JPH07310946A - Refrigerant heating type cooler/heater - Google Patents

Refrigerant heating type cooler/heater

Info

Publication number
JPH07310946A
JPH07310946A JP6104224A JP10422494A JPH07310946A JP H07310946 A JPH07310946 A JP H07310946A JP 6104224 A JP6104224 A JP 6104224A JP 10422494 A JP10422494 A JP 10422494A JP H07310946 A JPH07310946 A JP H07310946A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
heating
room temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6104224A
Other languages
Japanese (ja)
Inventor
Shigeaki Yasui
繁明 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP6104224A priority Critical patent/JPH07310946A/en
Priority to KR1019950002108A priority patent/KR0141543B1/en
Publication of JPH07310946A publication Critical patent/JPH07310946A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To obtain a low-cost refrigerant heating type cooler/heater which has the excellent stability of a refrigerating cycle and can increase or decrease the heating capacity. CONSTITUTION:A gas burner 13 and a combustion fan 16 are so controlled that the number of revolutions of an indoor fan 31 is increased or decreased and (the temperature Th2-Th1 to be detected by a temperature sensor 26) is maintained at the predetermined value to be decided based on the amplitude of the temperature Th1 to be detected by the sensor 26 when the heating capacity is increased or decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、暖房運転時に冷媒を加
熱する冷媒加熱式冷暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant heating type cooling and heating apparatus for heating a refrigerant during heating operation.

【0002】[0002]

【従来の技術】図1に示す様に、圧縮機1→室外機側熱
交換器7→第1逆止弁8→キャピラリチューブ9→室内
機側熱交換器3→第2逆止弁10→アキュームレータ6
→圧縮機1の順に冷媒を流通させて冷房運転を行ない、
圧縮機1→室内機側熱交換器3→冷媒加熱器5→アキュ
ームレータ6→圧縮機1の順に冷媒を流通させて暖房運
転を行なう冷媒加熱式冷暖房装置が従来より知られてい
る。尚、暖房能力の増減は、圧縮機1の圧縮能力を連続
可変し、冷媒流通量を変化させて行なっている。
2. Description of the Related Art As shown in FIG. 1, a compressor 1 → outdoor unit heat exchanger 7 → first check valve 8 → capillary tube 9 → indoor unit heat exchanger 3 → second check valve 10 → Accumulator 6
→ The refrigerant is circulated in the order of the compressor 1 to perform the cooling operation,
BACKGROUND ART Refrigerant heating type cooling and heating devices that perform heating operation by circulating a refrigerant in the order of compressor 1 → indoor unit side heat exchanger 3 → refrigerant heater 5 → accumulator 6 → compressor 1 have been conventionally known. The heating capacity is increased / decreased by continuously changing the compression capacity of the compressor 1 and changing the refrigerant flow rate.

【0003】[0003]

【発明が解決しようとする課題】従来の冷媒加熱式冷暖
房装置は、以下の課題を有する。 (あ)圧縮機1の破損、又は冷媒加熱器5の損傷等の不
具合を防止する為、圧縮機1の圧縮能力を調整して冷凍
サイクルを安定させる必要があり、複雑な制御が必要で
ある。
The conventional refrigerant heating type cooling and heating apparatus has the following problems. (A) In order to prevent problems such as damage to the compressor 1 or damage to the refrigerant heater 5, it is necessary to adjust the compression capacity of the compressor 1 to stabilize the refrigeration cycle, and complicated control is required. .

【0004】(い)圧縮機1の圧縮能力を連続可変する
には、インバータ回路を使用して回転数を連続可変する
必要がある。インバータ回路は、高価な電子部品を多数
使用するとともに、ノイズ洩れ対策や電源波形の歪み
(高調波)対策等を行なう必要があり、コストがかか
る。
(Ii) In order to continuously change the compression capacity of the compressor 1, it is necessary to continuously change the rotation speed by using an inverter circuit. The inverter circuit requires a large number of expensive electronic parts, and it is necessary to take measures against noise leakage, distortion of power supply waveform (harmonic), and the like, which is costly.

【0005】本発明の目的は、冷凍サイクルの安定性に
優れるとともに、暖房能力の増減が可能な、低コストの
冷媒加熱式冷暖房装置の提供にある。
An object of the present invention is to provide a low-cost refrigerant heating type cooling and heating apparatus which is excellent in the stability of the refrigeration cycle and whose heating capacity can be increased or decreased.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、以下の構成を採用した。 (1)室内機側熱交換器から流出する冷媒を冷媒加熱器
に送り、加熱手段により加熱される冷媒加熱器内で冷媒
を蒸発させ、冷媒加熱器から搬出するガス冷媒を一定能
力で作動する圧縮機で断熱圧縮し、前記圧縮機から吐出
する高温高圧のガス冷媒を、室内ファンを付設した室内
機側熱交換器内で凝縮させる事により室内に放熱して暖
房運転を行なう冷媒加熱式冷暖房装置であって、飽和状
態の冷媒の温度Th1 を検出する第1温度センサを前記
冷媒加熱器の管路途中に配し、過熱蒸気状態の冷媒の温
度Th2 を検出する第2温度センサを前記冷媒加熱器の
出口から前記圧縮機の入口迄の間に配し、暖房能力を増
加・減少させる場合、前記室内ファンの送風量の増加・
減少を行なうとともに、温度Th2 −温度Th1 が所定
値に維持される様に前記加熱手段の加熱量を制御する。
In order to solve the above problems, the present invention employs the following configurations. (1) The refrigerant flowing out from the indoor unit side heat exchanger is sent to the refrigerant heater, the refrigerant is evaporated in the refrigerant heater heated by the heating means, and the gas refrigerant carried out from the refrigerant heater operates with a constant capacity. A high-temperature high-pressure gas refrigerant that is adiabatically compressed by a compressor and discharged from the compressor is condensed in an indoor unit side heat exchanger to radiate heat indoors to perform heating operation. A second temperature sensor for detecting a temperature Th 2 of a refrigerant in a superheated vapor state, wherein a first temperature sensor for detecting a temperature Th 1 of a refrigerant in a saturated state is arranged midway in the pipeline of the refrigerant heater. When the heating capacity is increased / decreased by arranging it from the outlet of the refrigerant heater to the inlet of the compressor, the amount of air blown by the indoor fan is increased.
The heating amount of the heating means is controlled so that the temperature Th 2 −the temperature Th 1 is maintained at a predetermined value while the temperature is reduced.

【0007】(2)室内機側熱交換器から流出する冷媒
を冷媒加熱器に送り、加熱手段により加熱される冷媒加
熱器内で冷媒を蒸発させ、冷媒加熱器から搬出するガス
冷媒を圧縮機で断熱圧縮し、前記圧縮機から吐出する高
温高圧のガス冷媒を、送風量が変更可能な室内ファンを
付設した室内機側熱交換器内で凝縮させる事により室内
に放熱して暖房運転を行なう冷媒加熱式冷暖房装置であ
って、飽和状態の冷媒温度Th1 を検出する第1温度セ
ンサを前記冷媒加熱器の管路途中に配し、過熱蒸気状態
の冷媒の温度Th2 を検出する第2温度センサを前記冷
媒加熱器の出口から前記圧縮機の入口迄の間に配し、温
度Th2 −温度Th1 が所定値に維持される様に、一定
能力で前記圧縮機を作動させた状態で、送風量に応じて
設定された各加熱量で前記加熱手段を作動させる冷媒流
通運転と、少なくとも前記加熱手段の作動を停止させる
冷媒停止運転とを交互に実施する。
(2) The refrigerant flowing out of the indoor unit side heat exchanger is sent to the refrigerant heater, the refrigerant is evaporated in the refrigerant heater heated by the heating means, and the gas refrigerant carried out from the refrigerant heater is compressed by the compressor. Adiabatic compression of the high temperature and high pressure gas refrigerant discharged from the compressor is condensed in an indoor unit side heat exchanger equipped with an indoor fan whose air flow rate can be changed to radiate heat indoors for heating operation. A refrigerant heating type heating and cooling apparatus, wherein a first temperature sensor for detecting a refrigerant temperature Th 1 in a saturated state is arranged midway in the pipeline of the refrigerant heater to detect a temperature Th 2 of the refrigerant in a superheated vapor state. A state in which a temperature sensor is arranged between the outlet of the refrigerant heater and the inlet of the compressor, and the compressor is operated at a constant capacity so that the temperature Th 2 −the temperature Th 1 is maintained at a predetermined value. And, each heating amount set according to the air flow rate Wherein the refrigerant flow operation for actuating the heating means, for alternately performed between the refrigerant stops operation to stop the operation of at least the heating means.

【0008】(3)冷媒加熱式冷暖房装置は、上記
(1)の構成を有し、目標室温を設定する温度設定器
と、室温を検出する室温センサと、目標室温と検出室温
との差に基づき、前述の冷媒凝縮工程で前記室内機側熱
交換器が放出すべき必要熱量を計算する放熱量算出手段
と、算出された必要熱量に基づいて前記室内ファンの送
風量を決定し、該送風量が得られる様に前記室内ファン
を制御する室内ファン制御手段と、温度Th2 −温度T
1 が所定値に維持される様に前記加熱手段の加熱量を
制御する加熱能力制御手段とを設けた。
(3) The refrigerant heating type air conditioner has the structure of (1) above, and includes a temperature setter for setting the target room temperature, a room temperature sensor for detecting the room temperature, and a difference between the target room temperature and the detected room temperature. Based on the above, the heat dissipation amount calculation means for calculating the necessary heat amount to be released by the indoor unit side heat exchanger in the refrigerant condensing step, and the blown air amount of the indoor fan based on the calculated necessary heat amount are determined, Indoor fan control means for controlling the indoor fan so as to obtain the air volume, and temperature Th 2 −temperature T
A heating capacity control means for controlling the heating amount of the heating means is provided so that h 1 is maintained at a predetermined value.

【0009】(4)冷媒加熱式冷暖房装置は、上記
(2)の構成を有し、目標室温を設定する温度設定器
と、室温を検出する室温センサと、検出室温が目標室温
に維持される様に、前記冷媒停止運転の動作時期や時間
を制御するタイミング制御手段と、温度Th2 −温度T
1 が所定値に維持される様に、前記冷媒流通運転時に
おける前記加熱手段の加熱量を制御する加熱量制御手段
とを設けた。
(4) The refrigerant heating and cooling apparatus has the configuration of (2) above, and the temperature setter for setting the target room temperature, the room temperature sensor for detecting the room temperature, and the detected room temperature are maintained at the target room temperature. Similarly, the timing control means for controlling the operation timing and time of the refrigerant stop operation, and the temperature Th 2 −the temperature T
A heating amount control means for controlling the heating amount of the heating means during the refrigerant circulation operation is provided so that h 1 is maintained at a predetermined value.

【0010】[0010]

【作用】[Action]

〔請求項1について〕冷媒加熱器から搬出するガス冷媒
を圧縮機が圧縮し、断熱圧縮により冷媒の温度及び圧力
が上昇し、ガス冷媒は図9の状態から等エントロピー
線に沿って状態に変位し、エンタルピーは僅かに上昇
する(断熱圧縮工程)。
[Claim 1] The compressor compresses the gas refrigerant carried out from the refrigerant heater, the temperature and pressure of the refrigerant rise due to adiabatic compression, and the gas refrigerant is displaced from the state of Fig. 9 to a state along the isentropic line. However, the enthalpy increases slightly (adiabatic compression process).

【0011】圧縮機から吐出する高温高圧のガス冷媒
は、図9の状態から等温等圧線に沿って状態に変位
し、室内機側熱交換器内で凝縮し、室内機側熱交換器は
凝縮により発生する熱を室内に放熱する(冷媒凝縮工
程)。
The high-temperature and high-pressure gas refrigerant discharged from the compressor is displaced from the state shown in FIG. 9 to a state along the isothermal isobar, and is condensed in the indoor unit side heat exchanger, and the indoor unit side heat exchanger is condensed. The generated heat is radiated indoors (refrigerant condensing step).

【0012】室内機側熱交換器から流出する冷媒は、図
9の状態から等エンタルピー線に沿って状態に変位
し、冷媒加熱器に送られる(冷媒減圧工程)。
The refrigerant flowing out of the indoor unit side heat exchanger is displaced from the state shown in FIG. 9 to a state along the isenthalpy line and sent to the refrigerant heater (refrigerant depressurizing step).

【0013】加熱手段により加熱される冷媒加熱器内で
冷媒は蒸発し、図9の状態から等温等圧線に沿って状
態に変位し、冷媒のエンタルピーが上昇する(冷媒蒸
発工程)。
The refrigerant evaporates in the refrigerant heater heated by the heating means, is displaced from the state of FIG. 9 to a state along the isothermal isobar, and the enthalpy of the refrigerant increases (refrigerant evaporation step).

【0014】暖房能力の増減は、以下の様に行なう。圧
縮機の能力を一定に維持した状態で、室内ファンの送風
量を増加し、温度Th2 −温度Th1 が所定値に維持さ
れる様に加熱手段の加熱量を制御すると、冷媒蒸発工程
における冷媒のエンタルピーの変化幅、及び冷媒凝縮工
程における室内機側熱交換器の室内への放熱量が共に大
きくなり、暖房能力が増大する(状態→状態→状態
→状態→状態)。
The heating capacity is increased / decreased as follows. When the amount of air blown by the indoor fan is increased and the heating amount of the heating means is controlled so that the temperature Th 2 −the temperature Th 1 is maintained at a predetermined value while the capacity of the compressor is maintained constant, in the refrigerant evaporation step Both the change width of the enthalpy of the refrigerant and the amount of heat radiated to the room of the indoor unit side heat exchanger in the refrigerant condensing process increase, and the heating capacity increases (state → state → state → state → state).

【0015】又、圧縮機の能力を一定に維持した状態
で、室内ファンの送風量を減少し、冷媒温度Th1 の大
きさに基づいて決定される所定値に、温度Th2 −温度
Th1が維持される様に加熱手段の加熱量を制御する
と、冷媒凝縮工程における冷媒のエンタルピーの変化
幅、及び室内機側熱交換器の室内への放熱量が共に小さ
くなり、暖房能力が減少する(状態→状態→状態
’→状態’→状態………)。
Further, in a state where the capacity of the compressor is maintained constant, the amount of air blown from the indoor fan is reduced to a predetermined value determined based on the magnitude of the refrigerant temperature Th 1 , the temperature Th 2 -the temperature Th 1. If the heating amount of the heating means is controlled so as to maintain, the variation width of the enthalpy of the refrigerant in the refrigerant condensing step and the amount of heat radiated to the room of the indoor unit side heat exchanger are both small, and the heating capacity is reduced ( Status → Status → Status '→ Status' → Status ………).

【0016】〔請求項2について〕室内ファンの送風量
が固定されている冷媒加熱式冷暖房装置の場合、暖房能
力の増減を以下の様に行なう。圧縮機の能力を一定に維
持した状態で、送風量に応じて設定された各加熱量(送
風量毎に設定された一定値)で加熱手段が作動し、高温
高圧のガス冷媒が室内機側熱交換器内で凝縮し、室内機
側熱交換器が室内に放熱する。
[Claim 2] In the case of the refrigerant heating type cooling and heating apparatus in which the blowing amount of the indoor fan is fixed, the heating capacity is increased or decreased as follows. While maintaining the capacity of the compressor constant, the heating means operates at each heating amount set according to the air flow rate (constant value set for each air flow rate), and the high temperature and high pressure gas refrigerant is supplied to the indoor unit side. The heat is condensed in the heat exchanger, and the indoor unit side heat exchanger radiates heat to the room.

【0017】温度Th2 −温度Th1 が所定値に維持さ
れる様に、少なくとも加熱手段の作動を停止する冷媒停
止運転を実施する。
At least the operation of the heating means is stopped so that the temperature Th 2 −the temperature Th 1 is maintained at a predetermined value.

【0018】〔請求項3について〕放熱量算出手段は、
温度設定器で設定した目標室温と、室温センサが検出し
た検出室温との差に基づき、室内機側熱交換器が冷媒凝
縮工程で放出すべき必要熱量を算出する。
[Claim 3] The heat radiation amount calculation means is
Based on the difference between the target room temperature set by the temperature setter and the detected room temperature detected by the room temperature sensor, the indoor unit side heat exchanger calculates the necessary amount of heat to be released in the refrigerant condensing step.

【0019】室内ファン制御手段は、室内ファンの送風
量を、算出された必要熱量に応じて決定し、該送風量が
得られる様に室内ファンを制御する。加熱能力制御手段
は、温度Th2 −温度Th1 が所定値に維持される様
に、加熱手段の加熱量を制御する。これにより、室温が
目標室温に維持される様に暖房運転が行なわれる。
The indoor fan control means determines the amount of air blown by the indoor fan in accordance with the calculated required heat amount, and controls the indoor fan so as to obtain the amount of air blown. Heating capacity control means, the temperature Th 2 - As the temperature Th 1 is maintained at a predetermined value, controls the heating amount of the heating means. As a result, the heating operation is performed so that the room temperature is maintained at the target room temperature.

【0020】〔請求項4について〕タイミング制御手段
は、温度設定器で設定した目標室温と、室温センサが検
出した検出室温との差に基づき、冷媒停止運転の動作時
期や時間を制御する。
[Claim 4] The timing control means controls the operation timing and time of the refrigerant stop operation based on the difference between the target room temperature set by the temperature setting device and the detected room temperature detected by the room temperature sensor.

【0021】加熱能力制御手段は、温度Th2 −温度T
1 が所定値に維持される様に、冷媒流通運転時におけ
る加熱手段の加熱能力を制御する。これにより、室温が
目標室温に維持される様に暖房運転が行なわれる。
The heating capacity control means has a temperature of Th 2 −temperature T.
The heating capacity of the heating means during the refrigerant circulation operation is controlled so that h 1 is maintained at a predetermined value. As a result, the heating operation is performed so that the room temperature is maintained at the target room temperature.

【0022】[0022]

【発明の効果】【The invention's effect】

〔請求項1について〕暖房能力を増加・減少させる場
合、室内ファンの送風量の増加・減少を行なうととも
に、温度Th2 −冷媒温度Th1 が所定値に維持される
様に加熱手段の加熱量を制御すれば良く、簡単な制御で
冷凍サイクルを安定させる事ができる。
[Claim 1] When the heating capacity is increased / decreased, the amount of air blown from the indoor fan is increased / decreased, and the heating amount of the heating means is maintained so that the temperature Th 2 −refrigerant temperature Th 1 is maintained at a predetermined value. Can be controlled, and the refrigeration cycle can be stabilized with simple control.

【0023】常に、一定能力で圧縮機を作動させる構成
であるので、圧縮機への通電量を連続可変する為のイン
バータ回路が不要となる。この為、高価な電子部品を使
用する必要が無いとともに、ノイズ洩れ対策や電源波形
の歪み(高調波)対策等を行なう必要も無く、安価に製
造する事ができる。又、常時、冷媒を、所定の速度で所
定の流量流しているので、暖房の立ち上がりが良く、暖
房能力の変更時の応答性にも優れる。
Since the compressor is always operated with a constant capacity, an inverter circuit for continuously varying the amount of electricity supplied to the compressor is unnecessary. Therefore, it is not necessary to use expensive electronic parts, and it is not necessary to take measures against noise leakage, distortion of power supply waveform (harmonic), and the like, so that it is possible to manufacture at low cost. Further, since the refrigerant is constantly flowing with a predetermined flow rate at a predetermined speed, the heating starts up well and the responsiveness when changing the heating capacity is excellent.

【0024】〔請求項2について〕暖房能力を増加・減
少させる場合、温度Th2 −温度Th1 が所定値に維持
される様に、少なくとも加熱手段の作動を停止させる冷
媒停止運転の時間を制御すれば良く、室内ファンの送風
量が固定されている冷媒加熱式冷暖房装置において、簡
単な制御で冷凍サイクルを安定させる事ができる。
[Claim 2] When the heating capacity is increased or decreased, at least the refrigerant stop operation time for stopping the operation of the heating means is controlled so that the temperature Th 2 −the temperature Th 1 is maintained at a predetermined value. In the refrigerant heating type cooling and heating apparatus in which the amount of air blown from the indoor fan is fixed, the refrigeration cycle can be stabilized by simple control.

【0025】圧縮機を停止するか一定能力で圧縮機を作
動させる構成であるので、圧縮機への通電量を連続可変
する為のインバータ回路が不要となる。この為、高価な
電子部品を使用する必要が無いとともに、ノイズ洩れ対
策や電源波形の歪み(高調波)対策等を行なう必要も無
く、安価に製造する事ができる。又、冷媒流通運転時
は、冷媒を、所定の速度で所定の流量流す構成であるの
で暖房の立ち上がりが良く、暖房能力の変更時の応答性
にも優れる。
Since the compressor is either stopped or operated with a constant capacity, an inverter circuit for continuously varying the amount of electricity to the compressor is not required. Therefore, it is not necessary to use expensive electronic parts, and it is not necessary to take measures against noise leakage, distortion of power supply waveform (harmonic), and the like, so that it is possible to manufacture at low cost. Further, during the refrigerant circulation operation, since the refrigerant is made to flow at a predetermined flow rate at a predetermined rate, the heating starts up well and the responsiveness when the heating capacity is changed is excellent.

【0026】〔請求項3について〕使用者が温度設定器
で目標温度を設定すると、室内ファンの送風量が決ま
り、温度Th2 −温度Th1 が所定値に維持される様に
加熱手段の加熱量が制御され、室温が目標温度に維持さ
れる様に暖房運転を行なう事ができる。
[Claim 3] When the user sets the target temperature with the temperature setting device, the amount of air blown by the indoor fan is determined and the heating means is heated so that the temperature Th 2 −the temperature Th 1 is maintained at a predetermined value. The heating operation can be performed such that the amount is controlled and the room temperature is maintained at the target temperature.

【0027】〔請求項4について〕温度設定器で目標温
度を設定し、室内ファンの送風量を使用者が決めると、
タイミング制御手段が冷媒停止運転の動作時期や時間を
制御して検出室温を目標室温に維持される様に暖房運転
が行なわれる。又、加熱能力制御手段が温度Th2−温
度Th1 が所定値に維持される様に加熱手段の加熱量を
制御するので冷凍サイクルが安定する。
[Claim 4] When the target temperature is set by the temperature setter and the air flow rate of the indoor fan is determined by the user,
The heating operation is performed so that the timing control means controls the operation time and time of the refrigerant stop operation to maintain the detected room temperature at the target room temperature. Further, heating capacity control means temperature Th 2 - the temperature Th 1 controls the heating amount of the heating means so as to be maintained at a predetermined value the refrigeration cycle is stabilized.

【0028】[0028]

【実施例】本発明の一実施例を図1〜図8に基づいて説
明する。本発明の構成を採用した、冷媒加熱式のガス冷
暖房装置Aは、各機能部材間を図1に示す様に配管で接
続して構成され、圧縮機1→四方弁2→室内機側熱交換
器3→二方弁4→冷媒加熱器5→アキュームレータ6→
圧縮機1の順に冷媒(フロンR22)を流通させて暖房
運転を行ない、圧縮機1→四方弁2→室外機側熱交換器
7→第1逆止弁8→キャピラリチューブ9→室内機側熱
交換器3→四方弁2→第2逆止弁10→アキュームレー
タ6→圧縮機1の順に冷媒を流通させて冷房運転を行な
っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. The refrigerant heating type gas cooling and heating apparatus A adopting the configuration of the present invention is configured by connecting the respective functional members with piping as shown in FIG. 1, and includes a compressor 1, a four-way valve 2 and an indoor unit side heat exchange. Unit 3 → 2-way valve 4 → Refrigerant heater 5 → Accumulator 6 →
The refrigerant (CFC R22) is circulated in the order of the compressor 1 to perform the heating operation, and the compressor 1 → the four-way valve 2 → the outdoor unit side heat exchanger 7 → the first check valve 8 → the capillary tube 9 → the indoor unit side heat The refrigerant is circulated in the order of the exchanger 3 → the four-way valve 2 → the second check valve 10 → the accumulator 6 → the compressor 1 to perform the cooling operation.

【0029】又、31は室内機側熱交換器3に送風する
室内ファン、71は室外機側熱交換器7に送風する室外
ファン、11は逆止弁である。又、12は冷房運転時に
“閉”となり、暖房運転時の圧縮機1の停止中、及び低
圧圧力17kgcm2 G以上で“開”となる二方弁、1
3はガスバーナ、14は比例電磁弁、15は圧力スイッ
チ、16は燃焼ファンである。
Further, 31 is an indoor fan for blowing air to the indoor unit side heat exchanger 3, 71 is an outdoor fan for blowing air to the outdoor unit side heat exchanger 7, and 11 is a check valve. Further, 12 is a two-way valve which is “closed” during the cooling operation, and is “open” when the compressor 1 is stopped during the heating operation and when the low pressure is 17 kgcm 2 G or more.
3 is a gas burner, 14 is a proportional solenoid valve, 15 is a pressure switch, and 16 is a combustion fan.

【0030】更に、冷媒加熱式のガス冷暖房装置Aは、
図2に示す様に、目標室温を設定する温度設定器21
と、室温を検出する室温センサ22と、放熱量算出手段
231、室内ファン制御手段232、タイミング制御手
段233、加熱能力制御手段234を構成する燃焼ファ
ン制御手段235及び比例弁制御手段236を有する制
御器23と、運転モード切替器24と、風量手動切替器
25と、温度センサ26、27と、メモリ28とを備え
る。
Further, the refrigerant heating type gas cooling and heating apparatus A is
As shown in FIG. 2, a temperature setter 21 for setting a target room temperature
A control including a room temperature sensor 22 for detecting a room temperature, a heat radiation amount calculation means 231, an indoor fan control means 232, a timing control means 233, a combustion fan control means 235 constituting a heating capacity control means 234, and a proportional valve control means 236. The air conditioner 23, the operation mode switching device 24, the air volume manual switching device 25, the temperature sensors 26 and 27, and the memory 28 are provided.

【0031】圧縮機1は、滑り羽根を有する回転式であ
り、AC- 100Vが給電される交流電動機(消費電
力、数百W〜数kW程度)により駆動され、アキューム
レータ6から送られて来るガス冷媒を断熱圧縮する。
尚、圧縮機1は、スクロール式、又はレシプロ式であっ
ても良い。
The compressor 1 is a rotary type having sliding blades, is driven by an AC electric motor (power consumption, several hundred W to several kW) supplied with AC-100V, and is sent from an accumulator 6. Adiabatically compress the refrigerant.
The compressor 1 may be a scroll type or a reciprocating type.

【0032】四方弁2は、冷媒の流通経路を切り替える
電磁弁であり、暖房運転時には冷媒の流通経路は図1の
実線に示す様に形成され、冷房運転時には破線に示す様
に流路が形成される。
The four-way valve 2 is an electromagnetic valve for switching the flow path of the refrigerant. During the heating operation, the flow path of the refrigerant is formed as shown by the solid line in FIG. 1, and during cooling operation, the flow path is formed as shown by the broken line. To be done.

【0033】室内機側熱交換器3は、室内ファン31に
より送風されるフィン等を有する蛇行形状の管路であ
り、室内に設置される室内機(図示せず)内に配され、
冷媒配管により室外に設置される室外機(図示せず)と
接続される。尚、暖房運転時(図1の実線矢印方向)と
冷房運転時(破線矢印方向)とでは冷媒の流通方向が逆
になる。
The indoor unit side heat exchanger 3 is a meandering pipe having fins and the like blown by the indoor fan 31, and is arranged in an indoor unit (not shown) installed in the room.
It is connected to an outdoor unit (not shown) installed outdoors by a refrigerant pipe. The flow direction of the refrigerant is opposite between the heating operation (the solid arrow direction in FIG. 1) and the cooling operation (the broken arrow direction).

【0034】二方弁4は、暖房運転時に開、冷房運転時
に閉となる電磁弁であり、冷房運転時に冷媒が冷媒加熱
器5に流入しない様に配設されている。
The two-way valve 4 is an electromagnetic valve that opens during heating operation and closes during cooling operation, and is arranged so that refrigerant does not flow into the refrigerant heater 5 during cooling operation.

【0035】冷媒加熱器5は、蛇行形状に配した吸熱管
であり、室外に設置される室外機(図示せず)内に配さ
れ、ガスバーナ13の燃焼により生じる燃焼ガスにより
加熱される。ガスバーナ13(3000kcal/h〜
10000kcal/h)は、ガス比例弁14によりガ
ス量が設定されたガスと、燃焼ファン16により供給さ
れる燃焼用空気とが混合されて強制燃焼する。
The refrigerant heater 5 is an endothermic tube arranged in a meandering shape, is arranged in an outdoor unit (not shown) installed outdoors, and is heated by combustion gas generated by combustion of the gas burner 13. Gas burner 13 (3000 kcal / h ~
10000 kcal / h), the gas of which the gas amount is set by the gas proportional valve 14 and the combustion air supplied by the combustion fan 16 are mixed and combusted compulsorily.

【0036】又、図1、図3に示す様に、冷媒が必ず飽
和状態となる冷媒加熱器5の管路中に温度センサ26が
配され、冷媒が必ず過熱蒸気状態となる、冷媒加熱器5
の出口からアキュームレータ6迄の管路中に温度センサ
27が配される。
Further, as shown in FIGS. 1 and 3, the temperature sensor 26 is arranged in the pipeline of the refrigerant heater 5 in which the refrigerant is always saturated, and the refrigerant is always in the superheated vapor state. 5
A temperature sensor 27 is arranged in the conduit from the outlet of the accumulator to the accumulator 6.

【0037】アキュームレータ6は、直管状の冷媒ガス
入口管と、上部に開口を有する略U字状の冷媒ガス出口
管とを気密容器内に配設してなり、液冷媒の圧縮機1内
への侵入を防止する為に圧縮機1の手前に配設される。
The accumulator 6 has a straight tubular refrigerant gas inlet pipe and a substantially U-shaped refrigerant gas outlet pipe having an opening at the top, which is disposed in an airtight container, and enters the liquid refrigerant compressor 1. Is arranged in front of the compressor 1 in order to prevent the invasion of the compressor.

【0038】つぎに、ガス冷暖房装置Aの暖房運転(冷
媒の状態変移は、後で述べる風量手動暖房運転時の風量
7速に対応する)における、各部の動作及び冷媒の状態
変化を述べる。
Next, the operation of each part and the state change of the refrigerant in the heating operation of the gas cooling and heating apparatus A (the state change of the refrigerant corresponds to the air volume 7th speed in the air volume manual heating operation described later) will be described.

【0039】圧縮機1は、アキュームレータ6から送ら
れてくるガス冷媒(過熱蒸気状態)を断熱圧縮する為、
冷媒の温度及び圧力が上昇し、ガス冷媒(過熱蒸気状
態)は図4の状態17から等エントロピー線に沿って状
態18(過熱蒸気状態)に変位し、エンタルピーは僅か
に上昇する。
Since the compressor 1 adiabatically compresses the gas refrigerant (superheated vapor state) sent from the accumulator 6,
The temperature and pressure of the refrigerant rise, the gas refrigerant (superheated vapor state) is displaced from the state 17 in FIG. 4 to the state 18 (superheated vapor state) along the isentropy line, and the enthalpy slightly increases.

【0040】圧縮機1から吐出する状態18のガス冷媒
は、四方弁2を通り、ファン31により送風される室内
機側熱交換器3内で凝縮(過熱蒸気→飽和状態→過冷却
液)して状態19に変位し、この時、室内機は凝縮によ
り発生する熱を温風にして室内に送風する。
The gas refrigerant in the state 18 discharged from the compressor 1 passes through the four-way valve 2 and is condensed in the indoor unit side heat exchanger 3 blown by the fan 31 (superheated steam → saturated state → supercooled liquid). The state is changed to state 19, and at this time, the indoor unit turns the heat generated by condensation into warm air and blows it into the room.

【0041】室内機側熱交換器3から流出する液冷媒
は、管路中で減圧するので、状態19(過冷却液状態)
から等エンタルピー線に沿って状態20(飽和液線上)
に変位し、二方弁4を通って冷媒加熱器5に到達する。
Since the liquid refrigerant flowing out of the indoor unit side heat exchanger 3 is decompressed in the pipeline, it is in the state 19 (supercooled liquid state).
State 20 (on the saturated liquid line) along the kara isenthalpy line
To the refrigerant heater 5 through the two-way valve 4.

【0042】ガスバーナ13により加熱される冷媒加熱
器5内で液冷媒(飽和状態)は蒸発し、状態20から等
温等圧線に沿って状態17(過熱蒸気状態)に変位し、
冷媒のエンタルピーが上昇する。
In the refrigerant heater 5 heated by the gas burner 13, the liquid refrigerant (saturated state) evaporates and is displaced from the state 20 to the state 17 (superheated vapor state) along the isothermal isobar.
The enthalpy of the refrigerant increases.

【0043】状態17(過熱蒸気状態)の冷媒は、アキ
ュームレータ6を介して圧縮機1に送られる。
The refrigerant in the state 17 (superheated vapor state) is sent to the compressor 1 via the accumulator 6.

【0044】つぎに、ガス冷暖房装置Aの、風量自動暖
房運転(風量1速〜風量8速)、及び風量手動暖房運転
(風量1速、4速、7速に固定)における作動について
述べる。
Next, the operation of the gas cooling and heating apparatus A in the automatic air volume heating operation (air volume 1st speed-8th speed) and the air volume manual heating operation (air volume 1st speed, 4th speed, 7th speed fixed) will be described.

【0045】〔風量自動暖房運転(風量1速〜風量8速
について;請求項1、3に対応)〕運転モード切換器2
4で、風量自動暖房運転(温調有)を設定すると、放熱
量算出手段231は、目標室温Ttと検出室温Tnとの
温度差(Tt−Tn)に基づき、室内機側熱交換器3が
冷媒凝縮工程(図4の状態18→状態19に相当)おい
て放出すべき必要熱量Qを、所定時間τ毎(例えば、1
分毎)に算出する。
[Air volume automatic heating operation (for air volume 1st speed to air volume 8th speed; corresponding to claims 1 and 3)] Operation mode selector 2
4, when the air volume automatic heating operation (with temperature adjustment) is set, the heat radiation amount calculating means 231 determines that the indoor unit side heat exchanger 3 is based on the temperature difference (Tt-Tn) between the target room temperature Tt and the detected room temperature Tn. The required heat quantity Q to be released in the refrigerant condensing step (corresponding to state 18 → state 19 in FIG. 4) is calculated every predetermined time τ (for example, 1
Every minute).

【0046】室内ファン制御手段232は、算出された
必要熱量Qに比例して室内ファン31の風量段階数(フ
ァン回転数)を所定時間τ(例えば、1分毎)毎に決定
し、該段階数の風量が得られる様に室内ファン31をフ
ィードバック制御する。 ファン送風量=κ・Q (但し、κは係数) 尚、フィルタの目詰まりに対応する為、所定風量が得ら
れる通電量で通電する通電量制御方式を用いても良い。
The indoor fan control means 232 determines the number of airflow levels (fan rotation speed) of the indoor fan 31 in every predetermined time τ (for example, every 1 minute) in proportion to the calculated required heat amount Q, and the level is determined. The indoor fan 31 is feedback-controlled so that a number of air volumes can be obtained. Fan air flow rate = κ · Q (where κ is a coefficient) Incidentally, in order to cope with the clogging of the filter, an energization amount control method of energizing at an energization amount that can obtain a predetermined air flow rate may be used.

【0047】メモリ28には温度Th1 毎に、温度Th
1 に対応する所定値(温度差)が予め記憶させてあり、
加熱能力制御手段234はこの所定値を所定時間τ毎に
読み出し、比例弁制御手段236及び燃焼ファン制御手
段235は、(温度Th2 −温度Th1 =所定値)が維
持される様に、比例電磁弁14の開度及び燃焼ファン1
6の回転数を制御する。
The memory 28 stores the temperature Th 1 for each temperature Th 1.
The predetermined value (temperature difference) corresponding to 1 is stored in advance,
The heating capacity control means 234 reads this predetermined value every predetermined time τ, and the proportional valve control means 236 and the combustion fan control means 235 proportionally maintain (temperature Th 2 −temperature Th 1 = predetermined value). Opening degree of solenoid valve 14 and combustion fan 1
Control the number of rotations of 6.

【0048】具体的には、図5に示す様に、目標室温T
tと検出室温Tnとの温度差(Tt−Tn)が大きい暖
房運転初期には、室内ファン制御手段232が室内ファ
ン31の風量を8速にすると決定し、燃焼ファン制御手
段235が燃焼ファン16の風量を8にすると決定し、
比例弁制御手段234はガスバーナ13の燃焼速数を8
速(燃焼量=10000kcal/h)に決定する。
Specifically, as shown in FIG. 5, the target room temperature T
At the beginning of the heating operation in which the temperature difference (Tt−Tn) between t and the detected room temperature Tn is large, the indoor fan control unit 232 determines that the air volume of the indoor fan 31 is set to the 8th speed, and the combustion fan control unit 235 determines the combustion fan 16. Decided to set the air volume of 8 to
The proportional valve control means 234 sets the combustion speed of the gas burner 13 to 8
The speed is determined (combustion amount = 10000 kcal / h).

【0049】時間が経過して目標室温Ttと検出室温T
nとの温度差(Tt−Tn)が小さくなっていくと、室
内ファン31の風量、燃焼ファン16の風量、及びガス
バーナ13の燃焼速数が下げられて行く。
As time passes, the target room temperature Tt and the detected room temperature T
As the temperature difference (Tt-Tn) from n decreases, the air volume of the indoor fan 31, the air volume of the combustion fan 16, and the combustion speed of the gas burner 13 decrease.

【0050】〔風量手動暖房運転(風量1速、4速、7
速について;請求項2、4に対応)〕運転モード切替器
24で、風量手動暖房運転(温調有)を設定し、風量手
動切替器25で風量を所定風量(風量1速、4速、7速
の何れか)に固定すると、冷媒流通運転と冷媒停止運転
とを加熱制御手段234が交互に行なう。
[Air volume manual heating operation (air volume 1st speed, 4th speed, 7th
Speed: Corresponding to claims 2 and 4)] The air volume manual heating operation (with temperature control) is set by the operation mode switch 24, and the air volume is switched to the predetermined air volume (air volume 1st speed, 4th speed, When fixed to any of the 7th speed), the heating control means 234 alternately performs the refrigerant circulation operation and the refrigerant stop operation.

【0051】タイミング制御手段233は、検出室温温
Tnが目標室温Ttに維持される様に加熱能力制御手段
234を制御し、冷媒停止運転の動作時期や継続時間を
増減する。
The timing control means 233 controls the heating capacity control means 234 so that the detected room temperature Tn is maintained at the target room temperature Tt, and increases or decreases the operation timing and duration of the refrigerant stop operation.

【0052】メモリ28には温度Th1 毎に、温度Th
1 に対応する所定値(温度差)が予め記憶させてあり、
加熱能力制御手段234はこの所定値を所定時間τ毎に
読み出し、比例弁制御手段236及び燃焼ファン制御手
段235は、冷媒流通運転の期間中、(温度Th2 −温
度Th1 =所定値)が維持される様に、比例電磁弁14
の開度及び燃焼ファン16の回転数を制御する。
The memory 28 stores the temperature Th 1 for each temperature Th 1.
The predetermined value (temperature difference) corresponding to 1 is stored in advance,
The heating capacity control means 234 reads out this predetermined value for every predetermined time τ, and the proportional valve control means 236 and the combustion fan control means 235 keep the (temperature Th 2 −temperature Th 1 = predetermined value) during the refrigerant circulation operation. Proportional solenoid valve 14 so that it is maintained
And the rotation speed of the combustion fan 16 are controlled.

【0053】具体的には、図6に示す様に、室内ファン
31の風量を7速に固定(強風)した場合、目標室温T
tと検出室温Tnとの温度差が大きい暖房運転初期にお
いて、タイミング制御手段233が冷媒流通運転を継続
して行ない、(温度Th2 −温度Th1 =所定値)が維
持される様に、ガスバーナ13が燃焼(例えば、燃焼速
数7速)し、燃焼ファン16が燃焼速数7速に適した高
回転数で回転する様に、比例弁制御手段236及び燃焼
ファン制御手段235が制御する。
Specifically, as shown in FIG. 6, when the air volume of the indoor fan 31 is fixed to 7th speed (strong wind), the target room temperature T
At the beginning of the heating operation in which the temperature difference between t and the detected room temperature Tn is large, the timing control unit 233 continues the refrigerant circulation operation, and the gas burner is maintained so that (Temperature Th 2 −Temperature Th 1 = predetermined value) is maintained. The proportional valve control means 236 and the combustion fan control means 235 control so that 13 burns (for example, a combustion speed of 7) and the combustion fan 16 rotates at a high rotation speed suitable for the combustion speed of 7.

【0054】そして、時間が経過して目標室温Ttと検
出室温Tnとの温度差が小さくなると、タイミング制御
手段233は、短時間の冷媒流通運転(ガスバーナ13
の燃焼速数は7速、燃焼ファン16の回転速数は7速)
と、比較的長時間の冷媒停止運転とを交互に実施する。
又、冷媒流通期間中、(温度Th2 −温度Th1 =所定
値)が維持される様に、ガスバーナ13が燃焼(例え
ば、燃焼速数7速)し、燃焼ファン16がその燃焼速数
に適した高回転数で回転する様、比例弁制御手段236
及び燃焼ファン制御手段235が制御する。
When the temperature difference between the target room temperature Tt and the detected room temperature Tn becomes small with the passage of time, the timing control means 233 causes the timing control means 233 to perform a short-time refrigerant flow operation (gas burner 13).
(Combustion speed of 7 is, rotation speed of combustion fan 16 is 7)
And the refrigerant stop operation for a relatively long time are alternately performed.
Further, during the refrigerant circulation period, the gas burner 13 burns (for example, the combustion speed is 7) so that the (temperature Th 2 −temperature Th 1 = predetermined value) is maintained, and the combustion fan 16 reaches the combustion speed. Proportional valve control means 236 so as to rotate at a suitable high rotation speed
And the combustion fan control means 235 controls.

【0055】又、図7に示す様に、室内ファン31の風
量を1速に固定(微風)した場合、目標室温Ttと検出
室温Tnとの温度差が大きい暖房運転初期において、タ
イミング制御手段233が冷媒流通運転を継続して行な
い、(温度Th2 −温度Th 1 =所定値)が維持される
様に、ガスバーナ13が燃焼(例えば、燃焼速数1速)
し、燃焼ファン16がその燃焼速数に適した低回転数で
回転する様、比例弁制御手段236及び燃焼ファン制御
手段235が制御する。
Further, as shown in FIG. 7, the wind of the indoor fan 31
When the amount is fixed to 1st speed (light breeze), the target room temperature Tt is detected.
At the beginning of heating operation where the temperature difference from the room temperature Tn is large,
The iming control means 233 continuously performs the refrigerant circulation operation.
I, (Temperature Th2-Temperature Th 1= Predetermined value) is maintained
Similarly, the gas burner 13 burns (for example, the burning speed is 1 speed)
However, the combustion fan 16 has a low rotation speed suitable for the combustion speed.
Proportional valve control means 236 and combustion fan control so as to rotate
The means 235 controls.

【0056】そして、時間が経過して目標室温Ttと検
出室温Tnとの温度差が小さくなると、タイミング制御
手段233は、比較的長い冷媒流通運転と冷媒停止運転
とを交互に実施する。又、冷媒流通期間中、(温度Th
2 −温度Th1 =所定値)が維持される様に、ガスバー
ナ13が燃焼(例えば、燃焼速数1速)し、燃焼ファン
16がその燃焼速数に適した低回転数で回転する様、比
例弁制御手段236及び燃焼ファン制御手段235が制
御する。
When the temperature difference between the target room temperature Tt and the detected room temperature Tn becomes small with the passage of time, the timing control means 233 alternately performs a relatively long refrigerant circulation operation and a refrigerant stop operation. During the refrigerant circulation period, (temperature Th
2 -The temperature Th 1 = predetermined value) is maintained so that the gas burner 13 burns (for example, the combustion speed is 1 speed), and the combustion fan 16 rotates at a low rotation speed suitable for the combustion speed. The proportional valve control means 236 and the combustion fan control means 235 control.

【0057】尚、風量手動暖房運転の過渡期(風量7速
→風量4速→風量7速)における各部の温度変化のデー
タと、安定状態(風量7速、風量4速)における各部の
温度・圧力データとを、図8及び表1に示し、ガス冷暖
房装置Aは安定に動作する事が確認された。
The data of the temperature change of each part in the transient period of the air volume manual heating operation (7th speed of air volume → 4th speed of air volume → 7th speed of air volume) and the temperature of each part in the stable state (7th speed of air volume, 4th speed of air volume) FIG. 8 and Table 1 show the pressure data, and it was confirmed that the gas cooling and heating apparatus A operates stably.

【0058】[0058]

【表1】 [Table 1]

【0059】本実施例のガス冷暖房装置Aは、以下の利
点を有する。 〔ア〕風量自動暖房運転及び風量手動暖房運転の何方の
運転時にも、圧縮機1の能力を可変せず、ガスバーナ1
3の燃焼量及び室内ファン31の回転数を増減して暖房
能力の増減を行なう構成であるので、圧縮機1への通電
量を連続可変する為のインバータ回路が不要である。こ
の為、高価な電子部品を使用する必要が無いとともに、
ノイズ洩れ対策や電源波形の歪み(高調波)対策等を行
なう必要も無く、安価にガス冷暖房装置Aを製造する事
ができる。
The gas cooling and heating apparatus A of this embodiment has the following advantages. [A] The capacity of the compressor 1 is not changed and the gas burner 1 is operated during either operation of the air volume automatic heating operation and the air volume manual heating operation.
Since the heating capacity is increased / decreased by increasing / decreasing the combustion amount of No. 3 and the number of revolutions of the indoor fan 31, an inverter circuit for continuously varying the amount of electricity supplied to the compressor 1 is unnecessary. Therefore, it is not necessary to use expensive electronic parts,
The gas cooling and heating device A can be manufactured at low cost without the need to take measures against noise leakage or distortion of the power supply waveform (harmonics).

【0060】〔イ〕加熱能力制御手段234が温度Th
1 に対応する所定値を所定時間τ毎にメモリ28から読
み出し、比例弁制御手段236及び燃焼ファン制御手段
235は、(温度Th2 −温度Th1 =所定値)が維持
される様に、比例電磁弁14の開度及び燃焼ファン16
の回転数を制御して冷凍サイクルを安定させる構成であ
る。この為、冷凍サイクルの安定を簡単な制御で実現で
き、圧縮機の破損、冷媒加熱器の損傷等の不具合の発生
が防止できる。
[A] The heating capacity control means 234 controls the temperature Th.
A predetermined value corresponding to 1 is read from the memory 28 at every predetermined time τ, and the proportional valve control means 236 and the combustion fan control means 235 are proportional so that (temperature Th 2 −temperature Th 1 = predetermined value) is maintained. Opening degree of solenoid valve 14 and combustion fan 16
It is the structure which controls the number of rotations to stabilize the refrigeration cycle. Therefore, the refrigeration cycle can be stabilized by simple control, and the occurrence of problems such as damage to the compressor and damage to the refrigerant heater can be prevented.

【0061】又、メモリ28には温度Th1 毎に、温度
Th1 に対応する所定値(温度差)を予め記憶させてあ
るので、冷媒加熱器5に配したセンサ26が検出する冷
媒の温度Th1 に応じて(温度Th2 −温度Th1 )の
値を最適な値に設定する事ができ、冷凍サイクルの安定
性に優れる。
[0061] Further, for each temperature Th 1 in the memory 28, the predetermined value corresponding to the temperature Th 1 (the temperature difference) are previously brought memorized, the temperature of the refrigerant sensor 26 arranged in the refrigerant heater 5 is detected The value of (Temperature Th 2 −Temperature Th 1 ) can be set to an optimum value according to Th 1, and the stability of the refrigeration cycle is excellent.

【0062】〔ウ〕冷媒流通運転時には、圧縮機1を一
定能力で作動させ、冷媒を、所定の速度で所定の流量流
す構成であるので、室温の高低に係わらず、風量自動暖
房運転及び風量手動暖房運転の何方の運転開始時におい
ても暖房の立ち上がりが良い。又、風量手動暖房運転時
において、室内ファン31の風量段数を大きくした場合
には、圧縮機1を一定能力で作動させ、冷媒を、一定の
速度で所定の流量流す冷媒流通運転が段数切替時に行な
われるので暖房能力の応答性に優れる。
[C] During the refrigerant circulation operation, the compressor 1 is operated with a constant capacity, and the refrigerant is caused to flow at a predetermined flow rate at a predetermined speed. Therefore, regardless of whether the room temperature is high or low, the air volume automatic heating operation and the air volume are controlled. The start-up of heating is good at the start of either of the manual heating operations. When the number of airflow stages of the indoor fan 31 is increased during the airflow manual heating operation, the compressor 1 is operated at a constant capacity and the refrigerant flow operation in which the refrigerant flows at a predetermined flow rate at a constant speed is performed when the number of stages is switched. Since it is performed, it has excellent responsiveness of heating capacity.

【0063】〔エ〕設定室温を設定するだけで温調を行
なう(室内ファン31の風量は自動的に制御される)風
量自動暖房運転、及び設定室温を設定し室内ファン31
の風量を手動設定して温調を行なう風量手動暖房運転の
何れかを、使用者の好みにより、自由に選択する事がで
きる。
[D] The temperature control is performed only by setting the set room temperature (the air volume of the indoor fan 31 is automatically controlled), the air volume automatic heating operation, and the set room temperature is set.
Any one of the air volume manual heating operation in which the air volume is manually set to control the temperature can be freely selected according to the preference of the user.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷媒加熱式のガス冷暖房装置の原理図である。FIG. 1 is a principle view of a refrigerant heating type gas cooling and heating device.

【図2】そのガス冷暖房装置のブロック図である。FIG. 2 is a block diagram of the gas cooling and heating device.

【図3】冷媒加熱器の通過率と冷媒温度との関係を説明
するグラフである。
FIG. 3 is a graph illustrating the relationship between the passage rate of a refrigerant heater and the refrigerant temperature.

【図4】そのガス冷暖房装置に用いる冷媒の状態変化を
示すP- h線図である。
FIG. 4 is a Ph diagram showing a state change of a refrigerant used in the gas cooling and heating device.

【図5】そのガス冷暖房装置を風量自動暖房運転した場
合の、経過時間- 室温、運転速数変化を示すグラフであ
る。
FIG. 5 is a graph showing changes in elapsed time-room temperature and operating speed when the gas cooling and heating apparatus is operated by automatic air volume heating.

【図6】そのガス冷暖房装置を風量手動暖房運転(運転
速数=7速)した場合の、経過時間- 室温変化、及び冷
媒停止運転のタイミングを示すグラフである。
FIG. 6 is a graph showing elapsed time-room temperature change and refrigerant stop operation timing when the gas cooling / heating apparatus is operated by air volume manual heating operation (operation speed = 7 speed).

【図7】そのガス冷暖房装置を風量手動暖房運転(運転
速数=1速)した場合の、経過時間- 室温変化、及び冷
媒停止運転のタイミングを示すグラフである。
FIG. 7 is a graph showing elapsed time-room temperature change and refrigerant stop operation timing when the gas cooling / heating apparatus is operated in the air volume manual heating operation (operation speed = 1st speed).

【図8】そのガス冷暖房装置を風量手動暖房運転した場
合の、経過時間- 各部の温度変化データを示すグラフで
ある。
FIG. 8 is a graph showing elapsed time-temperature change data of each part when the gas cooling / heating apparatus is operated by air volume manual heating.

【図9】冷媒加熱式冷暖房装置の冷凍サイクルを説明す
る為の説明図である。
FIG. 9 is an explanatory diagram for explaining a refrigeration cycle of the refrigerant heating type air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室内機側熱交換器 5 冷媒加熱器 13 ガスバーナ(加熱手段) 21 温度設定器 22 室温センサ 26 温度センサ(第1温度センサ) 27 温度センサ(第2温度センサ) 31 室内ファン 231 放熱量算出手段 232 室内ファン制御手段 233 タイミング制御手段 234 加熱能力制御手段 DESCRIPTION OF SYMBOLS 1 Compressor 3 Indoor unit side heat exchanger 5 Refrigerant heater 13 Gas burner (heating means) 21 Temperature setting device 22 Room temperature sensor 26 Temperature sensor (first temperature sensor) 27 Temperature sensor (second temperature sensor) 31 Indoor fan 231 Release Heat quantity calculation means 232 Indoor fan control means 233 Timing control means 234 Heating capacity control means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 室内機側熱交換器から流出する冷媒を冷
媒加熱器に送り、 加熱手段により加熱される冷媒加熱器内で冷媒を蒸発さ
せ、 冷媒加熱器から搬出するガス冷媒を一定能力で作動する
圧縮機で断熱圧縮し、 前記圧縮機から吐出する高温高圧のガス冷媒を、室内フ
ァンを付設した室内機側熱交換器内で凝縮させる事によ
り室内に放熱して暖房運転を行なう冷媒加熱式冷暖房装
置であって、 飽和状態の冷媒の温度Th1 を検出する第1温度センサ
を前記冷媒加熱器の管路途中に配し、 過熱蒸気状態の冷媒の温度Th2 を検出する第2温度セ
ンサを前記冷媒加熱器の出口から前記圧縮機の入口迄の
間に配し、 暖房能力を増加・減少させる場合、前記室内ファンの送
風量の増加・減少を行なうとともに、温度Th2 −温度
Th1 が所定値に維持される様に前記加熱手段の加熱量
を制御する冷媒加熱式冷暖房装置。
1. A refrigerant flowing out from an indoor unit side heat exchanger is sent to a refrigerant heater, the refrigerant is evaporated in the refrigerant heater heated by a heating means, and a gas refrigerant carried out from the refrigerant heater has a constant capacity. Adiabatic compression by an operating compressor, and the high-temperature and high-pressure gas refrigerant discharged from the compressor is condensed in an indoor unit side heat exchanger with an indoor fan to radiate heat indoors to perform heating operation. 2nd temperature for detecting the temperature Th 2 of a refrigerant in a superheated steam state, wherein a first temperature sensor for detecting the temperature Th 1 of the refrigerant in a saturated state is arranged in the middle of the pipeline of the refrigerant heater, When the sensor is arranged between the outlet of the refrigerant heater and the inlet of the compressor to increase / decrease the heating capacity, the amount of air blown from the indoor fan is increased / decreased, and the temperature Th 2 −the temperature Th is increased. 1 is maintained at the specified value Refrigerant heating type cooling and heating device for controlling the heating amount of the heating means as described above.
【請求項2】 室内機側熱交換器から流出する冷媒を冷
媒加熱器に送り、 加熱手段により加熱される冷媒加熱器内で冷媒を蒸発さ
せ、 冷媒加熱器から搬出するガス冷媒を圧縮機で断熱圧縮
し、 前記圧縮機から吐出する高温高圧のガス冷媒を、送風量
が変更可能な室内ファンを付設した室内機側熱交換器内
で凝縮させる事により室内に放熱して暖房運転を行なう
冷媒加熱式冷暖房装置であって、 飽和状態の冷媒温度Th1 を検出する第1温度センサを
前記冷媒加熱器の管路途中に配し、 過熱蒸気状態の冷媒の温度Th2 を検出する第2温度セ
ンサを前記冷媒加熱器の出口から前記圧縮機の入口迄の
間に配し、 温度Th2 −温度Th1 が所定値に維持される様に、 一定能力で前記圧縮機を作動させた状態で、送風量に応
じて設定された各加熱量で前記加熱手段を作動させる冷
媒流通運転と、 少なくとも前記加熱手段の作動を停止させる冷媒停止運
転とを交互に実施する冷媒加熱式冷暖房装置。
2. The refrigerant flowing out from the indoor unit side heat exchanger is sent to the refrigerant heater, the refrigerant is evaporated in the refrigerant heater heated by the heating means, and the gas refrigerant carried out from the refrigerant heater is compressed by the compressor. A high-temperature high-pressure gas refrigerant that is adiabatically compressed and discharged from the compressor is condensed in an indoor unit-side heat exchanger equipped with an indoor fan whose air flow rate can be changed to radiate heat indoors to perform heating operation. It is a heating type air conditioner and a second temperature for detecting a temperature Th 2 of a refrigerant in a superheated steam state, by disposing a first temperature sensor for detecting a refrigerant temperature Th 1 in a saturated state in the middle of a pipeline of the refrigerant heater. A sensor is provided between the outlet of the refrigerant heater and the inlet of the compressor, and the compressor is operated at a constant capacity so that the temperature Th 2 −the temperature Th 1 is maintained at a predetermined value. , Each heating amount set according to the air flow rate Wherein the refrigerant flow operation for actuating the heating means, the refrigerant heating type air conditioning apparatus for carrying out alternately the refrigerant stops operation to stop the operation of at least the heating means.
【請求項3】 目標室温を設定する温度設定器と、 室温を検出する室温センサと、 目標室温と検出室温との差に基づき、前述の冷媒凝縮工
程で前記室内機側熱交換器が放出すべき必要熱量を計算
する放熱量算出手段と、 算出された必要熱量に基づいて前記室内ファンの送風量
を決定し、該送風量が得られる様に前記室内ファンを制
御する室内ファン制御手段と、 温度Th2 −温度Th1 が所定値に維持される様に前記
加熱手段の加熱量を制御する加熱能力制御手段とを設け
た請求項1記載の冷媒加熱式冷暖房装置。
3. A temperature setter for setting a target room temperature, a room temperature sensor for detecting the room temperature, and the indoor unit side heat exchanger discharges in the refrigerant condensing step based on the difference between the target room temperature and the detected room temperature. A heat radiation amount calculating means for calculating a necessary heat amount, an indoor fan control means for determining an air blowing amount of the indoor fan based on the calculated necessary heat amount, and controlling the indoor fan so as to obtain the air blowing amount; temperature Th 2 - temperature Th 1 is a refrigerant heating type air conditioning apparatus according to claim 1, wherein provided a heating capacity control means for controlling the heating amount of said heating means so as to be maintained at a predetermined value.
【請求項4】 目標室温を設定する温度設定器と、 室温を検出する室温センサと、 検出室温が目標室温に維持される様に、前記冷媒停止運
転の動作時期や時間を制御するタイミング制御手段と、 温度Th2 −温度Th1 が所定値に維持される様に、前
記冷媒流通運転時における前記加熱手段の加熱量を制御
する加熱量制御手段とを設けた請求項2記載の冷媒加熱
式冷暖房装置。
4. A temperature setter for setting a target room temperature, a room temperature sensor for detecting the room temperature, and timing control means for controlling the operation timing and time of the refrigerant stop operation so that the detected room temperature is maintained at the target room temperature. When the temperature Th 2 - as the temperature Th 1 is maintained at a predetermined value, the heating amount control means and the provided claims 2 refrigerant heating type according to control the heating amount of said heating means when the refrigerant flow operation Air conditioning system.
JP6104224A 1994-05-19 1994-05-19 Refrigerant heating type cooler/heater Pending JPH07310946A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6104224A JPH07310946A (en) 1994-05-19 1994-05-19 Refrigerant heating type cooler/heater
KR1019950002108A KR0141543B1 (en) 1994-05-19 1995-02-07 Refrigerant Heating Air Conditioning Unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6104224A JPH07310946A (en) 1994-05-19 1994-05-19 Refrigerant heating type cooler/heater

Publications (1)

Publication Number Publication Date
JPH07310946A true JPH07310946A (en) 1995-11-28

Family

ID=14374998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6104224A Pending JPH07310946A (en) 1994-05-19 1994-05-19 Refrigerant heating type cooler/heater

Country Status (2)

Country Link
JP (1) JPH07310946A (en)
KR (1) KR0141543B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205855A (en) * 1997-01-16 1998-08-04 Sanyo Electric Co Ltd Air conditioner
JP2002277097A (en) * 2001-03-21 2002-09-25 Daikin Ind Ltd Refrigerator
CN107255309A (en) * 2017-06-30 2017-10-17 美的集团武汉制冷设备有限公司 Air-conditioning system, control method and computer-readable recording medium
CN113669857A (en) * 2020-05-13 2021-11-19 广东美的制冷设备有限公司 Air conditioner sterilization method, air conditioner and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10205855A (en) * 1997-01-16 1998-08-04 Sanyo Electric Co Ltd Air conditioner
JP2002277097A (en) * 2001-03-21 2002-09-25 Daikin Ind Ltd Refrigerator
CN107255309A (en) * 2017-06-30 2017-10-17 美的集团武汉制冷设备有限公司 Air-conditioning system, control method and computer-readable recording medium
CN113669857A (en) * 2020-05-13 2021-11-19 广东美的制冷设备有限公司 Air conditioner sterilization method, air conditioner and storage medium

Also Published As

Publication number Publication date
KR950033308A (en) 1995-12-22
KR0141543B1 (en) 1998-07-01

Similar Documents

Publication Publication Date Title
US6427461B1 (en) Space conditioning system with outdoor air and refrigerant heat control of dehumidification of an enclosed space
JPH06185815A (en) Method and equipment for controlling heat pump system
JP2001248937A (en) Heat pump hot water supply air conditioner
JPH07107469B2 (en) Refrigerant heating type heating device
KR20060124960A (en) Cool mode control method of air conditioner
JPH07310946A (en) Refrigerant heating type cooler/heater
KR100215283B1 (en) Cooling system with heat pump
US11674706B2 (en) System and method for operating an air conditioner unit having an auxiliary electric heater
KR0141541B1 (en) Refrigerant Heating Air Conditioning Unit
JP2540254B2 (en) Air conditioner
JPH09170799A (en) Control device for air conditioner system
JPS6342183B2 (en)
US11668506B2 (en) System and method for operating a variable speed compressor of an air conditioner unit
WO2023230981A1 (en) Methods for sabbath mode in air conditioning units
JP2919316B2 (en) Control device for floor heating system
KR20010065318A (en) Heat pump air-conditioner and control method thereof
JP2919317B2 (en) Control device for hot water heating system
JPH09273762A (en) Control apparatus for floor heating system
JP3425306B2 (en) Hot water heating system
WO2023098587A1 (en) Method of operating an electronic expansion valve in an air conditioner unit
US20240183558A1 (en) Methods for sabbath mode in air conditioning units
JP2919311B2 (en) Refrigerant heating type heating device
JPH09113001A (en) Control apparatus for air conditioner system
KR960005775B1 (en) Room heating device
JP3037090B2 (en) Refrigerant heating air conditioner