JP2919311B2 - Refrigerant heating type heating device - Google Patents

Refrigerant heating type heating device

Info

Publication number
JP2919311B2
JP2919311B2 JP7219082A JP21908295A JP2919311B2 JP 2919311 B2 JP2919311 B2 JP 2919311B2 JP 7219082 A JP7219082 A JP 7219082A JP 21908295 A JP21908295 A JP 21908295A JP 2919311 B2 JP2919311 B2 JP 2919311B2
Authority
JP
Japan
Prior art keywords
refrigerant
heating
room temperature
compressor
indoor fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7219082A
Other languages
Japanese (ja)
Other versions
JPH0960894A (en
Inventor
繁明 安井
幸弘 鈴木
雄大 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP7219082A priority Critical patent/JP2919311B2/en
Priority to KR1019960028791A priority patent/KR0182161B1/en
Publication of JPH0960894A publication Critical patent/JPH0960894A/en
Application granted granted Critical
Publication of JP2919311B2 publication Critical patent/JP2919311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/12Hot-air central heating systems; Exhaust gas central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1084Arrangement or mounting of control or safety devices for air heating systems
    • F24D19/1087Arrangement or mounting of control or safety devices for air heating systems system using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/04Gas or oil fired boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/046Pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Central Heating Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒を加熱して暖
房運転を行う冷媒加熱式暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating apparatus for heating a refrigerant for heating a refrigerant to perform a heating operation.

【0002】[0002]

【従来の技術】従来より、圧縮機、室内熱交換器、冷媒
加熱器、及びアキュームレータを順に環状に接続し、室
内熱交換器から流出する冷媒を冷媒加熱器に送り、冷媒
加熱器の加熱により蒸発した冷媒をアキュームレータを
介して圧縮機に送って断熱圧縮し、圧縮機から流出する
高温高圧の冷媒を室内熱交換器で凝縮する冷媒加熱式暖
房装置が知られている。
2. Description of the Related Art Conventionally, a compressor, an indoor heat exchanger, a refrigerant heater, and an accumulator are sequentially connected in a ring shape, and refrigerant flowing out of the indoor heat exchanger is sent to the refrigerant heater. 2. Description of the Related Art There is known a refrigerant heating type heating apparatus in which an evaporated refrigerant is sent to a compressor via an accumulator, adiabatically compressed, and a high-temperature and high-pressure refrigerant flowing out of the compressor is condensed in an indoor heat exchanger.

【0003】この冷媒加熱式暖房装置では、室内熱交換
器に付設された室内ファンを回転駆動する事により、室
内熱交換器と室内空気とを熱交換させて室内の暖房を行
っている。又、冷媒加熱器の加熱力と室内ファンの回転
数は、検出室温と設定室温との差に基づいて制御器が決
めている。
[0003] In this refrigerant heating type heating apparatus, the indoor fan is attached to the indoor heat exchanger, and the indoor fan is rotated to heat exchange the indoor heat exchanger with the indoor air to heat the room. The controller determines the heating power of the refrigerant heater and the number of revolutions of the indoor fan based on the difference between the detected room temperature and the set room temperature.

【0004】尚、この種の冷媒加熱式暖房装置には、圧
縮機の下流に圧力センサを配設し、冷媒圧力が異常昇圧
すると暖房運転を停止して配管等を保護する安全装置が
通常、設けられている。
[0004] In this type of refrigerant heating type heating device, a pressure sensor is disposed downstream of the compressor, and when the refrigerant pressure rises abnormally, a safety device for stopping the heating operation and protecting pipes and the like is usually provided. Is provided.

【0005】[0005]

【発明が解決しようとする課題】発明者らは、上記従来
の冷媒加熱式暖房装置において、室温が高い場合に暖房
運転を行うと冷媒圧力が高くなり過ぎるという不具合を
見い出した。特に圧力センサを配設したものでは、暖房
運転が頻繁に停止し、使い勝手が悪い。
SUMMARY OF THE INVENTION The inventors of the present invention have found that in the above-mentioned conventional refrigerant heating type heating apparatus, when the heating operation is performed when the room temperature is high, the refrigerant pressure becomes too high. Particularly, in the case where the pressure sensor is provided, the heating operation is frequently stopped, and the usability is poor.

【0006】冷媒圧力が高くなる理由を以下に示す。検
出室温と設定室温との差が一定であれば、検出室温が高
くても低くても、制御器は、同じ加熱力で冷媒加熱器を
作動させる。しかし、室温が高くなる程、室内熱交換器
が放熱する放熱量が低下していく為、冷媒サイクル全体
のエンタルピが増加する。
The reason why the refrigerant pressure becomes high will be described below. If the difference between the detected room temperature and the set room temperature is constant, the controller operates the refrigerant heater with the same heating power regardless of whether the detected room temperature is high or low. However, as the room temperature increases, the amount of heat released by the indoor heat exchanger decreases, and the enthalpy of the entire refrigerant cycle increases.

【0007】本発明の目的は、室温が比較的高い場合に
暖房運転を行っても冷媒圧力が高くなり過ぎない、安全
性に優れた冷媒加熱式暖房装置の提供にある。
An object of the present invention is to provide a refrigerant heating type heating apparatus excellent in safety, in which the refrigerant pressure does not become too high even when the heating operation is performed when the room temperature is relatively high.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する為、
本発明は、以下の構成を採用した。 (1)冷媒を圧縮する圧縮機、室内ファンを付設した室
内熱交換器、加熱源により加熱される冷媒加熱器、及び
アキュームレータを順に環状に管路接続し、前記室内熱
交換器から出る冷媒を前記冷媒加熱器に送り、前記冷媒
加熱器内で冷媒を蒸発させ、前記冷媒加熱器から搬出す
るガス冷媒を前記アキュームレータを介して前記圧縮機
で断熱圧縮し、前記圧縮機から吐出する高温高圧のガス
冷媒を前記室内熱交換器内で凝縮させる事により室内に
放熱する暖房運転を行うにあたって、室温センサにより
検出される検出室温と室温設定手段により設定される設
定室温との差に基づき、制御器が、前記加熱源の目標加
熱量及び前記室内ファンの目標回転数を算出するととも
に、目標加熱量で前記加熱源が加熱し目標回転数で前記
室内ファンが回転する様に、前記加熱源及び室内ファン
を制御する冷媒加熱式暖房装置において、検出室温が所
定温度より高い場合に前記加熱源の最大加熱量を制限す
る制限手段を設けた。
In order to solve the above-mentioned problems,
The present invention employs the following configuration. (1) A compressor for compressing a refrigerant, an indoor heat exchanger provided with an indoor fan, a refrigerant heater heated by a heating source, and an accumulator are connected in a ring-like manner in order in a circular manner, and the refrigerant flowing out of the indoor heat exchanger is connected. Send to the refrigerant heater, evaporate the refrigerant in the refrigerant heater, adiabatic compression of the gas refrigerant carried out from the refrigerant heater by the compressor via the accumulator, high temperature and high pressure discharged from the compressor When performing a heating operation in which gas refrigerant is condensed in the indoor heat exchanger to release heat into the room, a controller is provided based on a difference between a detected room temperature detected by a room temperature sensor and a set room temperature set by room temperature setting means. Calculates the target heating amount of the heating source and the target rotation speed of the indoor fan, and heats the heating source at the target heating amount and rotates the indoor fan at the target rotation speed. As that, in the refrigerant heating type heating device for controlling the heat source and the indoor fan, and a limit means for detecting room temperature to limit the maximum heating amount of the heating source is higher than a predetermined temperature.

【0009】(2)冷媒を圧縮する圧縮機、室内ファン
を付設した室内熱交換器、加熱源により加熱される冷媒
加熱器、及びアキュームレータを順に環状に管路接続
し、前記室内熱交換器から出る冷媒を前記冷媒加熱器に
送り、前記冷媒加熱器内で冷媒を蒸発させ、前記冷媒加
熱器から搬出するガス冷媒を前記アキュームレータを介
して前記圧縮機で断熱圧縮し、前記圧縮機から吐出する
高温高圧のガス冷媒を前記室内熱交換器内で凝縮させる
事により室内に放熱する暖房運転を行うにあたって、室
温センサにより検出される検出室温と室温設定手段によ
り設定される設定室温との差に基づき、制御器が、前記
加熱源の目標加熱量及び前記室内ファンの目標回転数を
算出するとともに、目標加熱量で前記加熱源が加熱し目
標回転数で前記室内ファンが回転する様に、前記加熱源
及び室内ファンを制御する冷媒加熱式暖房装置におい
て、検出室温が所定温度より高い場合に前記目標加熱量
を減らす減少手段を設けた。
(2) A compressor for compressing the refrigerant, an indoor heat exchanger provided with an indoor fan, a refrigerant heater heated by a heating source, and an accumulator are sequentially connected in a ring-like manner in a line, and The refrigerant flowing out is sent to the refrigerant heater, the refrigerant is evaporated in the refrigerant heater, and the gas refrigerant carried out from the refrigerant heater is adiabatically compressed by the compressor via the accumulator and discharged from the compressor. In performing a heating operation in which a high-temperature and high-pressure gas refrigerant is condensed in the indoor heat exchanger to radiate heat into the room, based on a difference between a detected room temperature detected by a room temperature sensor and a set room temperature set by room temperature setting means. The controller calculates a target heating amount of the heating source and a target rotation speed of the indoor fan, and the heating source is heated at the target heating amount and the room is heated at the target rotation speed. As § down rotates, the refrigerant heating type heating device for controlling the heat source and the indoor fan, detecting room temperature provided a reduction means for reducing the target heating amount is higher than a predetermined temperature.

【0010】(3)上記(1) 又は(2) の構成を有する冷
媒加熱式暖房装置において、前記圧縮機の下流側の管路
中に圧力センサを設け、管路中の冷媒圧力が制限値に達
すると暖房運転を停止する。
(3) In the refrigerant heating type heating apparatus having the structure of (1) or (2), a pressure sensor is provided in a pipe downstream of the compressor, and the refrigerant pressure in the pipe is limited to a limit value. When it reaches, the heating operation is stopped.

【0011】[0011]

【作用および発明の効果】冷媒加熱器から搬出するガス
冷媒を圧縮機が圧縮し、断熱圧縮により冷媒の温度及び
圧力が上昇し、ガス冷媒は図4の状態から等エントロ
ピー線に沿って状態に変位し、エンタルピーは僅かに
上昇する(断熱圧縮工程)。圧縮機から吐出する高温高
圧のガス冷媒は、図4の状態から等温等圧線に沿って
状態に変位し、室内熱交換器内で凝縮し、室内熱交換
器は凝縮により発生する熱を室内に放熱する(冷媒凝縮
工程)。
The gas refrigerant discharged from the refrigerant heater is compressed by the compressor, and the temperature and pressure of the refrigerant increase by adiabatic compression. The gas refrigerant changes from the state shown in FIG. 4 along the isentropic line. It displaces and the enthalpy rises slightly (adiabatic compression step). The high-temperature and high-pressure gas refrigerant discharged from the compressor is displaced from the state of FIG. 4 along the isothermal isobar, and condenses in the indoor heat exchanger, and the indoor heat exchanger radiates the heat generated by the condensation into the room. (Refrigerant condensation step).

【0012】室内熱交換器から流出する冷媒は、図4の
状態から等エンタルピー線に沿って状態に変位し、
冷媒加熱器に送られる(冷媒減圧工程)。加熱手段によ
り加熱される冷媒加熱器内で冷媒は蒸発し、図4の状態
から等温等圧線に沿って状態に変位し、冷媒のエン
タルピーが上昇する(冷媒蒸発工程)。
The refrigerant flowing out of the indoor heat exchanger is displaced from the state of FIG. 4 along the isenthalpy line,
It is sent to the refrigerant heater (refrigerant decompression step). The refrigerant evaporates in the refrigerant heater heated by the heating means, displaces from the state in FIG. 4 along the isothermal isobar, and the enthalpy of the refrigerant increases (refrigerant evaporation step).

【0013】室温が低く、検出室温が所定温度以下の場
合、制御器は、室温センサにより検出される検出室温
と、室温設定手段により設定される設定室温との差に基
づき、加熱手段の目標加熱量及び室内ファンの目標回転
数を算出するとともに、目標加熱量で前記加熱源が加熱
し目標回転数で前記室内ファンが回転する様に、加熱源
及び室内ファンを制御する。
When the room temperature is low and the detected room temperature is equal to or lower than the predetermined temperature, the controller sets the target heating of the heating unit based on a difference between the detected room temperature detected by the room temperature sensor and the room temperature set by the room temperature setting unit. The amount and the target rotation speed of the indoor fan are calculated, and the heating source and the indoor fan are controlled such that the heating source is heated at the target heating amount and the indoor fan rotates at the target rotation speed.

【0014】上記差が小さい場合、制御器が算出する、
加熱手段の目標加熱量及び室内ファンの目標回転数は小
さく、加熱手段は少ない加熱量で加熱し室内ファンは低
回転数で回転(圧縮機の回転数一定)する。これによ
り、冷媒蒸発工程における冷媒のエンタルピーの変化幅
及び冷媒凝縮工程における室内熱交換器の室内への放熱
量が共に小さくなり、暖房能力が減少する(状態→状
態→状態’→状態’→状態……)。
If the difference is small, the controller calculates
The target heating amount of the heating means and the target rotation speed of the indoor fan are small, the heating means heats with a small heating amount, and the indoor fan rotates at a low rotation speed (the rotation speed of the compressor is constant). Thereby, both the change width of the enthalpy of the refrigerant in the refrigerant evaporation step and the amount of heat released into the room of the indoor heat exchanger in the refrigerant condensation step are reduced, and the heating capacity is reduced (state → state → state ′ → state ′ → state). ……).

【0015】上記差が大きい場合、制御器が算出する、
加熱手段の目標加熱量及び室内ファンの目標回転数は大
きく、加熱手段は大きな加熱量で加熱し室内ファンは高
回転数で回転(圧縮機の回転数一定)する。これによ
り、冷媒蒸発工程における冷媒のエンタルピーの変化幅
及び冷媒凝縮工程における室内熱交換器の室内への放熱
量が共に大きくなり、暖房能力が増大する(状態→状
態→状態→状態→状態……)。
If the difference is large, the controller calculates
The target heating amount of the heating means and the target rotation speed of the indoor fan are large, the heating means heats with a large heating amount, and the indoor fan rotates at a high rotation speed (the rotation speed of the compressor is constant). As a result, the width of change of the enthalpy of the refrigerant in the refrigerant evaporation step and the amount of heat released into the room of the indoor heat exchanger in the refrigerant condensation step both increase, and the heating capacity increases (from state to state to state to state to state ...). ).

【0016】〔請求項1について〕制御器は、検出室温
に関わらず、検出室温と設定室温との差が一定であれ
ば、検出室温が高くても低くても、同じ加熱力で加熱源
を作動させる為、室温(検出室温)が高くなる程、室内
熱交換器が放熱する放熱量が低下していき、冷媒サイク
ル全体のエンタルピーが増加し、冷媒圧力が高くなって
いく。しかし、本発明では制限手段を設けているので、
検出室温が所定温度より高い場合には加熱源の最大加熱
量が制限され、冷媒サイクル全体のエンタルピーの増加
が抑えられる。これにより、冷媒圧力の上昇が抑えら
れ、安全性に優れる。
According to the present invention, if the difference between the detected room temperature and the set room temperature is constant irrespective of the detected room temperature, the controller controls the heating source with the same heating power regardless of whether the detected room temperature is high or low. For operation, as the room temperature (detection room temperature) increases, the amount of heat released by the indoor heat exchanger decreases, the enthalpy of the entire refrigerant cycle increases, and the refrigerant pressure increases. However, in the present invention, since the limiting means is provided,
When the detected room temperature is higher than the predetermined temperature, the maximum heating amount of the heating source is limited, and an increase in the enthalpy of the entire refrigerant cycle is suppressed. This suppresses a rise in the refrigerant pressure and is excellent in safety.

【0017】〔請求項2について〕制御器は、検出室温
に関わらず、検出室温と設定室温との差が一定であれ
ば、検出室温が高くても低くても、同じ加熱力で加熱源
を作動させる為、室温(検出室温)が高くなる程、室内
熱交換器が放熱する放熱量が低下していき、冷媒サイク
ル全体のエンタルピーが増加し、冷媒圧力が高くなって
いく。しかし、本発明では減少手段を設けているので、
検出室温が所定温度より高い場合には目標加熱量が減ら
され、冷媒サイクル全体のエンタルピーの増加が抑えら
れる。これにより、冷媒圧力の上昇が抑えられ、安全性
に優れる。
According to a second aspect of the present invention, if the difference between the detected room temperature and the set room temperature is constant irrespective of the detected room temperature, the controller controls the heating source with the same heating power regardless of whether the detected room temperature is high or low. For operation, as the room temperature (detection room temperature) increases, the amount of heat released by the indoor heat exchanger decreases, the enthalpy of the entire refrigerant cycle increases, and the refrigerant pressure increases. However, in the present invention, since a reducing means is provided,
When the detected room temperature is higher than the predetermined temperature, the target heating amount is reduced, and an increase in the enthalpy of the entire refrigerant cycle is suppressed. This suppresses a rise in the refrigerant pressure and is excellent in safety.

【0018】〔請求項3について〕制限手段を設けてい
るので、検出室温が所定温度より高い場合には加熱源の
最大加熱量が制限されて冷媒サイクル全体のエンタルピ
ーの増加が抑えられ、冷媒圧力の上昇が抑えられる。こ
の為、室温が高い場合に設定温度を高く設定しても圧縮
機の下流側の管路中の冷媒圧力が制限値に達せず、暖房
運転が頻繁に停止しないので使い勝手が良い(請求項1
を引用した場合)。
According to the third aspect of the present invention, since the limiting means is provided, when the detected room temperature is higher than the predetermined temperature, the maximum heating amount of the heating source is limited, and the increase in enthalpy of the entire refrigerant cycle is suppressed, and the refrigerant pressure is reduced. Is suppressed. For this reason, even when the set temperature is set high when the room temperature is high, the refrigerant pressure in the pipe downstream of the compressor does not reach the limit value, and the heating operation does not frequently stop, so that the usability is good (claim 1).
Is quoted).

【0019】減少手段を設けているので、検出室温が所
定温度より高い場合には目標加熱量が減らされて冷媒サ
イクル全体のエンタルピーの増加が抑えられ、冷媒圧力
の上昇が抑えられる。この為、室温が高い場合に設定温
度を高く設定しても圧縮機の下流側の管路中の冷媒圧力
が制限値に達せず、暖房運転が頻繁に停止しないので使
い勝手が良い(請求項2を引用した場合)。
Since the reducing means is provided, when the detected room temperature is higher than the predetermined temperature, the target heating amount is reduced, thereby suppressing an increase in the enthalpy of the entire refrigerant cycle and an increase in the refrigerant pressure. For this reason, even when the set temperature is set high when the room temperature is high, the refrigerant pressure in the pipe downstream of the compressor does not reach the limit value, and the heating operation does not frequently stop, so that the usability is good. Is quoted).

【0020】[0020]

【発明の実施の形態】本発明の第1実施例(請求項1、
3に対応)を、図1〜図4に基づいて説明する。本発明
の構成を採用した、冷媒加熱式のガス冷暖房装置Aは、
各機能部材間を配管で接続して構成され、図1に示す様
に圧縮機1→四方弁2→室内熱交換器3→二方弁4→冷
媒加熱器5→アキュームレータ6→圧縮機1の順に冷媒
を流通させて暖房運転を行い、図2に示す様に圧縮機1
→四方弁2→室外熱交換器7→第1逆止弁8→キャピラ
リチューブ9→室内熱交換器3→四方弁2→第2逆止弁
10→アキュームレータ6→圧縮機1の順に冷媒を流通
させて冷房運転を行っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention (Claim 1,
3) will be described with reference to FIGS. The gas heating / cooling apparatus A of the refrigerant heating type employing the configuration of the present invention,
Each functional member is connected by piping, and as shown in FIG. 1, the compressor 1 → the four-way valve 2 → the indoor heat exchanger 3 → the two-way valve 4 → the refrigerant heater 5 → the accumulator 6 → the compressor 1 The refrigerant is circulated in order to perform a heating operation, and as shown in FIG.
→ Four-way valve 2 → Outdoor heat exchanger 7 → First check valve 8 → Capillary tube 9 → Indoor heat exchanger 3 → Four-way valve 2 → Second check valve 10 → Accumulator 6 → Compressor 1 The cooling operation is performed.

【0021】又、31は室内熱交換器3に送風する室内
ファン、71は室外熱交換器7に送風する室外ファン、
11は逆止弁である。又、12は冷房運転時に“閉”と
なり、暖房運転時の圧縮機1の停止中及び低圧力17k
g/cm2 G以上で“開”となる二方弁、13はガスバ
ーナ、14は比例弁、15は管路150中の冷媒の圧力
が制限値を越えると運転停止信号を出力する圧力スイッ
チ、16は燃焼ファンである。
An indoor fan 31 blows air to the indoor heat exchanger 3, an outdoor fan 71 blows air to the outdoor heat exchanger 7,
11 is a check valve. Reference numeral 12 denotes "closed" during the cooling operation, the compressor 1 is stopped during the heating operation and the low pressure 17k.
g / cm 2 G or more, a two-way valve which is “open” at 13 g or more, 13 is a gas burner, 14 is a proportional valve, 15 is a pressure switch that outputs a stop signal when the pressure of the refrigerant in the line 150 exceeds a limit value, 16 is a combustion fan.

【0022】冷媒加熱式のガス冷暖房装置Aの室内機U
には、図3に示す様に、目標室温を設定する温度設定器
21と、室温を検出する室温センサ22と、加熱量を算
出する加熱量算出手段231、室内ファン31をフィー
ドバック制御する室内ファン制御手段232、検出室温
と第1・第2所定温度(28℃/27℃)とを比較する
比較部233、加熱量制限手段234、双方向通信を行
う通信手段235を有する制御器23と、暖房運転や冷
房運転等の運転モードを設定するモード設定部24と、
第1・第2所定温度に相当する電圧を出力する基準電圧
出力部25とが配設される。
The indoor unit U of the gas heating / cooling apparatus A of the refrigerant heating type
As shown in FIG. 3, a temperature setting device 21 for setting a target room temperature, a room temperature sensor 22 for detecting a room temperature, a heating amount calculating means 231 for calculating a heating amount, and an indoor fan for feedback controlling the indoor fan 31 A controller 23 having a control unit 232, a comparison unit 233 for comparing the detected room temperature with the first and second predetermined temperatures (28 ° C./27° C.), a heating amount limiting unit 234, and a communication unit 235 for performing bidirectional communication; A mode setting unit 24 for setting operation modes such as a heating operation and a cooling operation,
A reference voltage output unit 25 that outputs a voltage corresponding to the first and second predetermined temperatures is provided.

【0023】又、室外機Sには、双方向通信を行う通信
手段531、燃焼ファン16を制御する燃焼ファン制御
手段532、及び比例弁14を制御する比例弁制御手段
533を有する制御器53が配設されている。
The outdoor unit S includes a controller 53 having communication means 531 for performing two-way communication, combustion fan control means 532 for controlling the combustion fan 16, and proportional valve control means 533 for controlling the proportional valve 14. It is arranged.

【0024】圧縮機1は、滑り羽根を有する回転式であ
り、AC- 100Vが給電される圧縮機モータ(消費電
力、数百W〜数kW程度)101により駆動され、アキ
ュームレータ6から送られて来るガス冷媒を断熱圧縮す
る。尚、圧縮機1は、スクロール式、又はレシプロ式で
あっても良い。
The compressor 1 is a rotary type having sliding blades, and is driven by a compressor motor (power consumption: about several hundred W to several kW) 101 to which AC-100V is supplied, and is sent from the accumulator 6. Adiabatic compression of the incoming gas refrigerant. The compressor 1 may be of a scroll type or a reciprocating type.

【0025】四方弁2は、冷媒の流通経路を切り替える
電磁弁であり、暖房運転時には冷媒の流通経路は図1の
矢印に示す様に形成され、冷房運転時には図2の矢印に
示す様に流路が形成される。
The four-way valve 2 is an electromagnetic valve for switching the flow path of the refrigerant. The flow path of the refrigerant is formed as shown by the arrow in FIG. 1 during the heating operation, and flows as shown by the arrow in FIG. 2 during the cooling operation. A path is formed.

【0026】室内熱交換器3は、室内ファン31により
送風されるフィン等を有する蛇行形状の管路であり、室
内に設置される室内機U内に配され、室外に設置される
室外機Sと冷媒配管により接続される。尚、暖房運転時
(図1の矢印方向)と冷房運転時(図2の矢印方向)と
では冷媒の流通方向が逆になる。二方弁4は、暖房運転
時に開、冷房運転時に閉となる電磁弁であり、冷房運転
時に冷媒が冷媒加熱器5に流入しない様に配設されてい
る。
The indoor heat exchanger 3 is a meandering pipe having fins and the like blown by the indoor fan 31, and is disposed in the indoor unit U installed indoors and the outdoor unit S installed outdoors. And a refrigerant pipe. The flow direction of the refrigerant is reversed between the heating operation (in the direction of the arrow in FIG. 1) and the cooling operation (in the direction of the arrow in FIG. 2). The two-way valve 4 is an electromagnetic valve that opens during the heating operation and closes during the cooling operation, and is arranged so that the refrigerant does not flow into the refrigerant heater 5 during the cooling operation.

【0027】冷媒加熱器5は、蛇行形状に配した吸熱管
であり、室外に設置される室外機(図示せず)内に配さ
れ、ガスバーナ13の燃焼により生じる燃焼ガスにより
加熱される。ガスバーナ13{3000kcal/h
(最小値)〜10000kcal/h(最大値)}は、
比例弁14によりガス量が設定されたガスと、燃焼ファ
ン16により供給される燃焼用空気とが混合されて強制
燃焼する。尚、冷媒加熱器5の管路中は冷媒が飽和状態
となる。又、冷媒加熱器5の出口からアキュームレータ
6迄の管路中は冷媒が過熱蒸気状態となる。
The refrigerant heater 5 is a heat absorbing tube arranged in a meandering shape. The refrigerant heater 5 is disposed in an outdoor unit (not shown) installed outdoors, and is heated by combustion gas generated by combustion of the gas burner 13. Gas burner 13 {3000kcal / h
(Minimum value) to 10000 kcal / h (maximum value)
The gas whose gas amount is set by the proportional valve 14 and the combustion air supplied by the combustion fan 16 are mixed and forcibly burned. The refrigerant is saturated in the pipeline of the refrigerant heater 5. Further, the refrigerant is in a superheated vapor state in the pipeline from the outlet of the refrigerant heater 5 to the accumulator 6.

【0028】アキュームレータ6は、直管状の冷媒ガス
入口管と、上部に開口を有する略U字状の冷媒ガス出口
管とを気密容器内に配設してなり、液冷媒の圧縮機1内
への侵入を防止する為に圧縮機1の手前に配設される。
The accumulator 6 has a straight tubular refrigerant gas inlet pipe and a substantially U-shaped refrigerant gas outlet pipe having an opening at an upper portion in an airtight container. It is arranged in front of the compressor 1 in order to prevent intrusion.

【0029】基準電圧出力部25は、第1所定温度(2
8℃)、第2所定温度(27℃)に相当する基準電圧V
1 、V2 を比較部233に出力する。比較部233は、
室温センサ22が出力する電圧Vと、基準電圧V1 、V
2 とに基づき、検出室温が第1所定温度(28℃)より
高いか否か、又、検出室温が第2所定温度(27℃)以
下であるか否かを判別する。
The reference voltage output unit 25 outputs the first predetermined temperature (2
8 ° C.), the reference voltage V corresponding to the second predetermined temperature (27 ° C.)
1 and V 2 are output to the comparison unit 233. The comparison unit 233
The voltage V output from the room temperature sensor 22 and the reference voltages V 1 and V
2, it is determined whether the detected room temperature is higher than the first predetermined temperature (28 ° C.) and whether the detected room temperature is lower than or equal to the second predetermined temperature (27 ° C.).

【0030】加熱量制限手段234は、検出室温が第1
所定温度(28℃)より高いと比較部233が判別する
と、後述する必要熱量Qの最大値(最大加熱量)を80
00kcal/hに制限する。又、制限中、検出室温が
第2所定温度(27℃)以下であると比較部233が判
別すると、後述する必要熱量Qの最大値を10000k
cal/hに戻す。
The heating amount limiting means 234 detects that the detected room temperature is the first
When the comparing unit 233 determines that the temperature is higher than the predetermined temperature (28 ° C.), the maximum value (maximum heating amount) of the necessary heat amount Q described later is
Limit to 00 kcal / h. If the comparing unit 233 determines that the detected room temperature is equal to or lower than the second predetermined temperature (27 ° C.) during the limitation, the maximum value of the required heat quantity Q described later is set to 10,000 k.
cal / h.

【0031】つぎに、ガス冷暖房装置Aの、暖房運転に
おける、各部の動作及び冷媒の状態変化を述べる。圧縮
機1は、アキュームレータ6から送られてくるガス冷媒
(過熱蒸気状態)を断熱圧縮する為、冷媒の温度及び圧
力が上昇し、ガス冷媒(過熱蒸気状態)は図4の状態
から等エントロピー線に沿って状態(過熱蒸気状態)
に変位し、エンタルピーは僅かに上昇する。
Next, the operation of each part and the change in the state of the refrigerant during the heating operation of the gas cooling / heating device A will be described. Since the compressor 1 adiabatically compresses the gas refrigerant (superheated vapor state) sent from the accumulator 6, the temperature and pressure of the refrigerant increase, and the gas refrigerant (superheated vapor state) changes from the state shown in FIG. Along the state (superheated steam state)
And the enthalpy rises slightly.

【0032】圧縮機1から吐出する状態のガス冷媒
は、四方弁2を通り、室内ファン31により送風される
室内熱交換器3内で凝縮(過熱蒸気→飽和状態→過冷却
液)して状態に変位し、この時、室内機Uは凝縮によ
り発生する熱を温風にして室内に送風する。
The gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and condenses in the indoor heat exchanger 3 blown by the indoor fan 31 (superheated steam → saturated → supercooled liquid). At this time, the indoor unit U makes the heat generated by condensation into warm air and blows it indoors.

【0033】室内熱交換器3から流出する液冷媒は、管
路中で減圧するので、状態から等エンタルピー線に沿
って状態(飽和液線上)に変位し、二方弁4を通って
冷媒加熱器5に到達する。
Since the liquid refrigerant flowing out of the indoor heat exchanger 3 is decompressed in the pipeline, it is displaced from the state along the isenthalpy line (on the saturated liquid line) and passes through the two-way valve 4 to heat the refrigerant. The vessel 5 is reached.

【0034】ガスバーナ13により加熱される冷媒加熱
器5内で液冷媒(飽和状態)は蒸発し、状態から等温
等圧線に沿って状態(過熱蒸気状態)に変位し、冷媒
のエンタルピーが上昇する。状態(過熱蒸気状態)の
冷媒は、アキュームレータ6を介して圧縮機1に送られ
る。
The liquid refrigerant (saturated state) evaporates in the refrigerant heater 5 heated by the gas burner 13, and is displaced from the state to a state (superheated vapor state) along an isothermal isobar, and the enthalpy of the refrigerant rises. The refrigerant in the state (superheated vapor state) is sent to the compressor 1 via the accumulator 6.

【0035】次に、ガス冷暖房装置Aの、風量自動暖房
運転(風量1速〜風量8速)における作動について述べ
る。モード設定部24で、風量自動暖房運転(温調有)
を設定すると、加熱量算出手段231は、温度設定器2
1で設定した目標室温Ttと室温センサ22とが検出す
る検出室温Tnとの温度差(Tt−Tn)に基づき、室
内熱交換器3が冷媒凝縮工程(図4の状態→状態に
相当)おいて放出すべき必要熱量Qを、所定時間τ毎
(例えば、1分毎)に算出する。尚、必要熱量Qの最大
値は、10000kcal/h(検出室温Tn≦28℃
の場合)、又は8000kcal/h(検出室温Tn>
28℃)である。
Next, the operation of the gas cooling / heating apparatus A in the automatic air volume heating operation (first air volume to eighth air volume) will be described. In the mode setting unit 24, the air volume automatic heating operation (with temperature control)
Is set, the heating amount calculating unit 231 sets the temperature setting unit 2
Based on the temperature difference (Tt-Tn) between the target room temperature Tt set in 1 and the detected room temperature Tn detected by the room temperature sensor 22, the indoor heat exchanger 3 performs the refrigerant condensation step (corresponding to the state in FIG. 4 → state). Then, the required heat quantity Q to be released is calculated every predetermined time τ (for example, every minute). The maximum value of the required heat quantity Q is 10,000 kcal / h (detection room temperature Tn ≦ 28 ° C.).
) Or 8000 kcal / h (detection room temperature Tn>
28 ° C).

【0036】室内ファン制御手段232は、必要熱量Q
に比例して室内ファン31の風量段階数(ファン回転
数)を所定時間τ毎(例えば、1分毎)に決定し、該段
階数の風量が得られる様に室内ファン31をフィードバ
ック制御する。 ファン送風量=κ・Q (但し、κは係数)
The indoor fan control means 232 determines the required heat quantity Q
The number of air flow stages (fan rotation speed) of the indoor fan 31 is determined in proportion to the predetermined time τ (for example, every minute), and the indoor fan 31 is feedback-controlled so as to obtain the air flow of the number of stages. Fan airflow = κ · Q (where κ is a coefficient)

【0037】燃焼ファン制御手段532は、必要熱量Q
{通信手段235、531により加熱量算出手段231
から伝わる}に相当する加熱量を冷媒蒸発工程(図4の
状態→状態に相当)で出力するガスバーナ13の燃
焼量に適した燃焼用空気量が得られる回転数を所定時間
τ毎に決定し、該回転数となる様に燃焼ファン16を制
御する。
The combustion fan control means 532 determines the required heat quantity Q
加熱 Heating amount calculating means 231 by communication means 235, 531
A rotation amount at which a combustion air amount suitable for the combustion amount of the gas burner 13 is output in the refrigerant evaporation step (corresponding to the state from FIG. 4 to the state). The combustion fan 16 is controlled so as to achieve the rotation speed.

【0038】比例弁制御手段533は、必要熱量Qに相
当する加熱量を冷媒蒸発工程(図4の状態→状態に
相当)でガスバーナ13に出力させるべく、所定時間τ
毎に、検出回転数に基づいて比例弁14への通電量を制
御する。
The proportional valve control means 533 outputs a heating amount corresponding to the required heat amount Q to the gas burner 13 in the refrigerant evaporation step (corresponding to the state from FIG. 4 to the state) for a predetermined time τ.
Each time, the amount of electricity to the proportional valve 14 is controlled based on the detected rotation speed.

【0039】具体的には、目標室温Ttと検出室温Tn
との温度差(Tt−Tn)が大きい暖房運転初期には、
室内ファン制御手段232が室内ファン31の風量を8
速に決定し、比例弁制御手段533がガスバーナ13の
燃焼速数を8速(燃焼量=10000kcal/h)に
決定する。そして、時間が経過して目標室温Ttと検出
室温Tnとの温度差(Tt−Tn)が小さくなっていく
と、室内ファン31の風量、燃焼ファン16の風量及び
ガスバーナ13の燃焼速数が下げられていく。
Specifically, the target room temperature Tt and the detection room temperature Tn
In the early stage of the heating operation in which the temperature difference (Tt−Tn) is large,
The indoor fan control means 232 reduces the air volume of the indoor fan 31 to 8
Speed, and the proportional valve control means 533 determines the combustion speed of the gas burner 13 to be 8 speeds (burning amount = 10000 kcal / h). Then, as the time elapses and the temperature difference (Tt−Tn) between the target room temperature Tt and the detected room temperature Tn decreases, the air volume of the indoor fan 31, the air volume of the combustion fan 16, and the combustion speed of the gas burner 13 decrease. It is being done.

【0040】但し、検出室温Tn>28℃の場合には、
必要熱量Qが最大8000kcal/hに制限されるの
で、室内ファン31の風量は6速、ガスバーナ13の燃
焼速数は6速(80000kcal/h)に制限され
る。
However, when the detection room temperature Tn> 28 ° C.,
Since the required heat quantity Q is limited to a maximum of 8000 kcal / h, the air volume of the indoor fan 31 is limited to six speeds, and the combustion speed of the gas burner 13 is limited to six speeds (80,000 kcal / h).

【0041】本実施例のガス冷暖房装置Aは、以下の利
点を有する。 〔ア〕検出室温Tn>28℃の場合(図5のt1 以降)
に、必要熱量Qを20%ダウンの8000kcal/h
に制限して、室内ファン31の風量を6速、ガスバーナ
13の燃焼速数を6速(80000kcal/h)に制
限しているので、冷媒サイクル全体のエンタルピーの増
加が抑えられる。これにより、室温が高い時(検出室温
Tn>28℃)に暖房運転を行っても冷媒圧力の上昇が
抑えられ、管路150等の配管の強度を低下させないの
で安全性に優れる。
The gas cooling / heating device A of this embodiment has the following advantages. [A] detected room temperature Tn> 28 For ° C. (t 1 later in FIG. 5)
The required heat quantity Q is reduced by 20% to 8000 kcal / h
And the combustion speed of the gas burner 13 is limited to six speeds (80000 kcal / h), so that an increase in the enthalpy of the entire refrigerant cycle can be suppressed. Thereby, even when the heating operation is performed when the room temperature is high (detection room temperature Tn> 28 ° C.), the increase in the refrigerant pressure is suppressed, and the strength of the pipe such as the pipe 150 is not reduced, so that the safety is excellent.

【0042】〔イ〕室温が高い時(検出室温Tn>28
℃)に暖房運転を行っても冷媒圧力の上昇が抑えられ、
管路150中の冷媒圧力が制限値に達しないので圧力ス
イッチ15が作動せず、暖房運転が不用意に停止しない
(図5の各カーブ参照)。
[A] When the room temperature is high (detection room temperature Tn> 28)
℃), even if the heating operation is performed, the rise in refrigerant pressure is suppressed,
Since the refrigerant pressure in the conduit 150 does not reach the limit value, the pressure switch 15 does not operate, and the heating operation does not stop carelessly (see each curve in FIG. 5).

【0043】〔ウ〕圧縮機1の能力を可変せず、ガスバ
ーナ13の燃焼量及び室内ファン31の回転数を増減し
て暖房能力の増減を行う構成であるので、圧縮機1への
通電量を連続可変する為のインバータ回路が不要であ
る。この為、高価な電子部品を使用する必要が無いとと
もに、ノイズ洩れ対策や電源波形の歪み(高調波)対策
等を行う必要も無く、安価にガス冷暖房装置Aを製造す
る事ができる。
[C] The heating capacity is increased or decreased by increasing or decreasing the amount of combustion of the gas burner 13 and the number of revolutions of the indoor fan 31 without changing the capacity of the compressor 1. Need not be provided with an inverter circuit for continuously varying. For this reason, it is not necessary to use expensive electronic parts, and it is not necessary to take measures against noise leakage, distortion of power supply waveforms (harmonics), and the like, and the gas cooling and heating apparatus A can be manufactured at low cost.

【0044】つぎに、本発明の第2実施例(請求項2、
3に対応)を、図1、図2、図4、図6に基づいて説明
する。本発明の構成を採用した、冷媒加熱式のガス冷暖
房装置Bは、以下の点がガス冷暖房装置Aと異なる。
Next, a second embodiment of the present invention (Claim 2,
3) will be described based on FIGS. 1, 2, 4, and 6. FIG. The refrigerant heating / cooling / heating apparatus B employing the configuration of the present invention differs from the gas cooling / heating apparatus A in the following points.

【0045】加熱量低減手段236は、検出室温が第1
所定温度(28℃)より高いと比較部233が判別する
と、加熱量算出手段231が算出した必要熱量Qを20
00kcal/h減らす。又、制限中、検出室温が第2
所定温度(27℃)以下であると比較部233が判別す
ると、上記低減を中止する。
The heating amount reducing means 236 detects that the detected room temperature is the first
When the comparing unit 233 determines that the temperature is higher than the predetermined temperature (28 ° C.), the necessary heat amount Q calculated by the heating amount calculating unit 231 is reduced by 20.
Reduce by 00 kcal / h. During the restriction, the detection room temperature is
When the comparing unit 233 determines that the temperature is equal to or lower than the predetermined temperature (27 ° C.), the reduction is stopped.

【0046】次に、ガス冷暖房装置Bの、風量自動暖房
運転(風量1速〜風量8速)における作動について述べ
る。モード設定部24で、風量自動暖房運転(温調有)
を設定すると、加熱量算出手段231は、温度設定器2
1で設定した目標室温Ttと室温センサ22とが検出す
る検出室温Tnとの温度差(Tt−Tn)に基づき、室
内熱交換器3が冷媒凝縮工程(図4の状態→状態に
相当)において放出すべき必要熱量Qを、所定時間τ毎
(例えば、1分毎)に算出する。但し、算出した必要熱
量Qが10000kcal/hを越える場合、必要熱量
Qは10000kcal/hとされる。更に、検出室温
Tn>28℃の場合には、必要熱量Qは加熱量低減手段
236により、一律、2000kcal/h減らされ
る。
Next, the operation of the gas air conditioner B in the automatic air volume heating operation (1st air volume to 8th air volume) will be described. In the mode setting unit 24, the air volume automatic heating operation (with temperature control)
Is set, the heating amount calculating unit 231 sets the temperature setting unit 2
Based on the temperature difference (Tt-Tn) between the target room temperature Tt set in 1 and the detected room temperature Tn detected by the room temperature sensor 22, the indoor heat exchanger 3 performs the refrigerant condensing step (corresponding to the state from FIG. 4 to the state). The required amount of heat Q to be released is calculated every predetermined time τ (for example, every minute). However, when the calculated required heat amount Q exceeds 10,000 kcal / h, the required heat amount Q is set to 10,000 kcal / h. Further, when the detected room temperature Tn> 28 ° C., the required amount of heat Q is uniformly reduced by 2000 kcal / h by the heating amount reducing means 236.

【0047】室内ファン制御手段232は、必要熱量Q
に比例して室内ファン31の風量段階数(ファン回転
数)を所定時間τ毎(例えば、1分毎)に決定し、該段
階数の風量が得られる様に室内ファン31をフィードバ
ック制御する。 ファン送風量=κ・Q (但し、κは係数)
The indoor fan control means 232 determines the required heat quantity Q
The number of air flow stages (fan rotation speed) of the indoor fan 31 is determined in proportion to the predetermined time τ (for example, every minute), and the indoor fan 31 is feedback-controlled so as to obtain the air flow of the number of stages. Fan airflow = κ · Q (where κ is a coefficient)

【0048】燃焼ファン制御手段532は、必要熱量Q
{通信手段235、531により加熱量算出手段231
から伝わる}に相当する加熱量を冷媒蒸発工程(図4の
状態→状態に相当)で出力するガスバーナ13の燃
焼量に適した燃焼用空気量が得られる回転数を所定時間
τ毎に決定し、該回転数となる様に燃焼ファン16を制
御する。
The combustion fan control means 532 determines the required heat quantity Q
加熱 Heating amount calculating means 231 by communication means 235, 531
A rotation amount at which a combustion air amount suitable for the combustion amount of the gas burner 13 is output in the refrigerant evaporation step (corresponding to the state from FIG. 4 to the state). The combustion fan 16 is controlled so as to achieve the rotation speed.

【0049】比例弁制御手段533は、必要熱量Qに相
当する加熱量を冷媒蒸発工程(図4の状態→状態に
相当)でガスバーナ13に出力させるべく、所定時間τ
毎に、検出回転数に基づいて比例弁14への通電量を制
御する。
The proportional valve control means 533 outputs a heating amount corresponding to the required heat amount Q to the gas burner 13 in the refrigerant evaporation step (corresponding to the state shown in FIG. 4).
Each time, the amount of electricity to the proportional valve 14 is controlled based on the detected rotation speed.

【0050】具体的には、目標室温Ttと検出室温Tn
との温度差(Tt−Tn)が大きい暖房運転初期には、
室内ファン制御手段232が室内ファン31の風量を8
速に決定し、比例弁制御手段533がガスバーナ13の
燃焼速数を8速(燃焼量=10000kcal/h)に
決定する。そして、時間が経過して目標室温Ttと検出
室温Tnとの温度差(Tt−Tn)が小さくなっていく
と、室内ファン31の風量、燃焼ファン16の風量及び
ガスバーナ13の燃焼速数が下げられていく。
Specifically, the target room temperature Tt and the detection room temperature Tn
In the early stage of the heating operation in which the temperature difference (Tt−Tn) is large,
The indoor fan control means 232 reduces the air volume of the indoor fan 31 to 8
Speed, and the proportional valve control means 533 determines the combustion speed of the gas burner 13 to be 8 speeds (burning amount = 10000 kcal / h). Then, as the time elapses and the temperature difference (Tt−Tn) between the target room temperature Tt and the detected room temperature Tn decreases, the air volume of the indoor fan 31, the air volume of the combustion fan 16, and the combustion speed of the gas burner 13 decrease. It is being done.

【0051】但し、検出室温Tn>28℃の場合には、
必要熱量Qは2000kcal/h減らされるので、室
内ファン31の最大風量は6速、ガスバーナ13の最大
燃焼速数は6速(80000kcal/h)となる。
However, when the detection room temperature Tn> 28 ° C.,
Since the required heat quantity Q is reduced by 2000 kcal / h, the maximum air volume of the indoor fan 31 is 6 speed, and the maximum combustion speed of the gas burner 13 is 6 speed (80000 kcal / h).

【0052】本実施例のガス冷暖房装置Bは、以下の利
点を有する。 〔エ〕検出室温Tn>28℃の場合には、必要熱量Q
を、一律、2000kcal/h減らしているので、冷
媒サイクル全体のエンタルピーの増加が抑えられる。
これにより、室温が高い時(検出室温Tn>28℃)に
暖房運転を行っても冷媒圧力の上昇が抑えられ、管路1
50等の配管の強度を低下させないので安全性に優れ
る。
The gas cooling and heating apparatus B of this embodiment has the following advantages. [D] If the detected room temperature Tn> 28 ° C, the required heat quantity Q
Is uniformly reduced by 2000 kcal / h, so that an increase in enthalpy of the entire refrigerant cycle can be suppressed.
Thereby, even when the heating operation is performed when the room temperature is high (detection room temperature Tn> 28 ° C.), the increase in the refrigerant pressure is suppressed, and
Since the strength of the piping such as 50 is not reduced, the safety is excellent.

【0053】〔オ〕室温が高い時(検出室温Tn>28
℃)に暖房運転を行っても冷媒圧力の上昇が抑えられ、
管路150中の冷媒圧力が制限値に達しないので圧力ス
イッチ15が作動せず、暖房運転が不用意に停止しな
い。
[E] When the room temperature is high (detection room temperature Tn> 28)
℃), even if the heating operation is performed, the rise in refrigerant pressure is suppressed,
Since the refrigerant pressure in the pipe 150 does not reach the limit value, the pressure switch 15 does not operate, and the heating operation does not stop carelessly.

【0054】〔カ〕圧縮機1の能力を可変せず、ガスバ
ーナ13の燃焼量及び室内ファン31の回転数を増減し
て暖房能力の増減を行う構成であるので、圧縮機1への
通電量を連続可変する為のインバータ回路が不要であ
る。この為、高価な電子部品を使用する必要が無いとと
もに、ノイズ洩れ対策や電源波形の歪み(高調波)対策
等を行う必要も無く、安価にガス冷暖房装置Bを製造す
る事ができる。
[F] The heating capacity is increased or decreased by increasing or decreasing the amount of combustion of the gas burner 13 and the number of revolutions of the indoor fan 31 without changing the capacity of the compressor 1. Need not be provided with an inverter circuit for continuously varying. For this reason, it is not necessary to use expensive electronic components, and it is not necessary to take measures against noise leakage, distortion of power supply waveforms (harmonics), and the like, and the gas cooling and heating apparatus B can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1、第2実施例に係る冷媒加熱式の
ガス冷暖房装置を暖房運転した場合における冷媒の循環
経路を示す説明図である。
FIG. 1 is an explanatory diagram illustrating a circulation path of a refrigerant when a refrigerant heating type gas cooling and heating apparatus according to first and second embodiments of the present invention performs a heating operation.

【図2】本発明の第1、第2実施例に係る冷媒加熱式の
ガス冷暖房装置を冷房運転した場合における冷媒の循環
経路を示す説明図である。
FIG. 2 is an explanatory diagram showing a circulation path of a refrigerant when a refrigerant heating type gas cooling and heating apparatus according to the first and second embodiments of the present invention performs a cooling operation.

【図3】本発明の第1実施例に係るガス冷暖房装置のブ
ロック図である。
FIG. 3 is a block diagram of the gas cooling and heating apparatus according to the first embodiment of the present invention.

【図4】(a)は本発明の第1、第2実施例に係るガス
冷暖房装置に用いる冷媒の状態変化を示すモリエル線
図、(b)はその説明図である。
FIG. 4 (a) is a Mollier diagram showing a state change of a refrigerant used in the gas cooling and heating apparatus according to the first and second embodiments of the present invention, and FIG. 4 (b) is an explanatory diagram thereof.

【図5】本発明の第1実施例に係るガス冷暖房装置を暖
房運転する際において、経過時間tと、加熱量、圧力、
吸い込み温度等のカーブとの関係を示すグラフである。
FIG. 5 is a diagram illustrating an elapsed time t, a heating amount, a pressure, and a temperature when the gas cooling and heating apparatus according to the first embodiment of the present invention performs a heating operation.
It is a graph which shows the relationship with curves, such as suction temperature.

【図6】本発明の第2実施例に係るガス冷暖房装置のブ
ロック図である。
FIG. 6 is a block diagram of a gas cooling and heating apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A、B 冷媒加熱式のガス冷暖房装置(冷媒加熱式暖房
装置) 1 圧縮機 3 室内熱交換器 5 冷媒加熱器 6 アキュームレータ 13 ガスバーナ(加熱源) 15 圧力スイッチ(圧力センサ) 21 温度設定器(室温設定手段) 22 室温センサ 23、53 制御器 31 室内ファン 234 加熱量制限手段(制限手段) 236 加熱量低減手段(減少手段) Tn 検出室温 Tt 目標室温(設定室温)
A, B Refrigerant heating gas cooling / heating device (refrigerant heating device) 1 Compressor 3 Indoor heat exchanger 5 Refrigerant heater 6 Accumulator 13 Gas burner (heating source) 15 Pressure switch (pressure sensor) 21 Temperature setting device (room temperature) Setting means) 22 Room temperature sensor 23, 53 Controller 31 Indoor fan 234 Heating amount limiting means (Limiting means) 236 Heating amount reducing means (Reducing means) Tn detection room temperature Tt Target room temperature (Setting room temperature)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−107131(JP,A) 特開 平5−106855(JP,A) 特開 昭56−18225(JP,A) 特開 昭56−47937(JP,A) 実開 平2−96566(JP,U) 実開 昭60−191852(JP,U) (58)調査した分野(Int.Cl.6,DB名) F24D 7/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-107131 (JP, A) JP-A-5-106855 (JP, A) JP-A-56-18225 (JP, A) JP-A-56-107 47937 (JP, A) JP-A 2-96566 (JP, U) JP-A 60-191852 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) F24D 7/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒を圧縮する圧縮機、室内ファンを付
設した室内熱交換器、加熱源により加熱される冷媒加熱
器、及びアキュームレータを順に環状に管路接続し、 前記室内熱交換器から出る冷媒を前記冷媒加熱器に送
り、前記冷媒加熱器内で冷媒を蒸発させ、前記冷媒加熱
器から搬出するガス冷媒を前記アキュームレータを介し
て前記圧縮機で断熱圧縮し、前記圧縮機から吐出する高
温高圧のガス冷媒を前記室内熱交換器内で凝縮させる事
により室内に放熱する暖房運転を行うにあたって、 室温センサにより検出される検出室温と室温設定手段に
より設定される設定室温との差に基づき、制御器が、前
記加熱源の目標加熱量及び前記室内ファンの目標回転数
を算出するとともに、目標加熱量で前記加熱源が加熱し
目標回転数で前記室内ファンが回転する様に、前記加熱
源及び室内ファンを制御する冷媒加熱式暖房装置におい
て、 検出室温が所定温度より高い場合に前記加熱源の最大加
熱量を制限する制限手段を設けた事を特徴とする冷媒加
熱式暖房装置。
1. A compressor for compressing a refrigerant, an indoor heat exchanger provided with an indoor fan, a refrigerant heater heated by a heating source, and an accumulator are sequentially connected in a ring-like manner, and exit from the indoor heat exchanger. The refrigerant is sent to the refrigerant heater, the refrigerant is evaporated in the refrigerant heater, and the gas refrigerant discharged from the refrigerant heater is adiabatically compressed by the compressor via the accumulator, and the high temperature discharged from the compressor is discharged. In performing a heating operation in which high-pressure gas refrigerant is condensed in the indoor heat exchanger to radiate heat into the room, based on a difference between a detected room temperature detected by a room temperature sensor and a set room temperature set by room temperature setting means, A controller calculates a target heating amount of the heating source and a target rotation speed of the indoor fan, and heats the heating source at the target heating amount and the indoor fan at a target rotation speed. In a refrigerant heating type heating device that controls the heating source and the indoor fan so that the rotation of the heating source, when the detected room temperature is higher than a predetermined temperature, a limiting means for limiting the maximum heating amount of the heating source is provided. Refrigerant heating type heating device.
【請求項2】 冷媒を圧縮する圧縮機、室内ファンを付
設した室内熱交換器、加熱源により加熱される冷媒加熱
器、及びアキュームレータを順に環状に管路接続し、 前記室内熱交換器から出る冷媒を前記冷媒加熱器に送
り、前記冷媒加熱器内で冷媒を蒸発させ、前記冷媒加熱
器から搬出するガス冷媒を前記アキュームレータを介し
て前記圧縮機で断熱圧縮し、前記圧縮機から吐出する高
温高圧のガス冷媒を前記室内熱交換器内で凝縮させる事
により室内に放熱する暖房運転を行うにあたって、 室温センサにより検出される検出室温と室温設定手段に
より設定される設定室温との差に基づき、制御器が、前
記加熱源の目標加熱量及び前記室内ファンの目標回転数
を算出するとともに、目標加熱量で前記加熱源が加熱し
目標回転数で前記室内ファンが回転する様に、前記加熱
源及び室内ファンを制御する冷媒加熱式暖房装置におい
て、 検出室温が所定温度より高い場合に前記目標加熱量を減
らす減少手段を設けた事を特徴とする冷媒加熱式暖房装
置。
2. A compressor for compressing a refrigerant, an indoor heat exchanger provided with an indoor fan, a refrigerant heater heated by a heating source, and an accumulator are sequentially connected in a ring-like manner, and exit from the indoor heat exchanger. The refrigerant is sent to the refrigerant heater, the refrigerant is evaporated in the refrigerant heater, and the gas refrigerant discharged from the refrigerant heater is adiabatically compressed by the compressor via the accumulator, and the high temperature discharged from the compressor is discharged. In performing a heating operation in which high-pressure gas refrigerant is condensed in the indoor heat exchanger to radiate heat into the room, based on a difference between a detected room temperature detected by a room temperature sensor and a set room temperature set by room temperature setting means, A controller calculates a target heating amount of the heating source and a target rotation speed of the indoor fan, and heats the heating source at the target heating amount and the indoor fan at a target rotation speed. In a refrigerant heating type heating device that controls the heating source and the indoor fan so that the rotation of the refrigerant source, a reduction means for reducing the target heating amount when the detected room temperature is higher than a predetermined temperature is provided. Heating system.
【請求項3】 請求項1又は請求項2の冷媒加熱式暖房
装置において、 前記圧縮機の下流側の管路中に圧力センサを設け、管路
中の冷媒圧力が制限値に達すると暖房運転を停止する事
を特徴とする冷媒加熱式暖房装置。
3. The refrigerant heating type heating apparatus according to claim 1, wherein a pressure sensor is provided in a pipe downstream of the compressor, and a heating operation is performed when the refrigerant pressure in the pipe reaches a limit value. A refrigerant heating type heating device characterized by stopping the operation.
JP7219082A 1995-08-28 1995-08-28 Refrigerant heating type heating device Expired - Fee Related JP2919311B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7219082A JP2919311B2 (en) 1995-08-28 1995-08-28 Refrigerant heating type heating device
KR1019960028791A KR0182161B1 (en) 1995-08-28 1996-07-16 Refrigerant heating type room heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7219082A JP2919311B2 (en) 1995-08-28 1995-08-28 Refrigerant heating type heating device

Publications (2)

Publication Number Publication Date
JPH0960894A JPH0960894A (en) 1997-03-04
JP2919311B2 true JP2919311B2 (en) 1999-07-12

Family

ID=16729985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7219082A Expired - Fee Related JP2919311B2 (en) 1995-08-28 1995-08-28 Refrigerant heating type heating device

Country Status (2)

Country Link
JP (1) JP2919311B2 (en)
KR (1) KR0182161B1 (en)

Also Published As

Publication number Publication date
JPH0960894A (en) 1997-03-04
KR0182161B1 (en) 1999-03-20
KR970011676A (en) 1997-03-27

Similar Documents

Publication Publication Date Title
JP2919311B2 (en) Refrigerant heating type heating device
JP2964705B2 (en) Air conditioner
US11674706B2 (en) System and method for operating an air conditioner unit having an auxiliary electric heater
JP2004003692A (en) Refrigerating device
JP3037090B2 (en) Refrigerant heating air conditioner
KR0141543B1 (en) Refrigerant Heating Air Conditioning Unit
KR0141541B1 (en) Refrigerant Heating Air Conditioning Unit
JP2002005536A (en) Heat pump cycle
JP2004069195A (en) Heat pump type water heater
JP2006046681A (en) Heat pump device
JPS6342183B2 (en)
JPH10160273A (en) Air conditioner
KR20010065318A (en) Heat pump air-conditioner and control method thereof
US11668506B2 (en) System and method for operating a variable speed compressor of an air conditioner unit
JPH01111153A (en) Controller of air conditioner
JP2004232937A (en) Heat pump water heater
JPH0718935Y2 (en) Operation control device for air conditioner with radiant panel
JP2005037003A (en) Air-conditioner
WO2023230981A1 (en) Methods for sabbath mode in air conditioning units
JP3133647B2 (en) Air conditioner
JP3795989B2 (en) Refrigerant heating type air conditioner
JPH08193756A (en) Freezer device
JP2998514B2 (en) Refrigerant heating and cooling machine
JP3425306B2 (en) Hot water heating system
KR101854336B1 (en) Air conditioner and method for controlling the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees