JPH01111153A - Controller of air conditioner - Google Patents

Controller of air conditioner

Info

Publication number
JPH01111153A
JPH01111153A JP62269613A JP26961387A JPH01111153A JP H01111153 A JPH01111153 A JP H01111153A JP 62269613 A JP62269613 A JP 62269613A JP 26961387 A JP26961387 A JP 26961387A JP H01111153 A JPH01111153 A JP H01111153A
Authority
JP
Japan
Prior art keywords
temperature
combustion
heat source
heat
combustion amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62269613A
Other languages
Japanese (ja)
Inventor
Hirohisa Imai
博久 今井
Shuji Ochiai
落合 秀志
Yoshiyuki Kuroda
黒田 悦幸
Keiichi Mori
慶一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62269613A priority Critical patent/JPH01111153A/en
Publication of JPH01111153A publication Critical patent/JPH01111153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To decrease the quantity of combustion when the temperature of a coolant rises up even when the room temperature does not rise up to prevent the rise in a pipeline pressure and to increase the safety by giving priority to a smaller one out of the quantity of combustion operated from the room temperature and the quantity of combustion operated from the temperature of the coolant. CONSTITUTION:A first thermistor 19 detects the temperature of an inflowing coolant, and a second thermistor 20 detects the room temperature. A control part 21 controls a heat source 11 and a operating part 22 operates a quantity of combustion Q1 from the detected temperature T1 of the first thermistor 19, and a second operating part 23 operates a quantity of combustion Q2 from the detected temperature of a thermistor 20. A comparison part 24 compares Q1 with Q2 and outputs a smaller one as a quantity of combustion Q. A heat source control part 25 burns the heat source 11 at the quantity of combustion Q input from the comparison part 24. When the temperature of the coolant is kept at a predetermined temperature or less, it is possible to the increase in the pressure and also to maintain a safe state. When the temperature of an inflowing coolant rises up, the quantity of combustion decreases without any relation to the quantity of combustion and hence it is possible to increase the safety without increasing the pressure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は燃焼により熱媒体を加熱する空気調和機の制御
装置の特に燃焼量制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates particularly to combustion amount control of a control device for an air conditioner that heats a heat medium by combustion.

従来の技術 室内外のユニットを冷媒配管接続して、暖冷房を行う装
置として、ヒートポンプエアコンが一般的に実用化され
ている。しかし、ヒートポンプエアコンの場合には、暖
房を最も必要とする低外気温時に能力が低下し、高温の
強風が吹き出せないという問題がある。
2. Description of the Related Art Heat pump air conditioners are generally put into practical use as devices that perform heating and cooling by connecting indoor and outdoor units with refrigerant piping. However, in the case of heat pump air conditioners, there is a problem in that their performance decreases at low outside temperatures when heating is most needed, and they are unable to blow out high-temperature, strong wind.

このような問題を解決するものとして例えば特願昭61
−245729号のシステムがある。すなわち第6図に
おいて、暖房運転時には、先ず暖房開始時に第1電磁弁
1、第2電磁弁2、及び開、閉弁3を閉成し、第3電磁
弁4、第4電磁弁5を開成して圧縮機6を運転する。第
1電磁弁1と第2逆止弁7の作用により冷媒経路は封止
された状態となるので、室外冷媒凝縮機8、アキュムレ
ー3=−/ り9及びこれを接続した各種冷媒配管に分布していた冷
媒は圧縮機6の運転で吸入ポンプダウンされることにな
り、全ての冷媒は第1逆止弁10を経て冷媒加熱機11
に汲み上げられてしまう。このポンプダウン運転後は圧
縮機6を停止し、第4電磁弁5を閉成すると共にバーナ
(図示せず)に点火して暖房運転を開始する。冷媒加熱
機11に汲み上げられた熱媒体はバーナにより加熱され
て蒸発することによる蒸発圧力の上昇で、蒸発した高温
高圧の冷媒ガスは冷媒加熱機11から第3電磁弁4、冷
媒配管12から室内熱交換器13に圧送される。このと
き室内ファン14を運転すると高温高圧の冷媒ガスは放
熱して暖房を行うことにより凝縮して液化する。冷媒液
は冷媒配管15から第3逆止弁16を経て受液器17に
流入し受液されることになる。受液の液面が一定レベル
になると開閉弁3を開成して、蒸発圧力が受液器17に
加わることになり、冷媒加熱器11と同一静圧となるた
めに、受液器17の液面水頭差圧により、受液器17内
の冷媒液は冷媒加熱器11に流入する。受液器17の液
面が低下した後開閉弁3は閉成して初期の状態になる。
As a solution to such problems, for example, the patent application filed in 1983
There is a system called -245729. That is, in FIG. 6, during heating operation, first, when heating starts, the first solenoid valve 1, the second solenoid valve 2, and the open and close valves 3 are closed, and the third solenoid valve 4 and the fourth solenoid valve 5 are opened. Then, the compressor 6 is operated. Since the refrigerant path is sealed by the action of the first solenoid valve 1 and the second check valve 7, the refrigerant is distributed to the outdoor refrigerant condenser 8, the accumulator 3=-/return 9, and the various refrigerant pipes connected thereto. The refrigerant that had been in use will be suction pumped down by the operation of the compressor 6, and all the refrigerant will pass through the first check valve 10 and be transferred to the refrigerant heater 11.
It gets pumped up. After this pump-down operation, the compressor 6 is stopped, the fourth solenoid valve 5 is closed, and a burner (not shown) is ignited to start heating operation. The heat medium pumped into the refrigerant heater 11 is heated by a burner and evaporated, increasing the evaporation pressure, and the evaporated high-temperature, high-pressure refrigerant gas flows from the refrigerant heater 11 to the third solenoid valve 4 and from the refrigerant piping 12 indoors. The heat exchanger 13 is fed under pressure. At this time, when the indoor fan 14 is operated, the high-temperature, high-pressure refrigerant gas radiates heat and performs heating, thereby condensing and liquefying. The refrigerant liquid flows from the refrigerant pipe 15 through the third check valve 16 into the liquid receiver 17 and is received therein. When the liquid level of the liquid receiving liquid reaches a certain level, the on-off valve 3 is opened and evaporation pressure is applied to the liquid receiving vessel 17, and in order to have the same static pressure as the refrigerant heater 11, the liquid in the liquid receiving liquid 17 is Due to the surface head differential pressure, the refrigerant liquid in the receiver 17 flows into the refrigerant heater 11 . After the liquid level in the liquid receiver 17 drops, the on-off valve 3 closes and returns to its initial state.

以上のように暖房運転時にはバーナで冷媒を加熱し室内
ユニットに熱を搬送するので、低外気温時でも高温の強
風を吹き出すことが出来るのである。
As described above, during heating operation, the refrigerant is heated by the burner and the heat is transferred to the indoor unit, so it is possible to blow out high-temperature, strong wind even when the outside temperature is low.

発明が解決しようとする問題点 しかしながら上記のような方式では、高温の冷媒が循環
するために、例えば室内機のはこりづまり等システムの
異常により十分に熱交換が行えなかった場合には圧力の
上昇による配管の破裂等危険な状態に陥るという問題点
を有していた。
Problems to be Solved by the Invention However, in the above system, because high-temperature refrigerant circulates, if sufficient heat exchange cannot be performed due to an abnormality in the system, such as a blockage in the indoor unit, the pressure may drop. This had the problem of dangerous situations such as pipes bursting due to rising.

本発明はかかる従来の問題を解消するもので、圧力の上
昇を抑制し安全性を高めることを目的とする。
The present invention solves such conventional problems, and aims to suppress the increase in pressure and improve safety.

問題点を解決するための手段 上記問題点を解決するために本発明の空気調和機の制御
装置は、燃焼により熱媒体を加熱する熱源と、熱媒体と
の熱交換により空気を加熱する熱交換器と、熱媒体を前
記熱源と前記熱交換器に流5 へ−7 人する熱媒体の温度を検知する第1の温度検知手段と、
室温を検知する第2の温度検知手段と、前記第1の温度
検知手段及び前記第2の温度検知手段の検知温度により
前記熱源の燃焼量を制御する制御部を有し、前記制御部
は前記第1の温度検知手段の検知温度を入力として燃焼
量を演算する第1の演算部と、前記第2の温度検知手段
の検知温度を人力として燃焼量を演算する第2の演算部
と、前記第1の演算部の演算結果と前記第2の演算部の
演算結果を比較して燃焼量の小さい方を出力とする比較
部と、前記比較部の出力により前記熱源の燃焼量を制御
する熱源制御部を有する構成としたものである。
Means for Solving the Problems In order to solve the above problems, the air conditioner control device of the present invention includes a heat source that heats a heat medium by combustion, and a heat exchanger that heats the air by heat exchange with the heat medium. a first temperature detection means for detecting the temperature of the heat medium flowing into the heat source and the heat exchanger;
a second temperature detection means for detecting room temperature; and a control section for controlling the amount of combustion of the heat source based on the temperatures detected by the first temperature detection means and the second temperature detection means; a first calculation section that calculates the combustion amount by inputting the temperature detected by the first temperature detection means; a second calculation section that calculates the combustion amount using human power from the temperature detected by the second temperature detection means; a comparison section that compares the calculation result of the first calculation section and the calculation result of the second calculation section and outputs the smaller combustion amount; and a heat source that controls the combustion amount of the heat source based on the output of the comparison section. The configuration includes a control section.

作   用 冷媒温度と配管圧力は密接な関係があり、冷媒温度を一
定温度以下に保つと圧力の上昇を抑えることができ安全
な状態を維持できる。本発明は上記した構成によって、
流入する冷媒の温度が上昇すると室温に関係なく燃焼量
を減少するので圧力を」二昇させない安全な空気調和機
を提供できるの6ベーン である。
There is a close relationship between the working refrigerant temperature and the pipe pressure, and by keeping the refrigerant temperature below a certain level, pressure increases can be suppressed and a safe condition can be maintained. The present invention has the above configuration,
When the temperature of the incoming refrigerant rises, the amount of combustion decreases regardless of the room temperature, so it is possible to provide a safe air conditioner that does not increase the pressure.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。なお、実施例の説明にあたっては第6図と同一部分
には便宜上同一符号を付し、説明を省略する。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings. In the description of the embodiment, the same parts as in FIG. 6 are given the same reference numerals for convenience, and the description will be omitted.

第1図は、本発明のシステムブロック図を示す。FIG. 1 shows a system block diagram of the present invention.

第1図に於て18は第6図と同様の機能を有する熱搬送
手段、19は流入する熱媒体即ち冷媒の温度を検知する
第1のサーミスタで流入する配管部分に取り付けられて
いる。20は室温を検知する第2のサーミスタで空気の
吸い込み口に取り付けられている。21は熱源11を制
御する制御部、22は第1のサーミスタ19の検知温度
T1より燃焼量Q1を演算する第1の演算部、23は第
2のサーミスタ2oの検知温度より燃焼量Q2を演算す
る第2の演算部、24はQlと02を比較して小さい方
を燃焼量Qとして出力する比較部、25は比較部24か
ら入力する燃焼量Qで熱源11を燃焼させる熱源制御部
である。第2図に第7へ−7 1のサーミスタ19が冷媒温度T1を検知したときの第
1の演算部22の演算結果を示す。燃焼量はQH,QL
の2段階に切り換えることができるとすると、冷媒温度
T1がTI(TlaならばQ1=QHとする。冷媒温度
が上昇しTI)Tlaになると圧力上昇を抑えるために
燃焼量を0l−QLとする。更に冷媒温度が上昇しTI
)Tlbになると安全のために01=0即ち燃焼を停止
する。第3図に第2のサーミスタ20が室温T2を検知
したときの第2の演算部23の演算結果を示す。室温T
2がT 2 (T 2 aならばQ2=QH1室温が上
昇しT2)72aになると02=QL、更に上昇し、T
2)T2bになると02−0即ち燃焼を停止する。72
a、T2bは使用者が設定する設定温度により変化する
ものであり、室温T2によって燃焼量を切り換えること
により室温が使用者の設定温度に一致するように制御す
る。比較部24は第1の演算部22の演算結果Q1と第
2の演算部23の演算結果Q2を比較して小さい方の燃
焼量をQとして熱源制御部25に出力する。
In FIG. 1, 18 is a heat transfer means having the same function as in FIG. 6, and 19 is a first thermistor for detecting the temperature of the inflowing heat medium, that is, the refrigerant, which is attached to the inflow pipe section. A second thermistor 20 detects room temperature and is attached to the air intake port. 21 is a control unit that controls the heat source 11; 22 is a first calculation unit that calculates the combustion amount Q1 from the temperature T1 detected by the first thermistor 19; and 23 is the calculation unit that calculates the combustion amount Q2 from the temperature detected by the second thermistor 2o. 24 is a comparison section that compares Ql and 02 and outputs the smaller one as the combustion amount Q; 25 is a heat source control section that burns the heat source 11 with the combustion amount Q input from the comparison section 24. . FIG. 2 shows the calculation result of the first calculation unit 22 when the thermistor 19 of 7-71 detects the refrigerant temperature T1. The amount of combustion is QH, QL
If the refrigerant temperature T1 is TI (Tla, then Q1 = QH. When the refrigerant temperature rises and reaches TI) Tla, the combustion amount is set to 0l-QL to suppress the pressure rise. . Furthermore, the refrigerant temperature rises and TI
) Tlb, 01=0, that is, combustion is stopped for safety. FIG. 3 shows the calculation result of the second calculation unit 23 when the second thermistor 20 detects the room temperature T2. Room temperature T
2 is T 2 (If T 2 a, Q2 = QH1 room temperature rises and T2) 72a, 02 = QL, further rises, T
2) At T2b, 02-0, that is, combustion is stopped. 72
a and T2b change depending on the temperature set by the user, and the room temperature is controlled to match the temperature set by the user by switching the combustion amount depending on the room temperature T2. The comparison unit 24 compares the calculation result Q1 of the first calculation unit 22 and the calculation result Q2 of the second calculation unit 23, and outputs the smaller combustion amount as Q to the heat source control unit 25.

冷媒温度T1と室温T2と比較部24の出力Qの関係を
第4図に示す。以上の制御をマイコンを用いて行った場
合のフローチャートを第5図に示す。
The relationship between the refrigerant temperature T1, the room temperature T2, and the output Q of the comparator 24 is shown in FIG. FIG. 5 shows a flowchart when the above control is performed using a microcomputer.

以上の説明で燃焼量をQH,QLの2段階で制御したが
段階数を増やしても同様の効果を得る。その場合にはき
め細かな室温制御が可能になる。
In the above explanation, the combustion amount is controlled in two stages, QH and QL, but the same effect can be obtained even if the number of stages is increased. In that case, precise room temperature control becomes possible.

発明の効果 以上のように本発明の空気調和機の制御装置によれば次
の効果が得られる。
Effects of the Invention As described above, the air conditioner control device of the present invention provides the following effects.

室温から演算する燃焼量と冷媒温度から演算する燃焼量
の小さい方を優先するので室温が上昇しなくても冷媒温
度が上昇すると燃焼量を低下して配管圧力の上昇を防止
し安全な空気調和機を提供できる。
Priority is given to the smaller combustion amount calculated from the room temperature and the smaller combustion amount calculated from the refrigerant temperature, so even if the room temperature does not rise, if the refrigerant temperature rises, the combustion amount will be reduced to prevent a rise in pipe pressure, ensuring safe air conditioning. We can provide equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における空気調和機の制御装
置のシステムブロック図、第2図は冷媒温度と燃焼量の
関係を示す特性図、第3図は室内温度と燃焼量の関係を
示す特性図、第4図は冷媒温度と室内温度と燃焼量の関
係を示す厨1、第5図9ベー。 はマイコンの処理の流れを示すフローチャート、第6図
は従来例を説明するシステム図である。 11・・・・・・熱源、13・・・・・・熱交換器、1
8・・・・・熱搬送手段、19・・・・・・第1の温度
検知手段、20・・・・・・第2の温度検知手段、21
・・・・・・制御部、22・・・・・・第1の演算部、
23・・・・・・第2の演算部、24・・・・・・比較
部、25・・・・・・熱源制御部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ゥ 
    ′Q 番葺ゾ     0禮        
           城2Q  7.  寥 ゾ
Figure 1 is a system block diagram of an air conditioner control device according to an embodiment of the present invention, Figure 2 is a characteristic diagram showing the relationship between refrigerant temperature and combustion amount, and Figure 3 is a diagram showing the relationship between indoor temperature and combustion amount. The characteristic diagrams shown in Fig. 4 show the relationship between refrigerant temperature, indoor temperature, and combustion amount. 6 is a flowchart showing the process flow of the microcomputer, and FIG. 6 is a system diagram illustrating a conventional example. 11...Heat source, 13...Heat exchanger, 1
8...Heat transport means, 19...First temperature detection means, 20...Second temperature detection means, 21
...control section, 22...first calculation section,
23... Second calculation section, 24... Comparison section, 25... Heat source control section. Name of agent: Patent attorney Toshio Nakao and one other person
'Q Banfukizo 0rei
Castle 2Q 7. The treasure

Claims (1)

【特許請求の範囲】[Claims] 燃焼により熱媒体を加熱する熱源と、熱媒体との熱交換
により空気を加熱する熱交換機と、熱媒体を前記熱源と
前記熱交換機で循環させる熱搬送手段と、前記熱交換機
に流入する熱媒体の温度を検知する第1の温度検知手段
と、室温を検知する第2の温度検知手段と、前記第1の
温度検知手段および前記第2の温度検知手段の検知温度
により前記熱源の燃焼量を制御する制御部を有し、前記
制御部は前記第1の温度検知手段の検知温度を入力とし
て燃焼量を演算する第1の演算部と、前記第2の温度検
知手段の検知温度を入力として燃焼量を演算する第2の
演算部と、前記第1の演算部の演算結果と前記第2の演
算部の演算結果を比較して燃焼量の小さい方を出力とす
る比較部と、前記比較部の出力により前記熱源の燃焼量
を制御する熱源制御部を有する空気調和機の制御装置。
a heat source that heats a heat medium by combustion; a heat exchanger that heats air by heat exchange with the heat medium; a heat transfer means that circulates the heat medium between the heat source and the heat exchanger; and a heat medium that flows into the heat exchanger. a first temperature detection means for detecting the temperature of the room temperature, a second temperature detection means for detecting the room temperature, and a combustion amount of the heat source is determined based on the detected temperatures of the first temperature detection means and the second temperature detection means. The control section includes a first calculation section that calculates the combustion amount using the temperature detected by the first temperature detection means as an input, and a first calculation section that receives the temperature detected by the second temperature detection means as an input. a second calculation section that calculates the combustion amount; a comparison section that compares the calculation result of the first calculation section and the calculation result of the second calculation section and outputs the smaller one of the combustion amount; and the comparison section. A control device for an air conditioner, comprising a heat source control section that controls a combustion amount of the heat source based on an output of the heat source.
JP62269613A 1987-10-26 1987-10-26 Controller of air conditioner Pending JPH01111153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62269613A JPH01111153A (en) 1987-10-26 1987-10-26 Controller of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62269613A JPH01111153A (en) 1987-10-26 1987-10-26 Controller of air conditioner

Publications (1)

Publication Number Publication Date
JPH01111153A true JPH01111153A (en) 1989-04-27

Family

ID=17474791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62269613A Pending JPH01111153A (en) 1987-10-26 1987-10-26 Controller of air conditioner

Country Status (1)

Country Link
JP (1) JPH01111153A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106773A1 (en) * 2009-03-19 2010-09-23 ダイキン工業株式会社 Air conditioning device
US9046275B2 (en) 2009-03-19 2015-06-02 Daikin Industries, Ltd. Air conditioner with electromagnetic induction heating unit
US9328944B2 (en) 2009-03-19 2016-05-03 Daikin Industries, Ltd. Air conditioning apparatus
US9335071B2 (en) 2009-03-19 2016-05-10 Daikin Industries, Ltd. Air conditioning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016558B1 (en) * 1969-05-02 1975-06-13
JPS56105235A (en) * 1980-01-23 1981-08-21 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016558B1 (en) * 1969-05-02 1975-06-13
JPS56105235A (en) * 1980-01-23 1981-08-21 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106773A1 (en) * 2009-03-19 2010-09-23 ダイキン工業株式会社 Air conditioning device
AU2010226000B2 (en) * 2009-03-19 2012-11-08 Daikin Industries, Ltd. Air conditioner
RU2486413C1 (en) * 2009-03-19 2013-06-27 Дайкин Индастриз, Лтд. Air conditioner
US9046275B2 (en) 2009-03-19 2015-06-02 Daikin Industries, Ltd. Air conditioner with electromagnetic induction heating unit
US9074782B2 (en) 2009-03-19 2015-07-07 Daikin Industries, Ltd. Air conditioner with electromagnetic induction heating unit
US9328944B2 (en) 2009-03-19 2016-05-03 Daikin Industries, Ltd. Air conditioning apparatus
US9335071B2 (en) 2009-03-19 2016-05-10 Daikin Industries, Ltd. Air conditioning apparatus

Similar Documents

Publication Publication Date Title
KR100557381B1 (en) Air Conditioning Device
JPH01111153A (en) Controller of air conditioner
JPH1030852A (en) Air conditioner
JP4097405B2 (en) Engine cooling method and apparatus and refrigeration apparatus
JPH02150652A (en) Controller for air conditioner
JP3326322B2 (en) Air conditioner and air conditioner system equipped with this air conditioner
US10941966B2 (en) Hot gas bypass energy recovery
JP3448682B2 (en) Absorption type cold heat generator
JP2512161B2 (en) Air conditioner
JP2919311B2 (en) Refrigerant heating type heating device
JPH03213944A (en) Controller of air conditioner
JPS587148B2 (en) air conditioner
JP2539680Y2 (en) Air conditioner
JPH0763437A (en) Engine-operated air-conditioning apparatus
JPH0222604Y2 (en)
JP2542649B2 (en) Air conditioner
JP2002147884A (en) Hot water refrigerant heating air conditioner
JPH01111155A (en) Controller of air conditioner
JPS58130922A (en) Air conditioner
JPH01111156A (en) Controller of air conditioner
JPH07167527A (en) Air conditioner
JPH0571834A (en) Air-conditioning device
JPH02143048A (en) Control device for air conditioner
JPH03156218A (en) Controller for air conditioner
JPH02157558A (en) Controller of air conditioner