、バーナ100の着
火後の燃焼量制御として、加熱用熱交換器11の流出側
に設けられた高温サーミスタ401によって高温水温度
を検知して、その温度が80℃になるようにバーナ10
0の燃焼量をフィードバック制御する。
[Duet Heating Operation] In the duet heating operation, the indoor unit 2 and the floor heating panel 3 heat the room. In the duet heating operation, for the floor heating panel 3, the floor heating hot dash operation is controlled in the same manner as in the case of the floor single operation described above, and the combustion heat amount of the heating heat exchanger 11 is controlled as the combustion amount control after the burner 100 is ignited. The high temperature water temperature is detected by the high temperature thermistor 401 provided on the outflow side and the burner 10 is adjusted so that the temperature becomes 80 ° C.
The combustion amount of 0 is feedback-controlled.

【0033】室内機2への温水制御としては、リモコン
4の設定温度Tsと、室内機2に備えられた室温サーミ
スタ405に検知される室内温度Trに基づいて室内に
放出する必要熱量Qを算出して、この必要熱量Qが室内
機2の暖房用熱交換器16で放熱されるような温水流量
Lが得られるように、流量可変弁14を制御する。
To control the hot water to the indoor unit 2, the required heat quantity Q to be released into the room is calculated based on the set temperature Ts of the remote controller 4 and the indoor temperature Tr detected by the room temperature thermistor 405 provided in the indoor unit 2. Then, the flow rate variable valve 14 is controlled so that the hot water flow rate L such that the required heat quantity Q is radiated by the heating heat exchanger 16 of the indoor unit 2 is obtained.

【0034】暖房用熱交換器16での放熱量は、暖房用
熱交換器16へ流入する流入温水温度Tinと暖房用熱交
換器16から流出する流出温水温度Tout との温度差
と、暖房用熱交換器16を流れる温水流量Lとから Q=L×(Tin−Tout ) … 式1 で求められるため、温水流量Lは、 L=Q/(Tin−Tout ) … 式2 で決まる。従って、上記の必要熱量Qが算出された場
合、流入温水温度Tinと流出温水温度Tout とを検知す
れば、上式2により温水流量Lが算出でき、この算出さ
れた温水流量Lになるように流量可変弁14を制御すれ
ばよい。
The amount of heat radiated in the heating heat exchanger 16 depends on the temperature difference between the inflow hot water temperature Tin flowing into the heating heat exchanger 16 and the outflow hot water temperature Tout flowing out from the heating heat exchanger 16, and From the flow rate L of the hot water flowing through the heat exchanger 16, Q = L * (Tin-Tout) is obtained by the equation 1, and therefore the flow rate L of the hot water is determined by the equation: L = Q / (Tin-Tout). Therefore, when the required heat quantity Q is calculated, if the inflow warm water temperature Tin and the outflow warm water temperature Tout are detected, the warm water flow rate L can be calculated by the above equation 2, and the calculated warm water flow rate L can be obtained. The variable flow valve 14 may be controlled.

【0035】なお、暖房用熱交換器16への流入温水温
度Tinは、高温水サーミスタ401により検知され、流
出温水温度Tout は、室内機2の室内温水サーミスタ4
03により検知される。なお、前述したように、流入温
水温度Tinが一定(80℃)になるように、バーナ10
0の燃焼量が制御されるため、温水温度を算出する際
に、流入温水温度Tinを検知し直さなくてもよい。
The hot water temperature Tin flowing into the heating heat exchanger 16 is detected by the hot water thermistor 401, and the hot water temperature Tout flowing out is the indoor hot water thermistor 4 of the indoor unit 2.
Detected by 03. In addition, as described above, the burner 10 is controlled so that the inflow hot water temperature Tin becomes constant (80 ° C.).
Since the combustion amount of 0 is controlled, it is not necessary to re-detect the inflow warm water temperature Tin when calculating the warm water temperature.

【0036】以上の制御動作により、暖房用熱交換器1
6への流量を制御でき、室内機2の暖房用熱交換器16
における放熱量を正確に制御でき、床暖房パネル3によ
る暖房を同時に行い、暖房用熱交換器16への流量が安
定しない場合であっても、より精度の高い暖房運転を行
うことができる。
By the above control operation, the heating heat exchanger 1
6 can be controlled, and the heat exchanger 16 for heating the indoor unit 2 can be controlled.
It is possible to accurately control the amount of heat radiation, and to perform heating by the floor heating panel 3 at the same time, and even if the flow rate to the heating heat exchanger 16 is not stable, more accurate heating operation can be performed.

【0037】〔デュエットドライ運転〕デュエットドラ
イ運転は、室内機2において温水回路10と冷凍サイク
ル20とを同時に作動させて、室内機2において除湿を
行い、同時に、床暖房パネル3を作動させる運転であ
る。
[Duet Dry Operation] The duet dry operation is an operation in which the hot water circuit 10 and the refrigeration cycle 20 are simultaneously operated in the indoor unit 2 to dehumidify the indoor unit 2, and at the same time, the floor heating panel 3 is operated. is there.

【0038】デュエットドライ運転では、冷凍サイクル
20の圧縮機21の制御として、リモコン4による設定
温度と室温サーミスタ405に検知される室内温度Tr
との温度差と、リモコン4による設定湿度と湿度センサ
406により検知される湿度との湿度差とを算出し、温
度差及び湿度差に応じて、圧縮機21の作動周波数を決
定する。圧縮機21の作動周波数は、あらかじめ8段階
の作動周波数が設定されていて、上記の温度差及び湿度
差に基づいて8段階のうちのどの作動周波数にするかを
決定する。具体的には、例えば、図2に示すように、温
度差と湿度差が共に大きい場合には、最高周波数に決定
し、温度差と湿度差が共に小さい場合には、最低周波数
に決定し、その間の各温度差、各湿度差においては、そ
の程度に応じて最低周波数と最高周波数との間の段階の
作動周波数に決定する。
In the duet dry operation, the temperature set by the remote controller 4 and the room temperature Tr detected by the room temperature thermistor 405 are used to control the compressor 21 of the refrigeration cycle 20.
And the humidity difference between the humidity set by the remote controller 4 and the humidity detected by the humidity sensor 406 are calculated, and the operating frequency of the compressor 21 is determined according to the temperature difference and the humidity difference. The operating frequency of the compressor 21 is set in advance in eight operating frequencies, and which operating frequency among eight operating frequencies is determined based on the temperature difference and the humidity difference. Specifically, for example, as shown in FIG. 2, when the temperature difference and the humidity difference are both large, the highest frequency is determined, and when the temperature difference and the humidity difference are both small, the lowest frequency is determined, In each temperature difference and each humidity difference in between, the operating frequency of the stage between the lowest frequency and the highest frequency is determined according to the degree.

【0039】上記のように決定された圧縮機21の作動
周波数は、冷凍サイクル20における冷媒の循環に作用
するだけであり、同じ作動周波数の場合でも、外気温度
と内気温度とに応じて冷却能力が異なり、また、室内の
湿度に応じても異なるものであるため、決定される作動
周波数によって決まる冷却能力は、外気温度、内気温
度、室内の湿度についてあらかじめ設定した標準的な条
件における標準冷却能力である。従って、冷凍サイクル
20における実際の冷却能力は、単純に圧縮機21の作
動周波数に応じたものとはならない。
The operating frequency of the compressor 21 determined as described above acts only on the circulation of the refrigerant in the refrigeration cycle 20, and even if the operating frequency is the same, the cooling capacity depends on the outside air temperature and the inside air temperature. The cooling capacity that depends on the operating frequency to be determined is the standard cooling capacity under standard conditions that are preset for the outside air temperature, the inside air temperature, and the indoor humidity. Is. Therefore, the actual cooling capacity of the refrigeration cycle 20 does not simply depend on the operating frequency of the compressor 21.

【0040】このため、決定される各作動周波数におい
ての冷凍サイクル20の冷却能力が、外気温度と内気温
度とに応じてどのように変化するかについて、あらかじ
め試験等によって分析しておき、外気温度及び内気温度
と各温度における冷却能力の変化との関係を、冷却能力
の補正用データとしてマイコン内の記憶手段に記憶して
おき、下記の表1のように決定された圧縮機21の作動
周波数における標準冷却能力を、検知される外気温度と
室内温度とに応じて補正する。
Therefore, how the cooling capacity of the refrigeration cycle 20 at each determined operating frequency changes depending on the outside air temperature and the inside air temperature is analyzed in advance by a test or the like, and the outside air temperature is analyzed. The relationship between the internal air temperature and the change in the cooling capacity at each temperature is stored in the storage means in the microcomputer as the data for correcting the cooling capacity, and the operating frequency of the compressor 21 determined as shown in Table 1 below. The standard cooling capacity at is corrected according to the detected outside air temperature and indoor temperature.

【0041】表1に、外気温度及び内気温度と冷却能力
の変化との関係についての一例を示す。
Table 1 shows an example of the relationship between the outside air temperature and the inside air temperature and the change in the cooling capacity.

【0042】[0042]

【表1】 [Table 1]

【0043】表1に示すように、外気温度が高く室内温
度が低い場合に最も冷却効率が低下し、外気温度が低く
室内温度が高い場合に最も効率が高くなる。実際には、
上記の表1の外気温度と室内温度について、さらに幾つ
かの場合分けをしたものについての冷却能力の補正用デ
ータを記憶するとよい。補正用データは、例えば、上記
のとおり決定される作動周波数における標準冷却能力に
対して、各温度の場合に乗算するための係数の形で記憶
してもよいし、あらかじめ補正された冷却能力を各温度
毎に対応して記憶しておいてもよい。
As shown in Table 1, when the outside air temperature is high and the room temperature is low, the cooling efficiency is the lowest, and when the outside air temperature is low and the room temperature is high, the efficiency is the highest. actually,
It is advisable to store the correction data of the cooling capacity for the outside air temperature and the indoor temperature in Table 1 above, which are further divided into several cases. The correction data may be stored, for example, in the form of a coefficient for multiplying the standard cooling capacity at the operating frequency determined as described above at each temperature, or the previously corrected cooling capacity may be stored. It may be stored in correspondence with each temperature.

【0044】また、上記のように決定された圧縮機21
の作動周波数は、冷凍サイクル20における冷媒の循環
に作用するだけであり、冷凍サイクル20における実際
の冷却能力は、単純に圧縮機21の作動周波数に応じた
ものとはならなず、同じ作動周波数の場合でも、室内の
湿度に応じても、また異なる。このため、各作動周波数
において、室内の湿度に応じて冷凍サイクル20の冷却
能力がどのように変化するかについて、室内の湿度と冷
却能力の変化との関係について、あらかじめ試験等によ
って得られたデータをマイコン内の記憶手段に記憶して
おき、上記のように外気温度と室内温度とに応じて補正
された圧縮機21の作動周波数における冷却能力を、さ
らに補正する。
Further, the compressor 21 determined as described above
Of the refrigeration cycle 20 only affects the circulation of the refrigerant in the refrigeration cycle 20, and the actual cooling capacity of the refrigeration cycle 20 does not simply correspond to the operation frequency of the compressor 21. And also depending on the indoor humidity. Therefore, at each operating frequency, data obtained in advance by a test or the like regarding how the cooling capacity of the refrigeration cycle 20 changes according to the indoor humidity and the relationship between the indoor humidity and the change of the cooling capacity. Is stored in the storage means in the microcomputer, and the cooling capacity at the operating frequency of the compressor 21 corrected according to the outside air temperature and the room temperature as described above is further corrected.

【0045】表2に、室内の湿度と冷却能力との関係に
ついての一例を示す。
Table 2 shows an example of the relationship between indoor humidity and cooling capacity.

【0046】[0046]

【表2】 [Table 2]

【0047】表2に示すように、湿度が高い場合には冷
却効率が低下し、湿度が低くなると効率が高くなる。実
際には、上記の表2の室内の湿度について、さらに幾つ
かの場合分けをしたものについての冷却能力に関するデ
ータを記憶するとよい。この湿度についての補正用デー
タも、上記の各温度に対する補正用データと同様に、上
記のとおり決定される作動周波数における標準冷却能力
に対して、各湿度の場合に乗算するための係数の形で記
憶してもよいし、あらかじめ補正された冷却能力を各湿
度毎に対応して記憶しておいてもよい。
As shown in Table 2, when the humidity is high, the cooling efficiency is low, and when the humidity is low, the efficiency is high. In practice, it is advisable to store the data regarding the cooling capacity for the indoor humidity in Table 2 above, which is further divided into several cases. Similarly to the correction data for each temperature, the correction data for this humidity is also in the form of a coefficient for multiplying the standard cooling capacity at the operating frequency determined as described above for each humidity. It may be stored, or the cooling capacity corrected in advance may be stored for each humidity.

【0048】以上のとおり、図2に基づいて決定された
圧縮機21の各作動周波数についての標準冷却能力を、
それぞれ、外気温度と室内温度に応じて補正し、さら
に、室内の湿度に応じて補正することによって、設定温
度および設定湿度に応じて圧縮機21の作動周波数が決
まったときの冷凍サイクル20における実際の冷却能力
を求める。
As described above, the standard cooling capacity for each operating frequency of the compressor 21 determined based on FIG.
The actual operation in the refrigeration cycle 20 when the operating frequency of the compressor 21 is determined according to the set temperature and the set humidity by correcting the temperature according to the outside temperature and the room temperature, respectively, and further according to the indoor humidity. Seeking the cooling capacity of.

【0049】一方、温水回路10では、バーナ100の
燃焼量制御として、加熱用熱交換器11の流出側に設け
られた高温水サーミスタ401によって高温水温度を検
知して、その温度が80℃になるようにバーナ100の
燃焼量をフィードバック制御する。
On the other hand, in the hot water circuit 10, in order to control the combustion amount of the burner 100, the high temperature water thermistor 401 provided on the outflow side of the heating heat exchanger 11 detects the high temperature water temperature, and the temperature becomes 80 ° C. The combustion amount of the burner 100 is feedback-controlled so that

【0050】また、室内機2への温水制御としては、リ
モコン4の設定温度Tsと、室内機2に備えられた室温
サーミスタ405に検知される室内温度Trに基づいて
室内に放出する必要熱量Qdを算出して、この必要熱量
Qdが室内機2の暖房用熱交換器16で放熱されるよう
な温水流量Lが得られるように、流量可変弁14を制御
する。
As the hot water control for the indoor unit 2, the required heat quantity Qd to be released indoors based on the set temperature Ts of the remote controller 4 and the indoor temperature Tr detected by the room temperature thermistor 405 provided in the indoor unit 2. Is calculated, and the flow rate variable valve 14 is controlled so that the hot water flow rate L such that the required heat quantity Qd is radiated by the heating heat exchanger 16 of the indoor unit 2 is obtained.

【0051】このデュエットドライ運転における必要熱
量Qdは、上記のデュエット暖房運転の場合と同様に、
現状の室内温度を設定温度にするために必要な熱量とし
て演算される必要熱量Qと、上記の図2に基づいて決定
された圧縮機21の作動回転数における標準冷却能力
が、表1、表2によって補正された実際の冷凍サイクル
10の冷却能力によって冷却される分の熱量を補充する
ために必要な補充熱量Qcとの和として、 Qd=Qc+Q … 式3 で表される値である。
The required heat quantity Qd in this duet dry operation is the same as in the above duet heating operation.
Table 1 shows the required heat quantity Q calculated as the heat quantity necessary to bring the current indoor temperature to the set temperature, and the standard cooling capacity at the operating speed of the compressor 21 determined based on FIG. As a sum of the supplemental heat quantity Qc required to replenish the quantity of heat cooled by the actual cooling capacity of the refrigeration cycle 10 corrected by 2, Qd = Qc + Q ...

【0052】温水回路10における流量制御では、上記
のデュエット暖房運転の式2における必要熱量Qに代え
て、上記の式3によって得られる必要熱量Qdを代入し
て流量Lを算出し、この流量Lになるように流量可変弁
14を制御するだけでよい。従って、デュエット暖房運
転とデュエットドライ運転とで、温水回路10の流量制
御を大きく変更する必要がないため、制御が複雑になら
ない。なお、デュエットドライ運転では、室内機2の対
流ファン200は、微風に制御される。
In the flow rate control in the hot water circuit 10, the flow rate L is calculated by substituting the required heat quantity Qd obtained by the above equation 3 in place of the required heat quantity Q in the equation 2 of the duet heating operation described above, and this flow rate L is calculated. It suffices to control the flow rate variable valve 14 so that Therefore, it is not necessary to largely change the flow rate control of the hot water circuit 10 between the duet heating operation and the duet dry operation, so that the control does not become complicated. In the duet dry operation, the convection fan 200 of the indoor unit 2 is controlled by a slight breeze.

【0053】以上の制御動作により、デュエットドライ
運転においても、室内機2の暖房用熱交換器16におけ
る放熱量を正確に制御でき、床暖房パネル3による暖房
を同時に行う場合であっても、より精度の高い暖房運転
を行うことができる。尚、上記実施例では、暖房単独運
転時又はドライ運転時、バーナの燃焼量を制御すること
により暖房能力を調整するものを示したが、温水の温度
を一定とし、循環流量を制御することにより暖房能力を
調整するようにしてもよい。
By the above control operation, the amount of heat radiation in the heating heat exchanger 16 of the indoor unit 2 can be accurately controlled even in the duet dry operation, and even when the floor heating panel 3 is used for heating at the same time, A highly accurate heating operation can be performed. In the above embodiment, the heating capacity is adjusted by controlling the combustion amount of the burner during the heating only operation or the dry operation, but the temperature of the hot water is kept constant and the circulation flow rate is controlled. The heating capacity may be adjusted.

【0054】異常のとおり、本発明では、除湿運転とし
て、あらかじめ試験等でよって得られた外気温度、室内
温度および湿度と冷凍サイクル20の冷却能力の変化に
関するデータを記憶しておき、冷凍サイクル20の圧縮
機21の制御では、設定温度と室内温度との温度差と、
設定湿度と室内の湿度との湿度差とから作動周波数を決
定し、決定された作動周波数における標準冷却能力を、
そのときの外気温度、室内温度および湿度に応じて記憶
されているデータに基づいて補正して、実際の冷却能力
を求める。このため、冷凍サイクル20によって冷却さ
れる熱量の演算の精度が増し、設定温度と室内温度とに
応じて算出される室内機で放熱するのに必要な熱量に、
冷却される熱量分を上乗せした熱量を室内機2で放出す
るように、温水回路10の流量可変弁14を制御するだ
けでよい。
As in the case of abnormality, in the present invention, as the dehumidifying operation, data relating to changes in the outside air temperature, the room temperature and the humidity and the cooling capacity of the refrigerating cycle 20 which are obtained in advance by a test or the like are stored, and the refrigerating cycle 20 is stored. In the control of the compressor 21, the temperature difference between the set temperature and the room temperature,
Determine the operating frequency from the humidity difference between the set humidity and the indoor humidity, the standard cooling capacity at the determined operating frequency,
The actual cooling capacity is obtained by making a correction based on the stored data according to the outside air temperature, the room temperature and the humidity at that time. Therefore, the accuracy of the calculation of the amount of heat cooled by the refrigeration cycle 20 is increased, and the amount of heat required to radiate heat in the indoor unit is calculated according to the set temperature and the indoor temperature.
It suffices to control the flow rate variable valve 14 of the hot water circuit 10 so that the indoor unit 2 releases the amount of heat added to the amount of heat to be cooled.

【0055】また、室内機2で放熱される熱量は、温水
が暖房用熱交換器16で低下した温度と流量とから決ま
るため、流量可変弁14を制御するだけで、必要熱量に
応じた熱量が、室内機2で放熱される。従って、外気温
度、室内温度、湿度に応じた適切な熱量が確実に室内機
で放熱され、精度のよい除湿運転を行うことができる。
また、温水回路が、床暖房パネルに対する循環回路を形
成していても、加熱源(バーナ)によって加熱された温
水温度が一定であるため、上記の制御によって確実に室
内機における放熱量を管理できるため、精度のよい除湿
運転を行うことができる。上記実施例では、加熱源とし
てバーナを示したが、電気ヒータでもよい。
Further, the amount of heat radiated by the indoor unit 2 is determined by the temperature and the flow rate of the hot water lowered in the heating heat exchanger 16, so that the amount of heat corresponding to the required amount of heat can be obtained only by controlling the flow rate variable valve 14. However, the indoor unit 2 radiates heat. Therefore, an appropriate amount of heat according to the outside air temperature, the indoor temperature, and the humidity is surely radiated by the indoor unit, and the dehumidifying operation can be performed with high accuracy.
Further, even if the hot water circuit forms a circulation circuit for the floor heating panel, the temperature of the hot water heated by the heating source (burner) is constant, so the amount of heat radiated in the indoor unit can be reliably managed by the above control. Therefore, the dehumidifying operation can be performed with high accuracy. Although the burner is shown as the heating source in the above embodiment, an electric heater may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す温水エアコンシステムの
概略構成図である。
FIG. 1 is a schematic configuration diagram of a hot water air conditioner system showing an embodiment of the present invention.

【図2】本発明の実施例におけるデュエットドライ運転
の圧縮機回転数制御特性を説明するための温度差と湿度
差と決定される圧縮機の作動周波数との関係を示す特性
図である。
FIG. 2 is a characteristic diagram showing a relationship between a temperature difference and a humidity difference and an operating frequency of the compressor determined for explaining the compressor rotation speed control characteristic of the duet dry operation in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 室内機 4 リモコン(室温設定手段、湿度設定手段) 10 温水回路(温水循環回路) 12 循環ポンプ(ポンプ) 14 流量可変弁 16 暖房用熱交換器 18 水量センサ(流量センサ) 20 冷凍サイクル 21 圧縮機 22 凝縮器 25 冷却用熱交換器 100 バーナ(加熱源) 400 制御装置(温水エアコンシステムの制御装置、
圧縮機回転数決定手段、冷却能力温度補正値記憶手段、
冷却能力湿度補正値記憶手段、補正冷却能力決定手段、
必要熱量算出手段、熱量加算手段、流量算出手段、流量
可変弁制御手段) 403 室内温水サーミスタ(流出温水温度検知手段) 405 室温サーミスタ(室温センサ) 406 湿度センサ 407 外気温度サーミスタ(室外温度センサ)
2 Indoor unit 4 Remote controller (room temperature setting means, humidity setting means) 10 Hot water circuit (hot water circulation circuit) 12 Circulation pump (pump) 14 Flow rate variable valve 16 Heating heat exchanger 18 Water quantity sensor (flow sensor) 20 Refrigeration cycle 21 Compression Machine 22 Condenser 25 Cooling heat exchanger 100 Burner (heating source) 400 Control device (control device for hot water air conditioner system,
Compressor rotation speed determination means, cooling capacity temperature correction value storage means,
Cooling capacity humidity correction value storage means, corrected cooling capacity determination means,
Required heat quantity calculation means, heat quantity addition means, flow rate calculation means, flow rate variable valve control means) 403 Indoor hot water thermistor (outflow hot water temperature detection means) 405 Room temperature thermistor (room temperature sensor) 406 Humidity sensor 407 Outside air temperature thermistor (outdoor temperature sensor)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加熱源によって一定温度に加熱した温水
をポンプによって循環させる温水循環回路の暖房用熱交
換器と、圧縮機により冷媒を循環させる冷凍サイクルの
冷却用熱交換器とを、室内に設置した室内機に配したエ
アコンシステムにおいて、 前記温水循環回路中の温水の流量を調節するための流量
可変弁と、 前記室内の温度を設定するための室温設定手段と、 前記室内の温度を検知するための室温センサと、 前記室内の湿度を設定する湿度設定手段と、 前記室内の湿度を検知する湿度センサと、 前記冷凍サイクルの凝縮器が配された室外の温度を検知
する室外温度センサとを備え、 前記室温設定手段の設定温度と前記室温センサの検知し
た室内温度との温度差及び前記湿度設定手段の設定湿度
と前記湿度センサの検知湿度との湿度差に基づいて前記
圧縮機の回転数を決定する圧縮機回転数決定手段と、 前記圧縮機回転数決定手段により決定される前記圧縮機
の回転数毎に、前記冷凍サイクルにおける冷却能力の前
記室外温度センサの検知した室外温度と前記室温センサ
の検知する前記室内温度とに応じた温度補正値をあらか
じめ記憶した冷却能力温度補正値記憶手段と、 前記圧縮機回転数決定手段により決定される前記圧縮機
の回転数毎に、前記冷凍サイクルにおける冷却能力の前
記湿度センサの検知湿度に応じた補正値をあらかじめ記
憶した冷却能力湿度補正値記憶手段と、 前記圧縮機回転数決定手段により決定された回転数にお
ける前記圧縮機の標準冷却能力を、前記冷却能力温度補
正値記憶手段に記憶された前記温度補正値と前記冷却能
力湿度補正値記憶手段に記憶された前記湿度補正値とに
基づいて補正する補正冷却能力決定手段と、 前記暖房用熱交換器から流出する流出温水温度を検知す
る流出温水温度検知手段と、 前記設定温度と前記室内温度との温度差に基づいて前記
暖房用熱交換器によって放出すべき必要熱量を算出する
必要熱量算出手段と、 該必要熱量算出手段により算出された前記必要熱量と前
記補正冷却能力決定手段により決定された前記補正冷却
能力により冷却される分の熱量を補充するための補充熱
量とを加算する熱量加算手段と、 該熱量加算手段により算出された加算熱量と流出温水温
度検知手段により検知された前記暖房用熱交換器の流出
温水温度とから前記流量可変弁によって調整すべき流量
を算出する流量算出手段と、 前記暖房用熱交換器を通過する温水流量を検出する流量
センサと、 前記流量算出手段の算出した算出流量と前記流量センサ
の検出流量とに基づいて前記流量可変弁を制御する流量
可変弁制御手段とを具備することを特徴とするエアコン
システムの制御装置。
1. A heating heat exchanger in a warm water circulation circuit, in which hot water heated to a constant temperature by a heating source is circulated by a pump, and a cooling heat exchanger in a refrigeration cycle, in which a refrigerant is circulated by a compressor, are provided indoors. In an air conditioner system arranged in an installed indoor unit, a flow rate variable valve for adjusting the flow rate of hot water in the hot water circulation circuit, a room temperature setting unit for setting the temperature of the room, and a temperature of the room are detected. A room temperature sensor for, a humidity setting unit that sets the indoor humidity, a humidity sensor that detects the indoor humidity, and an outdoor temperature sensor that detects the temperature outside the condenser of the refrigeration cycle. A temperature difference between the set temperature of the room temperature setting means and the room temperature detected by the room temperature sensor, and the humidity of the set humidity of the humidity setting means and the detected humidity of the humidity sensor. Compressor rotation speed determining means for determining the rotation speed of the compressor based on the difference, and for each rotation speed of the compressor determined by the compressor rotation speed determining means, the outdoor of the cooling capacity in the refrigeration cycle A cooling capacity temperature correction value storage unit that stores in advance a temperature correction value corresponding to the outdoor temperature detected by a temperature sensor and the indoor temperature detected by the room temperature sensor, and the compression determined by the compressor rotation speed determination unit. For each rotation speed of the machine, a cooling capacity humidity correction value storage means that stores in advance a correction value according to the detected humidity of the humidity sensor for the cooling capacity in the refrigeration cycle, and the rotation speed determined by the compressor rotation speed determination means. Number of standard cooling capacity of the compressor in the temperature correction value and the cooling capacity humidity correction value storage means stored in the cooling capacity temperature correction value storage means. Corrected cooling capacity determination means for correcting based on the stored humidity correction value, outflow hot water temperature detection means for detecting the outflow hot water temperature flowing out from the heating heat exchanger, the set temperature and the room temperature Required heat amount calculation means for calculating the required heat amount to be released by the heating heat exchanger based on the temperature difference between the required heating amount calculated by the required heat amount calculation means and the corrected cooling capacity determination means. A heat quantity adding means for adding a supplementary heat quantity for replenishing the quantity of heat cooled by the correction cooling capacity; Flow rate calculating means for calculating a flow rate to be adjusted by the flow rate variable valve from the hot water temperature flowing out of the heat exchanger, and detecting the hot water flow rate passing through the heating heat exchanger. And a flow rate variable valve control means for controlling the flow rate variable valve based on the calculated flow rate calculated by the flow rate calculation means and the flow rate detected by the flow rate sensor. apparatus.
JP7330913A 1995-12-19 1995-12-19 Control device for air conditioner system Pending JPH09170799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7330913A JPH09170799A (en) 1995-12-19 1995-12-19 Control device for air conditioner system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7330913A JPH09170799A (en) 1995-12-19 1995-12-19 Control device for air conditioner system

Publications (1)

Publication Number Publication Date
JPH09170799A true JPH09170799A (en) 1997-06-30

Family

ID=18237881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7330913A Pending JPH09170799A (en) 1995-12-19 1995-12-19 Control device for air conditioner system

Country Status (1)

Country Link
JP (1) JPH09170799A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201523A (en) * 1997-11-11 1999-07-30 Mitsubishi Electric Corp Air conditioner and method for controlling it
JP2015152194A (en) * 2014-02-12 2015-08-24 東芝キヤリア株式会社 Refrigeration cycle device
CN111140984A (en) * 2019-12-30 2020-05-12 珠海格力电器股份有限公司 Water multi-connected central air conditioner control method, computer readable storage medium and air conditioner
CN114110940A (en) * 2021-10-14 2022-03-01 中建三局第三建设工程有限责任公司 Intelligent electric regulating valve adjusting method and system for air-conditioning water system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201523A (en) * 1997-11-11 1999-07-30 Mitsubishi Electric Corp Air conditioner and method for controlling it
JP2015152194A (en) * 2014-02-12 2015-08-24 東芝キヤリア株式会社 Refrigeration cycle device
CN111140984A (en) * 2019-12-30 2020-05-12 珠海格力电器股份有限公司 Water multi-connected central air conditioner control method, computer readable storage medium and air conditioner
CN114110940A (en) * 2021-10-14 2022-03-01 中建三局第三建设工程有限责任公司 Intelligent electric regulating valve adjusting method and system for air-conditioning water system

Similar Documents

Publication Publication Date Title
JPH07107469B2 (en) Refrigerant heating type heating device
JPH09170799A (en) Control device for air conditioner system
KR100215283B1 (en) Cooling system with heat pump
JPH09113001A (en) Control apparatus for air conditioner system
JPH09273762A (en) Control apparatus for floor heating system
JP2919317B2 (en) Control device for hot water heating system
JP2919316B2 (en) Control device for floor heating system
JP3425287B2 (en) Control device for combined hot water heating system
JP3425282B2 (en) Control device for combined hot water heating system
JP3636261B2 (en) Control device for hot water floor heating system
JPH09170764A (en) Control apparatus for hot water heating system
JP3703594B2 (en) Temperature controller for combined hot water heating system
JP3740234B2 (en) Control device for hot water heating system
JPH07310946A (en) Refrigerant heating type cooler/heater
JPH07310945A (en) Refrigerant heating type cooler/heater
JPS6342183B2 (en)
JP3425306B2 (en) Hot water heating system
JPH09287749A (en) Control equipment of floor heating system
JP3128518B2 (en) Temperature controller for combined hot water heating system
JP3154947B2 (en) Hot water floor heating system controller
JP4056286B2 (en) Control device for engine drive device
JPH10205784A (en) Warm water-floor-heating system
JP3461100B2 (en) Temperature control device for hot water heating system
JP3483183B2 (en) Temperature controller for combined hot water heating system
KR960005775B1 (en) Room heating device