JPH0763437A - Engine-operated air-conditioning apparatus - Google Patents

Engine-operated air-conditioning apparatus

Info

Publication number
JPH0763437A
JPH0763437A JP5229663A JP22966393A JPH0763437A JP H0763437 A JPH0763437 A JP H0763437A JP 5229663 A JP5229663 A JP 5229663A JP 22966393 A JP22966393 A JP 22966393A JP H0763437 A JPH0763437 A JP H0763437A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
engine
pressure
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5229663A
Other languages
Japanese (ja)
Other versions
JP3373904B2 (en
Inventor
Masaki Takamatsu
正樹 高松
Shigeru Yoshii
繁 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22966393A priority Critical patent/JP3373904B2/en
Publication of JPH0763437A publication Critical patent/JPH0763437A/en
Application granted granted Critical
Publication of JP3373904B2 publication Critical patent/JP3373904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PURPOSE:To enable continuing the air-conditioning operation in a stabilized condition even when the load is small. CONSTITUTION:By a refrigerant pipe 10a a four-way valve 3 communicates with a service valve 16 on one hand which sends and receives refrigerant to and from the respective indoor heat exchangers 4 of indoor apparatuses U1 to U5 by means of a refrigerant-side conduit 10c having a usually closed flow- rate control valve 18 and a heat exchanger 19 for the control; by a refrigerant pipe 10b a service valve 17 on the other hand communicates with an outdoor heat exchanger 8; the refrigerant pipes 10a, 10b communicates with each other by connection. A controller 25 controls the valve opening of the flow-rate control valve 18 on the basis of, in cooling, the temperature of the indoor heat exchanger 4 or the pressure of the gaseous refrigerant on the low-pressure side sucked into a compressor 2 and, in heating, the pressure of the gaseous refrigerant on the high-pressure side discharged from the compressor 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮機がガスエンジン
などによって駆動されるエンジン駆動式空気調和装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine driven air conditioner in which a compressor is driven by a gas engine or the like.

【0002】[0002]

【従来の技術】この種の技術としては、例えば特開平3
−160281号公報、特開平3−177758号公報
などに提案されたものがある。
2. Description of the Related Art As a technique of this kind, for example, Japanese Patent Laid-Open No.
-160281 and Japanese Patent Laid-Open No. 3-177758.

【0003】しかし、前記特開平3−160281号公
報に開示されたエンジン駆動式空気調和装置において
は、冷房運転時に室内熱交換器の冷媒蒸発温度が所定の
温度以下になると、圧縮機の冷媒吸入側と冷媒吐出側と
を連通させたり、冷媒吸入側に設置した電動弁を開閉す
るなどしていた。このため、室内温度が段階状に変化す
ると云った問題点があった。
However, in the engine-driven air conditioner disclosed in the above-mentioned Japanese Patent Laid-Open No. 3-160281, when the refrigerant evaporation temperature of the indoor heat exchanger becomes lower than a predetermined temperature during the cooling operation, the refrigerant suction of the compressor. And the refrigerant discharge side are communicated with each other, and the electric valve installed on the refrigerant suction side is opened and closed. Therefore, there is a problem that the room temperature changes stepwise.

【0004】一方、特開平3−177758号公報に開
示されたエンジン駆動式空気調和装置の暖房運転におい
ては、冷媒の凝縮温度を検出し、この温度に基づいて暖
房用制御弁の開度を制御しているが、暖房負荷が小さい
ときには蒸発圧力が低下し過ぎて、室外熱交換器で凍結
することがあると云った欠点があった。
On the other hand, in the heating operation of the engine-driven air conditioner disclosed in Japanese Patent Laid-Open No. 3-177758, the condensation temperature of the refrigerant is detected and the opening of the heating control valve is controlled based on this temperature. However, there is a drawback that when the heating load is small, the evaporating pressure is too low and the outdoor heat exchanger may freeze.

【0005】[0005]

【発明が解決しようとする課題】すなわち、従来のエン
ジン駆動式空気調和装置においては、冷/暖何れの空気
調和運転時においても、負荷が小さいときには安定した
空調運転ができないと云った問題点があり、この点の解
決が課題とされていた。
That is, in the conventional engine-driven air conditioner, there is a problem that stable air conditioning operation cannot be performed when the load is small in both cold / warm air conditioning operation. There was a problem to solve this point.

【0006】[0006]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するための具体的手段として、エンジンによ
って駆動される圧縮機と、四方弁、室内熱交換器、レシ
ーバタンク、室外電動弁、室外熱交換器、アキュームレ
ータなどを順次冷媒管を介して連結し、冷/暖房回路が
形成されるエンジン駆動式空気調和装置において、
As a concrete means for solving the above-mentioned problems of the prior art, the present invention provides a compressor driven by an engine, a four-way valve, an indoor heat exchanger, a receiver tank, and an outdoor electric valve. , An outdoor heat exchanger, an accumulator, etc. are sequentially connected via a refrigerant pipe, and in an engine-driven air conditioner in which a cooling / heating circuit is formed,

【0007】前記室外熱交換器と近接して設置された制
御用熱交換器と、途中に流量制御弁を備えて前記制御用
熱交換器を経由し、前記室内熱交換器に接続された冷媒
供給管冷媒戻り管とを接続した冷媒側路管と、冷房運転
時に前記室内熱交換器の温度または前記圧縮機に吸入さ
れる低圧側ガス状冷媒の圧力に基づいて前記流量制御弁
の開度を調節する制御器とを具備した第1の構成と、
Refrigerant connected to the indoor heat exchanger via the control heat exchanger, which is provided in the vicinity of the outdoor heat exchanger and a flow control valve in the middle of the heat exchanger for control. Supply pipe Refrigerant side passage pipe connected to the refrigerant return pipe, the opening of the flow control valve based on the temperature of the indoor heat exchanger during cooling operation or the pressure of the low pressure side gaseous refrigerant sucked into the compressor A first configuration comprising a controller for adjusting the

【0008】前記室外熱交換器と近接して設置された制
御用熱交換器と、途中に流量制御弁を備えて前記制御用
熱交換器を経由し、前記室内熱交換器に接続された冷媒
供給管と冷媒戻り管とを接続した冷媒側路管と、暖房運
転時に前記圧縮機から吐出した高圧側ガス状冷媒の圧力
に基づいて前記流量制御弁の開度を調節する制御器とを
具備した第2の構成の、エンジン駆動式空気調和装置を
提供することにより、前記した従来技術の課題を解決す
るものである。
Refrigerant connected to the indoor heat exchanger via the control heat exchanger with a control heat exchanger installed in the vicinity of the outdoor heat exchanger and a flow control valve on the way. A refrigerant side pipe connecting a supply pipe and a refrigerant return pipe, and a controller for adjusting the opening of the flow control valve based on the pressure of the high-pressure side gaseous refrigerant discharged from the compressor during the heating operation. By providing the engine-driven air conditioner of the second configuration described above, the problems of the above-described conventional technology are solved.

【0009】[0009]

【作用】[Action]

請求項1の場合;流量制御弁を開けると、室外熱交換器
で外気と熱交換し、液化して室内熱交換器に供給されて
いた高圧の液状冷媒の一部が、冷媒側路管を通って冷媒
戻り管に流れて室内熱交換器への冷媒供給量が減少する
ので、室内熱交換器における蒸発潜熱の発生が減少す
る。
In the case of claim 1, when the flow control valve is opened, a part of the high-pressure liquid refrigerant that has been heat-exchanged with the outside air in the outdoor heat exchanger and has been liquefied and supplied to the indoor heat exchanger passes through the refrigerant side pipe. The amount of refrigerant supplied to the indoor heat exchanger through the refrigerant return pipe is reduced, so that the latent heat of vaporization in the indoor heat exchanger is reduced.

【0010】また、冷媒側路管を通って冷媒戻り管に供
給された液状冷媒は、室内熱交換器で高温の室内空気と
熱交換し、温度上昇したガス状冷媒と冷媒戻り管内で混
合されることで蒸発し、この部分の冷媒圧力を上昇させ
る。このことによっても、室内熱交換器における冷媒の
蒸発作用が抑制されて、蒸発潜熱の発生が減少するか
ら、室内熱交換器が過冷却の状態に陥ることが回避され
る。
Further, the liquid refrigerant supplied to the refrigerant return pipe through the refrigerant side pipe exchanges heat with high temperature indoor air in the indoor heat exchanger, and is mixed with the gas refrigerant whose temperature has risen in the refrigerant return pipe. This evaporates and raises the refrigerant pressure in this part. This also suppresses the evaporation action of the refrigerant in the indoor heat exchanger and reduces the generation of latent heat of vaporization, so that the indoor heat exchanger is prevented from falling into a supercooled state.

【0011】請求項2の場合;流量制御弁を開けると、
室内熱交換器に供給されていた高圧・高温のガス状冷媒
の一部が、冷媒側路管に流れ、制御用熱交換器で外気と
熱交換して凝縮し、このあと室内熱交換器を経由してき
た液状冷媒と冷媒戻り管で合流して室外熱交換器に流入
するので、室外熱交換器における冷媒の蒸発圧力の異常
な低下がなくなり、これにより室外熱交換器の凍結が回
避される。
In the case of claim 2, when the flow control valve is opened,
Part of the high-pressure, high-temperature gaseous refrigerant supplied to the indoor heat exchanger flows into the refrigerant bypass pipe, exchanges heat with the outside air in the control heat exchanger and condenses, and then the indoor heat exchanger is closed. The liquid refrigerant that has passed through is joined by the refrigerant return pipe and flows into the outdoor heat exchanger, so there is no abnormal decrease in the evaporation pressure of the refrigerant in the outdoor heat exchanger, and this prevents freezing of the outdoor heat exchanger. .

【0012】[0012]

【実施例】以下、本発明になるエンジン駆動式空気調和
装置の一例を図1に基づいて詳細に説明する。図中1は
例えば都市ガスを燃料とするガスエンジン(以下、単に
エンジンと記す)、2はこのエンジンの駆動力を撓み継
手で受けて駆動される圧縮機、3は四方弁、4は室内熱
交換器、5は室内電動弁、6はレシーバタンク、7は室
外電動弁、8は室外熱交換器、9はアキュームレータで
あり、これら機器自体は従来周知のものと何ら変わるも
のではなく、冷媒管10を介して順次連結され、実線で
示した冷房回路Aと破線で示した暖房回路Bとが構成さ
れている。なお、11は室外熱交換器8において、冷媒
と外気との熱交換を促進するための冷却ファンであり、
12はストレーナである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an engine driven air conditioner according to the present invention will be described in detail below with reference to FIG. In the figure, for example, 1 is a gas engine that uses city gas as fuel (hereinafter simply referred to as engine), 2 is a compressor driven by receiving the driving force of this engine through a flexible joint, 3 is a four-way valve, 4 is indoor heat An exchanger, 5 is an indoor electrically operated valve, 6 is a receiver tank, 7 is an outdoor electrically operated valve, 8 is an outdoor heat exchanger, and 9 is an accumulator. A cooling circuit A shown by a solid line and a heating circuit B shown by a broken line are sequentially connected via 10. In the outdoor heat exchanger 8, 11 is a cooling fan for promoting heat exchange between the refrigerant and the outside air,
12 is a strainer.

【0013】13は、室内熱交換器4の中央部に設置さ
れた温度センサであり、14および15は、室内熱交換
器4に接続している冷媒管10の、室内熱交換器4への
冷媒出入口部に設置された温度センサである。
Reference numeral 13 is a temperature sensor installed in the central portion of the indoor heat exchanger 4, and 14 and 15 are the refrigerant pipes 10 connected to the indoor heat exchanger 4 to the indoor heat exchanger 4. It is a temperature sensor installed in the refrigerant inlet / outlet portion.

【0014】U1は、前記した室内熱交換器4と室内電
動弁5と温度センサ13・14・15とを備えた室内ユ
ニットであり、この発明のエンジン駆動式空気調和装置
においては、上記構成の室内ユニットがあと4台、すな
わちU2〜U5を備えた構成となっている。これら室内
ユニットの冷凍能力は、同一である必要はない。
U1 is an indoor unit equipped with the indoor heat exchanger 4, the indoor motor-operated valve 5, and the temperature sensors 13, 14, and 15 described above. In the engine-driven air conditioner of the present invention, U1 has the above-mentioned configuration. The indoor unit has four more units, that is, U2 to U5. The refrigerating capacities of these indoor units do not have to be the same.

【0015】10cは、室内ユニットU1〜U5それぞ
れの室内熱交換器4と冷媒の授受を行うための一方のサ
ービス弁16と四方弁3とを連通している冷媒管10a
と、他方のサービス弁17と室外熱交換器8とを連通し
ている冷媒管10bとを接続している冷媒側路管であ
り、途中に通常閉の流量制御弁18と制御用熱交換器1
9とを備えている。なお、制御用熱交換器19は、室外
熱交換器8に併設されている。
Reference numeral 10c is a refrigerant pipe 10a which communicates the one-way service valve 16 for exchanging refrigerant with the indoor heat exchanger 4 of each of the indoor units U1 to U5 and the four-way valve 3.
And a refrigerant pipe 10b that connects the other service valve 17 and the refrigerant pipe 10b that communicates the outdoor heat exchanger 8 with the normally closed flow control valve 18 and the control heat exchanger. 1
9 and 9. The control heat exchanger 19 is installed side by side with the outdoor heat exchanger 8.

【0016】20および21は、圧縮機2の冷媒吸入側
と冷媒吐出側の冷媒管10に設置された圧力センサであ
り、冷媒吸入側ガス圧すなわち低圧側ガス圧と、冷媒吐
出側ガス圧すなわち高圧側ガス圧とをそれぞれ検出する
ものである。また、22は、低圧側ガス状冷媒の温度を
検出するために設置された温度センサである。
Reference numerals 20 and 21 denote pressure sensors installed in the refrigerant pipes 10 on the refrigerant suction side and the refrigerant discharge side of the compressor 2, respectively. The refrigerant suction side gas pressure, that is, the low pressure side gas pressure, and the refrigerant discharge side gas pressure, that is, the refrigerant discharge side gas pressure. The high pressure side gas pressure is detected respectively. Further, 22 is a temperature sensor installed to detect the temperature of the low-pressure side gaseous refrigerant.

【0017】23はリキッド配管であり、途中にストレ
ーナ12とリキッド弁24とを備えて、サービス弁17
とレシーバータンク6との間の冷媒管10bを流れる液
状冷媒の一部を、アキュームレータ9の手前の冷媒管1
0に適宜供給することが出来るように接続されている。
Reference numeral 23 is a liquid pipe, which is provided with a strainer 12 and a liquid valve 24 on the way, and a service valve 17
A part of the liquid refrigerant flowing in the refrigerant pipe 10b between the receiver tank 6 and the receiver tank 6 is replaced with the refrigerant pipe 1 in front of the accumulator 9.
0 is connected so that it can be appropriately supplied.

【0018】なお、前記リキッド弁24は通常閉となっ
ており、圧縮機2から冷媒管10に吐出した冷媒が所定
温度、例えば115℃を越えたようなときに開として、
温度の低い冷媒を圧縮機2に供給し、冷媒の過熱防止を
図るものである。
The liquid valve 24 is normally closed and opened when the refrigerant discharged from the compressor 2 to the refrigerant pipe 10 exceeds a predetermined temperature, for example, 115 ° C.,
A refrigerant having a low temperature is supplied to the compressor 2 to prevent the refrigerant from overheating.

【0019】25は、エンジン1の回転数を制御する回
転数制御部25aと、流量制御弁18の開度を制御する
開度制御部25bとを備えた制御器であり、設定室内温
度と前記各センサが計測するデータに基づいて、エンジ
ン1の回転数制御と流量制御弁18の開度調節とを行
う。
Reference numeral 25 is a controller provided with a rotation speed control section 25a for controlling the rotation speed of the engine 1 and an opening degree control section 25b for controlling the opening degree of the flow rate control valve 18, and the set room temperature and the above Based on the data measured by each sensor, the rotation speed of the engine 1 and the opening degree of the flow control valve 18 are adjusted.

【0020】ところで、四方弁3が暖房モードにセット
されたときには、圧縮機2が圧縮して冷媒管10に吐出
した高温高圧のガス状冷媒は冷媒管10aを通って室内
熱交換器4に先に供給され、ここで温度の低い室内空気
と熱交換してこれを加熱し、自身は放熱して液化する。
そして、この液化した冷媒が冷媒管10bの室外電動弁
7で減圧され、室外熱交換器8において外気と熱交換し
て蒸発し、圧縮機2に還流する冷媒循環が行われるの
で、この場合は冷媒管10aが冷媒供給管、冷媒管10
bが冷媒戻り管となる。
When the four-way valve 3 is set to the heating mode, the high-temperature high-pressure gaseous refrigerant compressed by the compressor 2 and discharged to the refrigerant pipe 10 passes through the refrigerant pipe 10a and reaches the indoor heat exchanger 4. Is heated to heat the room air by exchanging heat with room air having a low temperature.
Then, the liquefied refrigerant is decompressed by the outdoor motor-operated valve 7 of the refrigerant pipe 10b, exchanges heat with the outside air in the outdoor heat exchanger 8 to evaporate, and is circulated to the compressor 2 for circulation of the refrigerant. The refrigerant pipe 10a is a refrigerant supply pipe, the refrigerant pipe 10
b serves as a refrigerant return pipe.

【0021】一方、四方弁3が冷房モードにセットされ
たときには、圧縮機2から冷媒管10に吐出した高温高
圧のガス状冷媒は室外熱交換器8に先に供給され、ここ
で温度の低い外気によって冷却・液化され、この液化し
た冷媒が冷媒管10bを通って室内熱交換器4に供給さ
れる。室内熱交換器4に流入した冷媒は、先に通過した
室内電動弁5で減圧されているので、室内空気から蒸発
熱を奪って蒸発し、冷媒管10aを通って圧縮機2に還
流する。したがって、この場合は冷媒管10bが冷媒供
給管、冷媒管10aが冷媒戻り管となる。
On the other hand, when the four-way valve 3 is set in the cooling mode, the high temperature and high pressure gaseous refrigerant discharged from the compressor 2 to the refrigerant pipe 10 is first supplied to the outdoor heat exchanger 8 where the temperature is low. It is cooled and liquefied by the outside air, and the liquefied refrigerant is supplied to the indoor heat exchanger 4 through the refrigerant pipe 10b. The refrigerant that has flowed into the indoor heat exchanger 4 is decompressed by the indoor motor-operated valve 5 that has passed through first, so it deprives the indoor air of evaporation heat and evaporates, and then returns to the compressor 2 through the refrigerant pipe 10a. Therefore, in this case, the refrigerant pipe 10b serves as the refrigerant supply pipe and the refrigerant pipe 10a serves as the refrigerant return pipe.

【0022】上記構成になる本発明のエンジン駆動式空
気調和装置は、冷房運転に供されるときには室内熱交換
器4が既述したように冷媒の蒸発器として機能し、先ず
制御器25の回転数制御部25aが設定温度と室内温度
の差に対応して、また、運転されている室内ユニットU
1〜U5の総冷凍能力に応じて、圧縮機2の回転数、す
なわちエンジン1の回転数を制御する。
In the engine-driven air conditioner of the present invention having the above-mentioned structure, the indoor heat exchanger 4 functions as a refrigerant evaporator as described above when it is subjected to the cooling operation, and first the controller 25 rotates. The number control unit 25a responds to the difference between the set temperature and the indoor temperature, and also operates the indoor unit U.
The rotation speed of the compressor 2, that is, the rotation speed of the engine 1 is controlled according to the total refrigerating capacity of 1 to U5.

【0023】例えば、室内熱交換器4の吸い込み空気温
度が低下したり、室内熱交換器4の運転台数が減少する
などして冷房負荷が減少すると、冷房負荷の減少に合わ
せてエンジン1の回転数を徐々に低下させる。
For example, if the cooling load decreases due to a decrease in the intake air temperature of the indoor heat exchanger 4 or a decrease in the number of operating indoor heat exchangers 4, the rotation of the engine 1 will be accompanied by a decrease in the cooling load. Gradually reduce the number.

【0024】しかし、エンジン1の回転数を最低にした
あと冷房負荷がさらに減少すると、室内熱交換器4では
冷媒の蒸発圧力が一層低下し、蒸発温度もさらに低下す
ることから室内熱交換器4の温度は0℃以下になり、室
内熱交換器4に霜が付着して熱交換効率が低下するよう
になるため、
However, if the cooling load is further reduced after the engine speed of the engine 1 is minimized, the evaporation pressure of the refrigerant in the indoor heat exchanger 4 further decreases and the evaporation temperature further decreases. Becomes 0 ° C. or less, and frost adheres to the indoor heat exchanger 4 to lower the heat exchange efficiency.

【0025】温度センサ13・14・15が計測する温
度の内で一番低い温度が所定温度、例えば0℃を下回る
ことがないように、制御器25の開度制御部25bが発
信する制御信号に基づいて流量制御弁18の開度が調節
される。
A control signal transmitted by the opening control section 25b of the controller 25 so that the lowest temperature among the temperatures measured by the temperature sensors 13, 14, and 15 does not fall below a predetermined temperature, for example, 0 ° C. The opening degree of the flow control valve 18 is adjusted based on the above.

【0026】流量制御弁18が開かれると、室外熱交換
器8における外気との熱交換によって液化し、冷媒管1
0bを通って室内熱交換器4に供給されていた高圧の液
状冷媒の一部が、冷媒側路管10c(流量制御弁18・
制御用熱交換器19)を通って冷媒管10aに流れ、室
内熱交換器4への冷媒供給量が減少することにより、室
内熱交換器4における蒸発潜熱の発生が減少する。
When the flow control valve 18 is opened, it is liquefied by heat exchange with the outside air in the outdoor heat exchanger 8, and the refrigerant pipe 1
A part of the high-pressure liquid refrigerant that has been supplied to the indoor heat exchanger 4 through 0b passes through the refrigerant side pipe 10c (the flow control valve 18,
The generation of evaporation latent heat in the indoor heat exchanger 4 is reduced by flowing through the control heat exchanger 19) to the refrigerant pipe 10a and decreasing the amount of refrigerant supplied to the indoor heat exchanger 4.

【0027】また、冷媒側路管10cを通って冷媒管1
0aに供給された液状冷媒は、室内熱交換器4で高温の
室内空気と熱交換し、温度上昇したガス状冷媒と冷媒管
10a内で混合されることで蒸発し、この部分の冷媒圧
力を上昇させる。このことによっても、室内熱交換器4
における冷媒の蒸発が抑制され、蒸発潜熱の発生が減少
するから、室内熱交換器4が過冷却状態に陥ることが確
実に回避される。
Further, the refrigerant pipe 1 passes through the refrigerant side pipe 10c.
The liquid refrigerant supplied to 0a is heat-exchanged with the high-temperature indoor air in the indoor heat exchanger 4, and is evaporated by being mixed with the gaseous refrigerant whose temperature has risen in the refrigerant pipe 10a. To raise. Due to this, the indoor heat exchanger 4
Since the evaporation of the refrigerant is suppressed and the generation of latent heat of evaporation is reduced, the indoor heat exchanger 4 is surely prevented from falling into a supercooled state.

【0028】なお、流量制御弁18の開度の上限値は、
圧縮機2の冷媒吸入口側に設置した圧力センサ20と温
度センサ22が計測するデータに基づいて演算した過熱
度が所定値、例えば5deg以上を維持するように制限
される。
The upper limit of the opening of the flow control valve 18 is
The degree of superheat calculated based on the data measured by the pressure sensor 20 and the temperature sensor 22 installed on the refrigerant inlet side of the compressor 2 is limited so as to maintain a predetermined value, for example, 5 deg or more.

【0029】また、流量制御弁18の開閉は、温度セン
サ13・14・15が計測する温度に代えて、圧力セン
サ20が計測する低圧側ガス状冷媒の圧力が所定圧力、
例えば400kPaを下回ることがないように制御する
ことも可能である。
Further, the flow control valve 18 is opened and closed by replacing the temperature measured by the temperature sensors 13, 14, 15 with the pressure of the low-pressure side gaseous refrigerant measured by the pressure sensor 20 to a predetermined pressure,
For example, it is possible to control so as not to fall below 400 kPa.

【0030】他方、上記構成のエンジン駆動式空気調和
装置を暖房運転に供するときには、圧力センサ21が計
測している圧縮機2からの冷媒吐出圧力、すなわち高圧
側ガス状冷媒の圧力が所定圧力、例えば2.1MPaを
越えることがないように、制御器25の回転数制御部2
5aが先ずエンジン1の回転数を制御する。
On the other hand, when the engine-driven air conditioner having the above structure is used for heating operation, the refrigerant discharge pressure from the compressor 2 measured by the pressure sensor 21, that is, the pressure of the high-pressure side gaseous refrigerant is a predetermined pressure, For example, the rotation speed control unit 2 of the controller 25 should not exceed 2.1 MPa.
First, 5a controls the rotation speed of the engine 1.

【0031】例えば、室内熱交換器4の吸い込み空気温
度が上昇したり、室内熱交換器4の運転台数が減少する
などして暖房負荷が減少すると、暖房負荷の減少に対応
してエンジン1の回転数を徐々に低下させる。
For example, when the heating load decreases due to a rise in the intake air temperature of the indoor heat exchanger 4 or a decrease in the number of operating indoor heat exchangers 4, the engine 1 will respond to the decrease in the heating load. Gradually reduce the rotation speed.

【0032】しかし、エンジン1の回転数を最低に制御
したあと冷房負荷がさらに減少すると、室内熱交換器4
においては冷媒の凝縮圧力が一層上昇するので、冷媒管
10bを通って室外熱交換器8に流入する冷媒の量はさ
らに減少し、これにより室外熱交換器8では冷媒の蒸発
圧力が低下して凍結する恐れが生じるので、
However, if the cooling load is further reduced after controlling the engine speed to the minimum, the indoor heat exchanger 4
, The condensing pressure of the refrigerant is further increased, so that the amount of the refrigerant flowing into the outdoor heat exchanger 8 through the refrigerant pipe 10b is further reduced, which reduces the evaporation pressure of the refrigerant in the outdoor heat exchanger 8. Because it may freeze,

【0033】圧力センサ21が計測中の高圧側ガス状冷
媒の圧力が所定圧力、例えば2.1MPaを越えること
がないように、制御器25の開度制御部25bが発信す
る制御信号に基づいて、流量制御弁18の開度が調節さ
れる。
Based on a control signal transmitted from the opening control section 25b of the controller 25, the pressure sensor 21 does not exceed a predetermined pressure, for example, 2.1 MPa, of the pressure of the high-pressure side gaseous refrigerant being measured. The opening degree of the flow rate control valve 18 is adjusted.

【0034】流量制御弁18が開かれると、冷媒管10
aを流れて室内熱交換器4に供給されていた高圧・高温
のガス状冷媒の一部が、冷媒側路管10cに流れ、制御
用熱交換器19で外気と熱交換して凝縮し、このあと室
内熱交換器4を経由してきた液状冷媒と冷媒管10bで
合流して室外熱交換器8に流入するので、室外熱交換器
8における冷媒の蒸発圧力の異常な低下が回避され、こ
れにより室外熱交換器8が凍結すると云った恐れがなく
なる。
When the flow control valve 18 is opened, the refrigerant pipe 10
A part of the high-pressure / high-temperature gaseous refrigerant that has flowed through a and is being supplied to the indoor heat exchanger 4 flows to the refrigerant side pipe 10c and is heat-exchanged with the outside air in the control heat exchanger 19 to be condensed, After that, the liquid refrigerant that has passed through the indoor heat exchanger 4 merges with the refrigerant pipe 10b and flows into the outdoor heat exchanger 8. Therefore, an abnormal decrease in the evaporation pressure of the refrigerant in the outdoor heat exchanger 8 is avoided, and As a result, there is no fear that the outdoor heat exchanger 8 freezes.

【0035】なお、室内熱交換器4の中央部に設置され
ている温度センサ13が計測する温度は、冷媒の凝縮温
度にほぼ等しいので、温度センサ13が計測する温度が
一定になるように、流量制御弁18の開度を制御するよ
うに設けても良い。
Since the temperature measured by the temperature sensor 13 installed in the center of the indoor heat exchanger 4 is almost equal to the condensation temperature of the refrigerant, the temperature measured by the temperature sensor 13 should be constant. It may be provided so as to control the opening degree of the flow rate control valve 18.

【0036】また、本発明は上記実施例に限定されるも
のではないので、特許請求の範囲に記載の趣旨から逸脱
しない範囲で各種の変形実施が可能である。例えば、冷
媒側路管10cと冷媒管10bとの接続部は、サービス
弁17とレシーバタンク6との間としたり、室内熱交換
器8に臨む側とすることも可能である。
Further, since the present invention is not limited to the above-mentioned embodiments, various modifications can be made without departing from the spirit of the claims. For example, the connecting portion between the refrigerant side pipe 10c and the refrigerant pipe 10b may be between the service valve 17 and the receiver tank 6 or may be the side facing the indoor heat exchanger 8.

【0037】[0037]

【発明の効果】以上説明したように、本発明のエンジン
駆動式空気調和装置によれば、冷/暖何れの空調運転時
に負荷が大きく減少しても、エンジンの回転数を最低に
下げた後は、冷媒側路管に設けた流量制御弁の開度を調
整する操作だけで安定した空調運転を継続することが可
能となる。
As described above, according to the engine-driven air conditioner of the present invention, even if the load is greatly reduced during either the cold or warm air conditioning operation, after the engine speed is lowered to the minimum. The stable air conditioning operation can be continued only by adjusting the opening degree of the flow rate control valve provided in the refrigerant side pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】エンジン駆動式空気調和装置のシステム図であ
る。
FIG. 1 is a system diagram of an engine-driven air conditioner.

【符号の説明】[Explanation of symbols]

1 (ガス)エンジン 2 圧縮機 3 四方弁 4 室内熱交換器 5 室内電動弁 6 レシーバタンク 7 室外電動弁 8 室外熱交換器 9 アキュームレータ 10・10a・10b 冷媒管 10c 冷媒側路管 11 冷却ファン 12 フトレーナ 13・14・15 温度センサ 16・17 サービス弁 18 流量制御弁 19 制御用熱交換器 20・21 圧力センサ 22 温度センサ 23 リキッド配管 24 リキッド弁 25 制御器 25a 回転数制御部 25b 開度制御部 A 冷房回路 B 暖房回路 U1・U2・U3・U4・U5 室内ユニット 1 (gas) engine 2 compressor 3 four-way valve 4 indoor heat exchanger 5 indoor electric valve 6 receiver tank 7 outdoor electric valve 8 outdoor heat exchanger 9 accumulator 10 · 10a · 10b refrigerant pipe 10c refrigerant bypass pipe 11 cooling fan 12 Ftrainer 13 ・ 14 ・ 15 Temperature sensor 16 ・ 17 Service valve 18 Flow control valve 19 Control heat exchanger 20 ・ 21 Pressure sensor 22 Temperature sensor 23 Liquid piping 24 Liquid valve 25 Controller 25a Rotation speed control unit 25b Opening control unit A Cooling circuit B Heating circuit U1, U2, U3, U4, U5 Indoor unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エンジンによって駆動される圧縮機と、
四方弁、室内熱交換器、レシーバタンク、室外電動弁、
室外熱交換器、アキュームレータなどを順次冷媒管を介
して連結し、冷/暖房回路が形成されるエンジン駆動式
空気調和装置において、前記室外熱交換器と近接して設
置された制御用熱交換器と、途中に流量制御弁を備えて
前記制御用熱交換器を経由し、前記室内熱交換器に接続
された冷媒供給管と冷媒戻り管とを接続した冷媒側路管
と、冷房運転時に前記室内熱交換器の温度または前記圧
縮機に吸入される低圧側ガス状冷媒の圧力に基づいて前
記流量制御弁の開度を調節する制御器と、を具備するこ
とを特徴とするエンジン駆動式空気調和装置。
1. A compressor driven by an engine,
Four-way valve, indoor heat exchanger, receiver tank, outdoor electric valve,
In an engine-driven air conditioner in which an outdoor heat exchanger, an accumulator, etc. are sequentially connected via a refrigerant pipe to form a cooling / heating circuit, a control heat exchanger installed close to the outdoor heat exchanger. And, via the control heat exchanger provided with a flow rate control valve on the way, a refrigerant bypass pipe connecting the refrigerant supply pipe and the refrigerant return pipe connected to the indoor heat exchanger, and the cooling medium during the cooling operation. A controller that adjusts the opening of the flow control valve based on the temperature of the indoor heat exchanger or the pressure of the low-pressure side gaseous refrigerant sucked into the compressor, the engine-driven air Harmony device.
【請求項2】 エンジンによって駆動される圧縮機と、
四方弁、室内熱交換器、レシーバタンク、室外電動弁、
室外熱交換器、アキュームレータなどを順次冷媒管を介
して連結し、冷/暖房回路が形成されるエンジン駆動式
空気調和装置において、前記室外熱交換器と近接して設
置された制御用熱交換器と、途中に流量制御弁を備えて
前記制御用熱交換器を経由し、前記室内熱交換器に接続
された冷媒供給管と冷媒戻り管とを接続した冷媒側路管
と、暖房運転時に前記圧縮機から吐出した高圧側ガス状
冷媒の圧力に基づいて前記流量制御弁の開度を調節する
制御器と、を具備することを特徴とするエンジン駆動式
空気調和装置。
2. A compressor driven by an engine,
Four-way valve, indoor heat exchanger, receiver tank, outdoor electric valve,
In an engine-driven air conditioner in which an outdoor heat exchanger, an accumulator, etc. are sequentially connected via a refrigerant pipe to form a cooling / heating circuit, a control heat exchanger installed close to the outdoor heat exchanger. And, a refrigerant side pipe connecting the refrigerant supply pipe and the refrigerant return pipe connected to the indoor heat exchanger, which is provided with a flow rate control valve in the middle, through the control heat exchanger, and the heating side during the heating operation. An engine-driven air conditioner, comprising: a controller that adjusts the opening of the flow control valve based on the pressure of the high-pressure side gaseous refrigerant discharged from the compressor.
JP22966393A 1993-08-24 1993-08-24 Engine driven air conditioner Expired - Fee Related JP3373904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22966393A JP3373904B2 (en) 1993-08-24 1993-08-24 Engine driven air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22966393A JP3373904B2 (en) 1993-08-24 1993-08-24 Engine driven air conditioner

Publications (2)

Publication Number Publication Date
JPH0763437A true JPH0763437A (en) 1995-03-10
JP3373904B2 JP3373904B2 (en) 2003-02-04

Family

ID=16895732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22966393A Expired - Fee Related JP3373904B2 (en) 1993-08-24 1993-08-24 Engine driven air conditioner

Country Status (1)

Country Link
JP (1) JP3373904B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353881A (en) * 2003-05-27 2004-12-16 Sanyo Electric Co Ltd Air-conditioning system
WO2015115546A1 (en) * 2014-01-31 2015-08-06 ダイキン工業株式会社 Refrigeration device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8539785B2 (en) * 2009-02-18 2013-09-24 Emerson Climate Technologies, Inc. Condensing unit having fluid injection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353881A (en) * 2003-05-27 2004-12-16 Sanyo Electric Co Ltd Air-conditioning system
WO2015115546A1 (en) * 2014-01-31 2015-08-06 ダイキン工業株式会社 Refrigeration device
JP2015145744A (en) * 2014-01-31 2015-08-13 ダイキン工業株式会社 Refrigeration device

Also Published As

Publication number Publication date
JP3373904B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
JP5121922B2 (en) Air conditioning and hot water supply complex system
US6883342B2 (en) Multiform gas heat pump type air conditioning system
EP2233864B1 (en) Air-conditioning and hot water complex system
US7360372B2 (en) Refrigeration system
JPH0799297B2 (en) Air conditioner
JP2009222248A (en) Air conditioning system and accumulator thereof
JP2009079813A (en) Heat source-side unit, air conditioning device and air conditioning system
WO2008032558A1 (en) Refrigeration device
KR100640858B1 (en) Airconditioner and control method thereof
KR101166385B1 (en) A air conditioning system by water source and control method thereof
WO2007102345A1 (en) Refrigeration device
JP2989491B2 (en) Air conditioner
JP3668750B2 (en) Air conditioner
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP3373904B2 (en) Engine driven air conditioner
JP4610688B2 (en) Air-conditioning and hot-water supply system and control method thereof
US20220163241A1 (en) Hybrid multi-air conditioning system
JPH0730979B2 (en) Air conditioner
JP3627101B2 (en) Air conditioner
CN114151935A (en) Air conditioning system
JP3661014B2 (en) Refrigeration equipment
JP2523534B2 (en) Air conditioner
JP4186492B2 (en) Air conditioner
JP4773637B2 (en) Multi-type gas heat pump type air conditioner
CN110057144A (en) A kind of expansion valve component, bidirectional throttle system and air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees