JPH07310945A - Refrigerant heating type cooler/heater - Google Patents

Refrigerant heating type cooler/heater

Info

Publication number
JPH07310945A
JPH07310945A JP6103876A JP10387694A JPH07310945A JP H07310945 A JPH07310945 A JP H07310945A JP 6103876 A JP6103876 A JP 6103876A JP 10387694 A JP10387694 A JP 10387694A JP H07310945 A JPH07310945 A JP H07310945A
Authority
JP
Japan
Prior art keywords
refrigerant
heating
amount
room temperature
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6103876A
Other languages
Japanese (ja)
Inventor
Shigeaki Yasui
繁明 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP6103876A priority Critical patent/JPH07310945A/en
Priority to KR1019950002042A priority patent/KR0141541B1/en
Publication of JPH07310945A publication Critical patent/JPH07310945A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve the response at the times of starting heating and altering the heating capacity and to reduce the cost of a refrigerant heating type cooler/ heater by increasing or decreasing the heating amount of heating means and the air flow rate of an indoor fan to control the capacity in the state that the current-carrying capacity to a motor-driven compressor is maintained constant. CONSTITUTION:The combustion quantity of a gas burner 13 and the number of revolutions of an indoor fan 31 are increased or decreased to increase or decrease the heating capacity in the state that the current-carrying capacity to a compressor 1 is maintained constant at the time of any of the automatic air flow rate heating operation and the manual air flow rate heating operation. Combustion fan control means so controls to feed back a combustion fan 16 that the fan 16 is rotated at the number of revolutions set in response to a set (fixed) air flow rate during the refrigerant flowing operation, i.e., in the state that the current-carrying capacity to the compressor 1 is maintained constant. The control means rotates the fan 16 in a predetermined pattern during the refrigerant stopping operation, i.e., when the flow of the refrigerant is stopped in the state that the energization of the compressor 1 is stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、暖房運転時に冷媒を加
熱する冷媒加熱式冷暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant heating type cooling and heating apparatus for heating a refrigerant during heating operation.

【0002】[0002]

【従来の技術】図1に示す様に、電動圧縮機1→室外機
側熱交換器7→第1逆止弁8→キャピラリチューブ9→
室内機側熱交換器3→第2逆止弁10→アキュームレー
タ6→電動圧縮機1の順に冷媒を流通させて冷房運転を
行い、電動圧縮機1→室内機側熱交換器3→冷媒加熱器
5→アキュームレータ6→圧縮機1の順に冷媒を流通さ
せて暖房運転を行う冷媒加熱式冷暖房装置が従来より知
られている。
2. Description of the Related Art As shown in FIG. 1, an electric compressor 1-> an outdoor unit side heat exchanger 7-> a first check valve 8-> a capillary tube 9->
The indoor unit side heat exchanger 3-> the second check valve 10-> the accumulator 6-> the electric compressor 1 is circulated in order to perform cooling operation, and the electric compressor 1-> indoor unit side heat exchanger 3-> refrigerant heater BACKGROUND ART Refrigerant heating type cooling and heating devices that perform heating operation by circulating a refrigerant in the order of 5 → accumulator 6 → compressor 1 have been conventionally known.

【0003】[0003]

【発明が解決しようとする課題】従来の冷媒加熱式冷暖
房装置は、暖房能力の増減を電動圧縮機の圧縮能力を連
続可変し、冷媒流通量を変化させて行う為、以下の課題
を有する。
The conventional refrigerant heating type cooling / heating apparatus has the following problems because the heating capacity is increased / decreased by continuously varying the compression capacity of the electric compressor and changing the refrigerant flow rate.

【0004】(あ)電動圧縮機の圧縮能力を連続可変す
るには、インバータ回路を使用して回転数を連続可変す
る必要がある。インバータ回路は、高価な電子部品を多
数使用するとともに、ノイズ洩れ対策や電源波形の歪み
(高調波)対策等を行う必要があり、コストがかかる。
(A) In order to continuously vary the compression capacity of the electric compressor, it is necessary to continuously vary the rotation speed by using an inverter circuit. The inverter circuit requires a large number of expensive electronic components, and it is necessary to take measures against noise leakage, distortion of power supply waveform (harmonic), etc., which is costly.

【0005】(い)冷媒の流通量や速度を急に変えると
冷凍サイクルが不安定になるので、電動圧縮機の回転数
を序々に目標値に近づけていく必要があり、暖房の立ち
上がりが悪く、暖房能力変更時の応答も悪い。
(Ii) If the flow rate or speed of the refrigerant is suddenly changed, the refrigeration cycle becomes unstable. Therefore, it is necessary to gradually bring the number of rotations of the electric compressor closer to the target value, and the heating rise is poor. The response when changing the heating capacity is also poor.

【0006】本発明の目的は、暖房の立ち上がりが良い
とともに、暖房能力変更時の応答性に優れた、安価な冷
媒加熱式冷暖房装置の提供にある。
An object of the present invention is to provide an inexpensive refrigerant heating type cooling / heating apparatus which has a good start-up of heating and an excellent responsiveness when the heating capacity is changed.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する為、
本発明は、以下の構成を採用した。 (1)室内機側熱交換器から流出する冷媒を冷媒加熱器
に送り、加熱手段により加熱される冷媒加熱器内で冷媒
を蒸発させ、前記冷媒加熱器から搬出するガス冷媒を電
動圧縮機で断熱圧縮し、前記電動圧縮機から吐出する高
温高圧のガス冷媒を、室内ファンを付設した室内機側熱
交換器内で凝縮させる事により室内に放熱して暖房運転
を行う冷媒加熱式冷暖房装置において、前記電動圧縮機
への通電量を一定に維持した状態で、前記加熱手段の加
熱量及び前記室内ファンの送風量を増減して暖房能力を
制御する。
[Means for Solving the Problems] In order to solve the above problems,
The present invention has the following configurations. (1) The refrigerant flowing out from the indoor unit side heat exchanger is sent to the refrigerant heater, the refrigerant is evaporated in the refrigerant heater heated by the heating means, and the gas refrigerant carried out from the refrigerant heater is transferred by the electric compressor. In a refrigerant heating type cooling and heating apparatus that performs adiabatic compression and discharges the high-temperature and high-pressure gas refrigerant from the electric compressor in the indoor unit side heat exchanger equipped with an indoor fan to radiate heat indoors to perform heating operation The heating capacity is controlled by increasing / decreasing the heating amount of the heating unit and the blowing amount of the indoor fan in a state where the amount of electricity supplied to the electric compressor is kept constant.

【0008】(2)室内機側熱交換器から流出する冷媒
を冷媒加熱器に送り、加熱手段により加熱される冷媒加
熱器内で冷媒を蒸発させ、前記冷媒加熱器から搬出する
ガス冷媒を電動圧縮機で断熱圧縮し、前記電動圧縮機か
ら吐出する高温高圧のガス冷媒を、室内ファンを付設し
た室内機側熱交換器内で凝縮させる事により室内に放熱
して暖房運転を行う冷媒加熱式冷暖房装置において、前
記室内ファンの室内機側熱交換器への送風量が、一又は
複数段階に決まっている場合、前記電動圧縮機への通電
量を一定に維持した状態で、前記送風量に応じて設定さ
れた各加熱量で前記加熱手段を作動させる冷媒流通運転
と、少なくとも前記加熱手段の作動を停止させる冷媒停
止運転とを交互に実施して暖房能力を制御する。
(2) The refrigerant flowing out of the indoor unit side heat exchanger is sent to the refrigerant heater, the refrigerant is evaporated in the refrigerant heater heated by the heating means, and the gas refrigerant carried out from the refrigerant heater is electrically driven. A refrigerant heating type that performs adiabatic compression with a compressor and radiates heat into the room by condensing the high-temperature and high-pressure gas refrigerant discharged from the electric compressor in an indoor unit side heat exchanger equipped with an indoor fan In the cooling and heating device, when the amount of air blown to the indoor unit side heat exchanger of the indoor fan is determined in one or more stages, the amount of air blown to the air blower is kept constant while the amount of electricity supplied to the electric compressor is kept constant. The heating capacity is controlled by alternately performing the refrigerant circulation operation for operating the heating means with each heating amount set accordingly and the refrigerant stop operation for stopping the operation of at least the heating means.

【0009】(3)上記(1) の構成を有し、目標室温を
設定する温度設定器と、室温を検出する室温センサと、
目標室温と検出室温との差に基づき、前述の冷媒凝縮工
程で前記室内機側熱交換器が放出すべき必要熱量を算出
する放熱量算出手段と、算出された必要熱量に比例して
前記室内ファンの送風量を決定し、該送風量が得られる
様に前記室内ファンを制御する室内ファン制御手段と、
算出された必要熱量に相当する加熱量、又は前記室内機
側熱交換器で放熱した熱量を前述の冷媒蒸発工程で前記
加熱手段に出力させる加熱能力制御手段とを設けた。
(3) A temperature setting device having the structure of (1) above, which sets a target room temperature, a room temperature sensor for detecting the room temperature,
Based on the difference between the target room temperature and the detected room temperature, the heat dissipation amount calculation means for calculating the necessary heat amount to be released by the indoor unit side heat exchanger in the refrigerant condensing step, and the indoor unit in proportion to the calculated necessary heat amount. Indoor fan control means for determining the air flow rate of the fan and controlling the indoor fan so as to obtain the air flow rate;
A heating capacity control means for outputting the heating quantity corresponding to the calculated necessary heat quantity or the heat quantity radiated by the indoor unit side heat exchanger to the heating means in the refrigerant evaporation step is provided.

【0010】(4)上記(2) の構成を有し、目標室温を
設定する温度設定器と、室温を検出する室温センサと、
目標室温と検出室温との差に基づき、前述の冷媒凝縮工
程で前記室内機側熱交換器が放出すべき必要熱量を算出
する放熱量算出手段と、算出された必要熱量に相当する
加熱量、又は前記室内機側熱交換器で放熱した熱量を前
述の冷媒蒸発工程で前記加熱手段が出力する様に、上記
冷媒停止運転の動作時期や時間を制御するタイミング制
御手段とを設けた。
(4) A temperature setting device having the structure of (2) above, which sets a target room temperature, a room temperature sensor for detecting the room temperature,
Based on the difference between the target room temperature and the detected room temperature, the heat dissipation amount calculation means for calculating the necessary heat amount to be released by the indoor unit side heat exchanger in the refrigerant condensation step, and the heating amount corresponding to the calculated necessary heat amount, Alternatively, a timing control means for controlling the operation timing and time of the refrigerant stop operation is provided so that the heating means outputs the amount of heat radiated by the indoor unit side heat exchanger in the refrigerant evaporation step.

【0011】(5)上記(3) の構成を有し、前記加熱手
段は、通電量に応じた開度を示す比例電磁弁を介してガ
スが供給されるガスバーナと該ガスバーナに適量の燃焼
用空気を供給する燃焼ファンとにより構成され、前記比
例電磁弁への通電量及び前記燃焼ファンの回転数は前記
加熱能力制御手段により制御され、前記室内ファン制御
手段は、算出された必要熱量に比例して室内ファンの回
転数を決定し、該回転数が得られる様に前記室内ファン
を制御する。
(5) Having the structure of (3) above, the heating means is a gas burner to which gas is supplied through a proportional solenoid valve showing an opening corresponding to the amount of energization, and an appropriate amount of combustion gas for burning the gas burner. A combustion fan that supplies air, and the energization amount to the proportional solenoid valve and the rotation speed of the combustion fan are controlled by the heating capacity control unit, and the indoor fan control unit is proportional to the calculated required heat amount. Then, the rotation speed of the indoor fan is determined, and the indoor fan is controlled so as to obtain the rotation speed.

【0012】[0012]

【作用】[Action]

〔請求項1について〕冷媒加熱器から搬出するガス冷媒
を電動圧縮機が圧縮し、断熱圧縮により冷媒の温度及び
圧力が上昇し、ガス冷媒は図8の状態から等エントロ
ピー線に沿って状態に変位し、エンタルピーは僅かに
上昇する(断熱圧縮工程)。
[Claim 1] The electric compressor compresses the gas refrigerant carried out from the refrigerant heater, the temperature and the pressure of the refrigerant increase due to adiabatic compression, and the gas refrigerant changes from the state of Fig. 8 to a state along the isentropic line. It is displaced and the enthalpy rises slightly (adiabatic compression process).

【0013】電動圧縮機から吐出する高温高圧のガス冷
媒は、図8の状態から等温等圧線に沿って状態に変
位し、室内機側熱交換器内で凝縮し、室内機側熱交換器
は凝縮により発生する熱を室内に放熱する(冷媒凝縮工
程)。
The high-temperature high-pressure gas refrigerant discharged from the electric compressor is displaced from the state shown in FIG. 8 to a state along the isothermal isobar, and is condensed in the indoor unit heat exchanger, and the indoor unit heat exchanger is condensed. The heat generated by the heat is radiated indoors (refrigerant condensing step).

【0014】室内機側熱交換器から流出する冷媒は、図
8の状態から等エンタルピー線に沿って状態に変位
し、冷媒加熱器に送られる(冷媒減圧工程)。
The refrigerant flowing out of the indoor unit side heat exchanger is displaced from the state shown in FIG. 8 to a state along the isenthalpy line and sent to the refrigerant heater (refrigerant depressurizing step).

【0015】加熱手段により加熱される冷媒加熱器内で
冷媒は蒸発し、図8の状態から等温等圧線に沿って状
態に変位し、冷媒のエンタルピーが上昇する(冷媒蒸
発工程)。
The refrigerant evaporates in the refrigerant heater heated by the heating means, is displaced from the state of FIG. 8 to a state along the isothermal isobar, and the enthalpy of the refrigerant increases (refrigerant evaporation step).

【0016】暖房能力の制御は、以下の様に行う。電動
圧縮機への通電量を一定に維持した状態で、加熱手段の
加熱量及び室内ファンの送風量を増大すると、冷媒蒸発
工程における冷媒のエンタルピーの変化幅及び冷媒凝縮
工程における室内機側熱交換器の室内への放熱量が共に
大きくなり、暖房能力が増大する(状態→状態→状
態→状態→状態……)。
The heating capacity is controlled as follows. When the heating amount of the heating means and the blowing amount of the indoor fan are increased while the amount of electricity to the electric compressor is maintained constant, the change width of the enthalpy of the refrigerant in the refrigerant evaporation process and the heat exchange on the indoor unit side in the refrigerant condensation process The amount of heat radiated into the room increases, and the heating capacity increases (state → state → state → state → state ...).

【0017】又、電動圧縮機への通電量を一定に維持し
た状態で、加熱手段の加熱量及び室内ファンの送風量を
減少すると、冷媒蒸発工程における冷媒のエンタルピー
の変化幅及び冷媒凝縮工程における室内機側熱交換器の
室内への放熱量が共に小さくなり、暖房能力が減少する
(状態→状態→状態’→状態’→状態…
…)。
Further, when the heating amount of the heating means and the air blowing amount of the indoor fan are reduced in a state where the amount of electricity supplied to the electric compressor is kept constant, the change width of the enthalpy of the refrigerant in the refrigerant evaporation process and the refrigerant condensing process are reduced. Both the amount of heat radiated to the room from the indoor unit side heat exchanger decreases, and the heating capacity decreases (state → state → state '→ state' → state ...
…).

【0018】〔請求項2について〕室内ファンの送風力
が固定されている冷媒加熱式冷暖房装置の場合、暖房能
力の制御を以下の様に行う。電動圧縮機への通電量を一
定に維持し、送風量に応じて設定された各加熱量(送風
量毎に設定された一定値)で加熱手段を作動させると、
高温高圧のガス冷媒が室内機側熱交換器内で凝縮して室
内機側熱交換器が室内に放熱する(冷媒流通運転)。
[Claim 2] In the case of the refrigerant heating type cooling and heating apparatus in which the wind force of the indoor fan is fixed, the heating capacity is controlled as follows. When the amount of electricity supplied to the electric compressor is maintained constant and the heating means is operated at each heating amount set according to the air flow rate (a constant value set for each air flow rate),
The high-temperature and high-pressure gas refrigerant condenses in the indoor unit side heat exchanger, and the indoor unit side heat exchanger radiates heat indoors (refrigerant circulation operation).

【0019】少なくとも加熱手段の作動を停止すると、
室内機側熱交換器による室内への放熱が行われなくなる
か、大幅に減少する(冷媒停止運転)。この冷媒停止運
転を行う時期や継続時間を変える事により暖房能力が増
減する。
At least when the operation of the heating means is stopped,
The indoor heat exchanger does not release heat to the room, or the heat is significantly reduced (refrigerant stop operation). The heating capacity is increased / decreased by changing the timing and duration of this refrigerant stop operation.

【0020】〔請求項3について〕放熱量算出手段は、
温度設定器で設定した目標室温と、室温センサが検出し
た検出室温との差に基づき、室内機側熱交換器が冷媒凝
縮工程で放出すべき必要熱量を算出する。
[Claim 3] The heat radiation amount calculation means is
Based on the difference between the target room temperature set by the temperature setter and the detected room temperature detected by the room temperature sensor, the indoor unit side heat exchanger calculates the necessary amount of heat to be released in the refrigerant condensing step.

【0021】室内ファン制御手段は、室内ファンの送風
量を、算出された必要熱量に比例して決定し、該送風量
が得られる様に室内ファンを制御する。加熱能力制御手
段は、算出された必要熱量に相当する加熱量、又は室内
機側熱交換器で放熱した熱量を、冷媒蒸発工程で加熱手
段に出力させる。これにより、室温が目標室温に維持さ
れる様に暖房運転が行われる。
The indoor fan control means determines the amount of air blown by the indoor fan in proportion to the calculated required heat amount, and controls the indoor fan so as to obtain the amount of air blown. The heating capacity control means causes the heating means to output the heating amount corresponding to the calculated required heat amount or the heat amount radiated by the indoor unit side heat exchanger in the refrigerant evaporation step. As a result, the heating operation is performed so that the room temperature is maintained at the target room temperature.

【0022】〔請求項4について〕放熱量算出手段は、
温度設定器で設定した目標室温と、室温センサが検出し
た検出室温との差に基づき、室内機側熱交換器が冷媒凝
縮工程で放出すべき必要熱量を算出する。
[Claim 4] The heat radiation amount calculation means is
Based on the difference between the target room temperature set by the temperature setter and the detected room temperature detected by the room temperature sensor, the indoor unit side heat exchanger calculates the necessary amount of heat to be released in the refrigerant condensing step.

【0023】タイミング制御手段は、放熱量算出手段が
算出した上記必要熱量に相当する加熱量、又は室内機側
熱交換器で放熱した熱量を前述の冷媒蒸発工程で加熱手
段が出力する様に、冷媒停止運転を行う時期や継続時間
を制御する。これにより、室温が目標室温に維持される
様に暖房運転が行われる。
The timing control means is arranged so that the heating means outputs the heating amount corresponding to the required heat amount calculated by the heat radiation amount calculating means or the heat amount radiated by the indoor unit side heat exchanger in the above-mentioned refrigerant evaporation step. Control the timing and duration of the refrigerant stop operation. As a result, the heating operation is performed so that the room temperature is maintained at the target room temperature.

【0024】〔請求項5について〕放熱量算出手段は、
温度設定器で設定した目標室温と、室温センサが検出し
た検出室温との差に基づき、室内機側熱交換器が冷媒凝
縮工程で放出すべき必要熱量を算出する。
[Claim 5] The heat radiation amount calculation means is
Based on the difference between the target room temperature set by the temperature setter and the detected room temperature detected by the room temperature sensor, the indoor unit side heat exchanger calculates the necessary amount of heat to be released in the refrigerant condensing step.

【0025】室内ファン制御手段は、算出された必要熱
量に比例して室内ファンの回転数を決定し、該回転数が
得られる様に室内ファンの回転数を制御する。加熱能力
制御手段は、算出された必要熱量に相当する加熱量、又
は室内機側熱交換器で放熱した熱量を冷媒蒸発工程で、
ガスバーナが出力する様に、比例電磁弁への通電量及び
燃焼ファンの回転数を制御する。これにより、室温が目
標室温に維持される様に暖房運転が行われる。
The indoor fan control means determines the number of revolutions of the indoor fan in proportion to the calculated necessary heat amount, and controls the number of revolutions of the indoor fan so as to obtain the number of revolutions. Heating capacity control means, the amount of heat equivalent to the calculated required heat amount, or the heat amount radiated by the indoor unit side heat exchanger in the refrigerant evaporation step,
The power supply to the proportional solenoid valve and the rotation speed of the combustion fan are controlled so that the gas burner outputs. As a result, the heating operation is performed so that the room temperature is maintained at the target room temperature.

【0026】[0026]

【発明の効果】【The invention's effect】

〔請求項1について〕電動圧縮機への通電量を一定に維
持し、加熱手段の加熱量及び室内ファンの送風量を増減
して暖房能力の増減を行う構成であるので、電動圧縮機
への通電量を連続可変する為のインバータ回路が不要と
なる。この為、高価な電子部品を使用する必要が無いと
ともに、ノイズ洩れ対策や電源波形の歪み(高調波)対
策等を行う必要も無く、安価に製造する事ができる。
[Claim 1] Since the amount of electricity to the electric compressor is maintained constant, and the heating capacity is increased or decreased by increasing or decreasing the heating amount of the heating means and the blowing amount of the indoor fan, An inverter circuit for continuously changing the energization amount becomes unnecessary. For this reason, it is not necessary to use expensive electronic parts, and it is not necessary to take measures against noise leakage, distortion of power supply waveform (harmonic), and the like, so that it can be manufactured at low cost.

【0027】電動圧縮機への通電量を一定に維持して、
常時、冷媒を、所定の速度で所定の流量流しているの
で、暖房の立ち上がりが良く、暖房能力変更時の応答性
に優れる。
Maintaining a constant amount of electricity to the electric compressor,
Since the refrigerant is constantly flowing at a predetermined flow rate at a predetermined speed, the heating starts up well and the responsiveness when changing the heating capacity is excellent.

【0028】〔請求項2について〕電動圧縮機への通電
量を一定に維持し、固定又は複数段階に変えられる室内
ファンの送風量に応じて設定された各加熱量で加熱手段
を作動させる冷媒流通運転と、少なくとも加熱手段の作
動を停止する冷媒停止運転とを交互に実施して暖房能力
を制御する構成である。
[Claim 2] A refrigerant which maintains a constant amount of electricity to the electric compressor and operates the heating means at each heating amount set according to the blowing amount of the indoor fan, which is fixed or can be changed in a plurality of stages. The heating capacity is controlled by alternately performing a circulation operation and at least a refrigerant stop operation for stopping the operation of the heating means.

【0029】この為、電動圧縮機への通電量を連続可変
する為のインバータ回路が不要となり、高価な電子部品
を使用する必要が無いとともに、ノイズ洩れ対策や電源
波形の歪み(高調波)対策等を行う必要も無く、安価に
製造する事ができる。
Therefore, an inverter circuit for continuously varying the amount of electricity supplied to the electric compressor is not required, and it is not necessary to use expensive electronic parts, and noise leakage and power waveform distortion (harmonics) are prevented. It is possible to manufacture at low cost without the need to perform the above.

【0030】暖房の立ち上がり時や、暖房能力を増大側
に切り替える際(室内ファンの送風力を増大側に切り替
える場合)でも、電動圧縮機への通電量を一定に維持し
て、冷媒を、所定の速度で所定の流量流す事になるの
で、暖房の立ち上がりが良く、暖房能力変更時の応答性
にも優れる。
Even when the heating is started up or when the heating capacity is switched to the increasing side (when the wind force sent from the indoor fan is switched to the increasing side), the amount of electricity supplied to the electric compressor is kept constant and the refrigerant is kept at a predetermined level. Since a predetermined flow rate is flown at the speed of, the heating starts up well and the responsiveness when changing the heating capacity is excellent.

【0031】〔請求項3について〕使用者が温度設定器
で目標室温を設定すると、室内ファンの送風量と加熱手
段の加熱量が自動的に決まり、室温が目標室温に維持さ
れる様に暖房運転を行う事ができる。
[Claim 3] When the user sets the target room temperature with the temperature setting device, the amount of air blown by the indoor fan and the heating amount of the heating means are automatically determined, and heating is performed so that the room temperature is maintained at the target room temperature. You can drive.

【0032】〔請求項4について〕温度設定器で目標室
温を設定し、室内ファンの送風量を使用者が決めると、
制御手段が冷媒停止運転の動作時期や時間を制御し、室
温が目標室温に維持される様に暖房運転を行う事ができ
る。
[Claim 4] When the target room temperature is set by the temperature setting device and the user determines the air flow rate of the indoor fan,
The control means controls the operation timing and time of the refrigerant stop operation, and the heating operation can be performed so that the room temperature is maintained at the target room temperature.

【0033】〔請求項5について〕使用者が温度設定器
で目標室温を設定すると、室内ファンの回転数、比例電
磁弁の開度(ガスバーナの燃焼量)及び燃焼ファンの回
転数が自動的に決まり、室温が目標室温に維持される様
に暖房運転を行う事ができる。
[Claim 5] When the user sets the target room temperature with the temperature setting device, the rotation speed of the indoor fan, the opening degree of the proportional solenoid valve (combustion amount of the gas burner) and the rotation speed of the combustion fan are automatically adjusted. After that, the heating operation can be performed so that the room temperature is maintained at the target room temperature.

【0034】[0034]

【実施例】本発明の一実施例を図1〜図7に基づいて説
明する。本発明の構成を採用した、冷媒加熱式のガス冷
暖房装置Aは、各機能部材間を図1に示す様に配管で接
続して構成され、圧縮機1→四方弁2→室内機側熱交換
器3→二方弁4→冷媒加熱器5→アキュームレータ6→
圧縮機1の順に冷媒(フロンR22)を流通させて暖房
運転を行い、圧縮機1→四方弁2→室外機側熱交換器7
→第1逆止弁8→キャピラリチューブ9→室内機側熱交
換器3→四方弁2→第2逆止弁10→アキュームレータ
6→圧縮機1の順に冷媒を流通させて冷房運転を行って
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. The refrigerant heating type gas cooling and heating apparatus A adopting the configuration of the present invention is configured by connecting the respective functional members with piping as shown in FIG. 1, and includes a compressor 1, a four-way valve 2 and an indoor unit side heat exchange. Unit 3 → 2-way valve 4 → Refrigerant heater 5 → Accumulator 6 →
The refrigerant (CFC R22) is circulated in the order of the compressor 1 to perform the heating operation, and the compressor 1 → the four-way valve 2 → the outdoor unit side heat exchanger 7
→ First check valve 8 → Capillary tube 9 → Indoor unit side heat exchanger 3 → Four-way valve 2 → Second check valve 10 → Accumulator 6 → Compressor 1 .

【0035】又、31は室内機側熱交換器3に送風する
室内ファン、71は室外機側熱交換器7に送風する室外
ファン、11は逆止弁である。又、12は冷房運転時に
“閉”となり、暖房運転時の圧縮機1の停止中及び低圧
圧力17kgcm2 G以上で“開”となる二方弁、13
はガスバーナ、14は比例電磁弁、15は圧力スイッ
チ、16は燃焼ファンである。
Further, 31 is an indoor fan for blowing air to the indoor unit side heat exchanger 3, 71 is an outdoor fan for blowing air to the outdoor unit side heat exchanger 7, and 11 is a check valve. Further, 12 is a two-way valve which is "closed" during the cooling operation, and "opened" while the compressor 1 is stopped during the heating operation and when the low pressure is 17 kgcm 2 G or more, 13
Is a gas burner, 14 is a proportional solenoid valve, 15 is a pressure switch, and 16 is a combustion fan.

【0036】更に、冷媒加熱式のガス冷暖房装置Aは、
図2に示す様に、目標室温を設定する温度設定器21
と、室温を検出する室温センサ22と、放熱量算出手段
231、室内ファン制御手段232、加熱能力制御手段
である燃焼ファン制御手段233及び比例弁制御手段2
34、タイミング制御手段235等を有する制御器23
と、運転モード設定器24とを備える。
Further, the refrigerant heating type gas cooling and heating apparatus A is
As shown in FIG. 2, a temperature setter 21 for setting a target room temperature
A room temperature sensor 22 for detecting a room temperature, a heat radiation amount calculation means 231, an indoor fan control means 232, a combustion fan control means 233 which is a heating capacity control means, and a proportional valve control means 2.
34, controller 23 having timing control means 235, etc.
And an operation mode setter 24.

【0037】圧縮機1は、滑り羽根を有する回転式であ
り、AC- 100Vが給電される交流電動機(消費電
力、数百W〜数kW程度)により駆動され、アキューム
レータ6から送られて来るガス冷媒を断熱圧縮する。
尚、圧縮機1は、スクロール式、又はレシプロ式であっ
ても良い。
The compressor 1 is a rotary type having sliding blades, is driven by an AC electric motor (power consumption, several hundred W to several kW) supplied with AC-100V, and is sent from the accumulator 6. Adiabatically compress the refrigerant.
The compressor 1 may be a scroll type or a reciprocating type.

【0038】四方弁2は、冷媒の流通経路を切り替える
電磁弁であり、暖房運転時には冷媒の流通経路は図1の
実線矢印に示す様に形成され、冷房運転時には破線矢印
に示す様に流路が形成される。
The four-way valve 2 is a solenoid valve for switching the flow path of the refrigerant. During the heating operation, the flow path of the refrigerant is formed as shown by the solid line arrow in FIG. 1, and during the cooling operation as shown by the broken line arrow. Is formed.

【0039】室内機側熱交換器3は、室内ファン31に
より送風されるフィン等を有する蛇行形状の管路であ
り、室内に設置される室内機(図示せず)内に配され、
冷媒配管により室外に設置される室外機(図示せず)と
接続される。尚、暖房運転時(図1の実線矢印方向)と
冷房運転時(破線矢印方向)とでは冷媒の流通方向が逆
になる。
The indoor unit side heat exchanger 3 is a meandering pipe line having fins and the like blown by the indoor fan 31, and is arranged in an indoor unit (not shown) installed in the room.
It is connected to an outdoor unit (not shown) installed outdoors by a refrigerant pipe. The flow direction of the refrigerant is opposite between the heating operation (the solid arrow direction in FIG. 1) and the cooling operation (the broken arrow direction).

【0040】二方弁4は、暖房運転時に開、冷房運転時
に閉となる電磁弁であり、冷房運転時に冷媒が冷媒加熱
器5に流入しない様に配設されている。
The two-way valve 4 is an electromagnetic valve that opens during heating operation and closes during cooling operation, and is arranged so that refrigerant does not flow into the refrigerant heater 5 during cooling operation.

【0041】冷媒加熱器5は、蛇行形状に配した吸熱管
であり、室外に設置される室外機(図示せず)内に配さ
れ、ガスバーナ13の燃焼により生じる燃焼ガスにより
加熱される。ガスバーナ13(3000kcal/h〜
10000kcal/h)は、比例電磁弁14によりガ
ス量が設定されたガスと、燃焼ファン16により供給さ
れる燃焼用空気とが混合されて強制燃焼する。
The refrigerant heater 5 is a meandering heat absorption tube, is arranged in an outdoor unit (not shown) installed outdoors, and is heated by combustion gas generated by combustion of the gas burner 13. Gas burner 13 (3000 kcal / h ~
10000 kcal / h), the gas of which the gas amount is set by the proportional solenoid valve 14 and the combustion air supplied by the combustion fan 16 are mixed and combusted compulsorily.

【0042】アキュームレータ6は、直管状の冷媒ガス
入口管と、上部に開口を有する略U字状の冷媒ガス出口
管とを気密容器内に配設してなり、液冷媒の圧縮機1内
への侵入を防止する為に圧縮機1の手前に配設される。
The accumulator 6 comprises a straight-tube refrigerant gas inlet pipe and a substantially U-shaped refrigerant gas outlet pipe having an opening at the top thereof, which is disposed in an airtight container, and enters the liquid refrigerant compressor 1. Is arranged in front of the compressor 1 in order to prevent the invasion of the compressor.

【0043】つぎに、ガス冷暖房装置Aの暖房運転(冷
媒の状態変位は、後で述べる風量手動暖房運転時の風量
7速に対応する)における、各部の動作及び冷媒の状態
変化を述べる。
Next, the operation of each part and the state change of the refrigerant in the heating operation of the gas cooling and heating apparatus A (the state change of the refrigerant corresponds to the air volume 7th speed in the air volume manual heating operation described later) will be described.

【0044】圧縮機1は、アキュームレータ6から送ら
れてくるガス冷媒(過熱蒸気状態)を断熱圧縮する為、
冷媒の温度及び圧力が上昇し、ガス冷媒(過熱蒸気状
態)は図3の状態17から等エントロピー線に沿って状
態18(過熱蒸気状態)に変位し、エンタルピーは僅か
に上昇する。
Since the compressor 1 adiabatically compresses the gas refrigerant (superheated vapor state) sent from the accumulator 6,
The temperature and pressure of the refrigerant rise, the gas refrigerant (superheated vapor state) is displaced from the state 17 in FIG. 3 to the state 18 (superheated vapor state) along the isentropic line, and the enthalpy slightly increases.

【0045】圧縮機1から吐出する状態18のガス冷媒
は、四方弁2を通り、ファン31により送風される室内
機側熱交換器3内で凝縮(過熱蒸気→飽和状態→過冷却
液)して状態19に変位し、この時、室内機は凝縮によ
り発生する熱を温風にして室内に送風する。
The gas refrigerant in the state 18 discharged from the compressor 1 passes through the four-way valve 2 and is condensed in the indoor unit side heat exchanger 3 blown by the fan 31 (superheated vapor → saturated state → supercooled liquid). The state is changed to state 19, and at this time, the indoor unit turns the heat generated by condensation into warm air and blows it into the room.

【0046】室内機側熱交換器3から流出する液冷媒
は、管路中で減圧するので、状態19(過冷却液状態)
から等エンタルピー線に沿って状態20(飽和液線上)
に変位し、二方弁4を通って冷媒加熱器5に到達する。
Since the liquid refrigerant flowing out of the indoor unit side heat exchanger 3 is decompressed in the pipeline, it is in state 19 (supercooled liquid state).
State 20 (on the saturated liquid line) along the kara isenthalpy line
To the refrigerant heater 5 through the two-way valve 4.

【0047】ガスバーナ13により加熱される冷媒加熱
器5内で液冷媒(飽和状態)は蒸発し、状態20から等
温等圧線に沿って状態17(過熱蒸気状態)に変位し、
冷媒のエンタルピーが上昇する。
In the refrigerant heater 5 heated by the gas burner 13, the liquid refrigerant (saturated state) evaporates and is displaced from the state 20 to the state 17 (superheated vapor state) along the isothermal isobar.
The enthalpy of the refrigerant increases.

【0048】状態17(過熱蒸気状態)の冷媒は、アキ
ュームレータ6を介して圧縮機1に送られる。
The refrigerant in the state 17 (superheated vapor state) is sent to the compressor 1 via the accumulator 6.

【0049】次に、ガス冷暖房装置Aの、風量自動暖房
運転(風量1速〜風量8速)及び風量手動暖房運転(風
量1速、4速、7速に固定)における作動について述べ
る。
Next, the operation of the gas cooling and heating apparatus A in the automatic air volume heating operation (air volume 1st speed-8th speed) and the air volume manual heating operation (air volume 1st speed, 4th speed, 7th speed fixed) will be described.

【0050】〔風量自動暖房運転(風量1速〜風量8速
について;請求項1、3、5に対応)〕モード設定器2
4で、風量自動暖房運転(温調有)を設定すると、放熱
量算出手段231は、目標室温Ttと検出室温Tnとの
温度差(Tt−Tn)に基づき、室内機側熱交換器3が
冷媒凝縮工程(図3の状態18→状態19に相当)おい
て放出すべき必要熱量Qを、所定時間τ毎(例えば、1
分毎)に算出する。
[Air volume automatic heating operation (for 1st air volume to 8th air volume; corresponding to claims 1, 3 and 5)] Mode setter 2
4, when the air volume automatic heating operation (with temperature adjustment) is set, the heat radiation amount calculating means 231 determines that the indoor unit side heat exchanger 3 is based on the temperature difference (Tt-Tn) between the target room temperature Tt and the detected room temperature Tn. The required heat quantity Q to be released in the refrigerant condensing step (corresponding to state 18 → state 19 in FIG. 3) is calculated every predetermined time τ (for example, 1
Every minute).

【0051】室内ファン制御手段232は、算出された
必要熱量Qに比例して室内ファン31の風量段階数(フ
ァン回転数)を所定時間τ(例えば、1分毎)毎に決定
し、該段階数の風量が得られる様に室内ファン31をフ
ィードバック制御する。 ファン送風量=κ・Q (但し、κは係数) 尚、フィルタの目詰まりに対応する為、所定風量が得ら
れる通電量で通電する通電量制御方式を用いても良い。
The indoor fan control means 232 determines the number of airflow levels (fan rotation speed) of the indoor fan 31 for every predetermined time τ (for example, every 1 minute) in proportion to the calculated required heat amount Q, and the step is determined. The indoor fan 31 is feedback-controlled so that a number of air volumes can be obtained. Fan air flow rate = κ · Q (where κ is a coefficient) Incidentally, in order to cope with the clogging of the filter, an energization amount control method of energizing at an energization amount that can obtain a predetermined air flow rate may be used.

【0052】燃焼ファン制御手段233は、算出された
必要熱量Qに相当する加熱量を冷媒蒸発工程(図3の状
態20→状態17に相当)で出力するガスバーナ13の
燃焼量に適した燃焼用空気量が得られる回転数を所定時
間τ毎に決定し、該回転数となる様に燃焼ファン16を
制御する。
The combustion fan control means 233 outputs a heating amount corresponding to the calculated required heat amount Q in the refrigerant evaporation process (corresponding to state 20 → state 17 in FIG. 3) for combustion suitable for the combustion amount of the gas burner 13. The number of revolutions at which the amount of air is obtained is determined for each predetermined time τ, and the combustion fan 16 is controlled so as to reach the number of revolutions.

【0053】比例弁制御手段234は、算出された必要
熱量Qに相当する加熱量を冷媒蒸発工程(図3の状態2
0→状態17に相当)でガスバーナ13に出力させるべ
く、所定時間τ毎に、検出回転数に基づいて比例電磁弁
14への通電量を制御する。
The proportional valve control means 234 supplies a heating amount corresponding to the calculated required heat amount Q to the refrigerant evaporation step (state 2 in FIG. 3).
In order to output to the gas burner 13 in 0 → corresponding to the state 17), the energization amount to the proportional solenoid valve 14 is controlled based on the detected rotation speed every predetermined time τ.

【0054】具体的には、図4に示す様に、目標室温T
tと検出室温Tnとの温度差(Tt−Tn)が大きい暖
房運転初期には、室内ファン制御手段232が室内ファ
ン31の風量を8速にすると決定し、燃焼ファン制御手
段233が燃焼ファン16の風量を8速にすると決定
し、比例弁制御手段234はガスバーナ13の燃焼速数
を8速(燃焼量=10000kcal/h)に決定す
る。
Specifically, as shown in FIG. 4, the target room temperature T
At the beginning of the heating operation in which the temperature difference (Tt−Tn) between t and the detected room temperature Tn is large, the indoor fan control unit 232 determines that the air volume of the indoor fan 31 is set to the eighth speed, and the combustion fan control unit 233 determines the combustion fan 16. The proportional valve control means 234 determines the combustion speed of the gas burner 13 to be 8th speed (combustion amount = 10000 kcal / h).

【0055】時間が経過して目標室温Ttと検出室温T
nとの温度差(Tt−Tn)が小さくなっていくと、室
内ファン31の風量、燃焼ファン16の風量及びガスバ
ーナ13の燃焼速数が下げられていく。
As time passes, the target room temperature Tt and the detected room temperature T
As the temperature difference (Tt-Tn) from n decreases, the air volume of the indoor fan 31, the air volume of the combustion fan 16, and the combustion speed of the gas burner 13 are reduced.

【0056】〔風量手動暖房運転(風量1速、4速、7
速について;請求項2、4に対応)〕モード設定器24
で、風量手動暖房運転(温調有)を設定し、風量手動切
替器25で風量を所定風量(風量1速、4速、7速の何
れか)に固定すると、放熱量算出手段231は、検出室
温Tn、目標室温Ttと検出室温Tnとの温度差(Tt
−Tn)に基づき、室内機側熱交換器3が冷媒凝縮工程
(図3の状態18→状態19に相当)おいて放出すべき
必要熱量Qを、所定時間τ毎(例えば、1分毎)に算出
する。
[Air volume manual heating operation (air volume 1st, 4th, 7th
Speed; corresponding to claims 2 and 4)] Mode setter 24
Then, when the air volume manual heating operation (with temperature control) is set and the air volume is fixed to the predetermined air volume (any of the air volume of 1st speed, 4th speed, and 7th speed) by the air volume manual switching device 25, the heat radiation amount calculation means 231 Temperature difference between detected room temperature Tn, target room temperature Tt and detected room temperature Tn (Tt
-Tn), the heat quantity Q required for the indoor unit side heat exchanger 3 to release in the refrigerant condensing step (corresponding to state 18 → state 19 in FIG. 3) is given every τ (for example, every 1 minute). Calculate to.

【0057】燃焼ファン制御手段233は、冷媒流通運
転中(圧縮機1への通電量を一定に維持した状態で冷媒
を流通させる状態)、設定風量(固定)に応じて設定さ
れた回転数で燃焼ファン16が回転する様に、燃焼ファ
ン16をフィードバック制御する。又、冷媒停止運転中
(圧縮機1への通電を停止した状態で冷媒の流通を停止
させる状態)は、所定のパターンで燃焼ファン16を低
速回転させる。
The combustion fan control means 233 operates at a rotation speed set according to the set air volume (fixed) during the refrigerant circulation operation (a state in which the refrigerant is circulated while the amount of electricity to the compressor 1 is kept constant). The combustion fan 16 is feedback-controlled so that the combustion fan 16 rotates. Further, during the refrigerant stop operation (the state in which the flow of the refrigerant is stopped while the energization of the compressor 1 is stopped), the combustion fan 16 is rotated at a low speed in a predetermined pattern.

【0058】比例弁制御手段234は、冷媒流通運転
中、設定風量(固定)に応じて設定された燃焼量でガス
バーナ13が燃焼する様に検出回転数に基づき、所定時
間毎に比例電磁弁14への通電量を決定する。又、冷媒
停止運転中は比例電磁弁14への通電を停止する。
The proportional valve control means 234 controls the proportional solenoid valve 14 at predetermined intervals based on the detected rotational speed so that the gas burner 13 burns at a combustion amount set according to the set air volume (fixed) during the refrigerant circulation operation. Determine the amount of electricity to the. Further, during the refrigerant stop operation, the power supply to the proportional solenoid valve 14 is stopped.

【0059】タイミング制御手段235は、算出された
必要熱量Qに相当する加熱量を冷媒蒸発工程(図3の状
態20→状態17に相当)でガスバーナ13が出力する
様に、冷媒停止運転の動作時期や継続時間を制御する。
The timing control means 235 operates in the refrigerant stop operation so that the gas burner 13 outputs the heating amount corresponding to the calculated required heat amount Q in the refrigerant evaporation step (corresponding to state 20 → state 17 in FIG. 3). Control timing and duration.

【0060】具体的には、図5に示す様に、室内ファン
31の風量を7速に固定(強風)した場合、目標室温T
tと検出室温Tnとの温度差、つまり必要熱量Qが大き
い暖房運転初期には、ガスバーナ13は燃焼速数7速で
燃焼し、燃焼ファン16は燃焼速数7速に適した高回転
数で回転し、タイミング制御手段235は冷媒流通運転
を継続して行う。
Specifically, as shown in FIG. 5, when the air volume of the indoor fan 31 is fixed to 7th speed (strong wind), the target room temperature T
At the beginning of heating operation in which the temperature difference between t and the detected room temperature Tn, that is, the required heat quantity Q is large, the gas burner 13 burns at a combustion speed of 7 speeds, and the combustion fan 16 operates at a high rotation speed suitable for a combustion speed of 7 speeds. It rotates and the timing control means 235 continues a refrigerant circulation operation.

【0061】そして、時間が経過して必要熱量Qが小さ
くなると、タイミング制御手段235は、短時間の冷媒
流通運転(ガスバーナ13の燃焼速数は7速、燃焼ファ
ン16の回転速数は7速)と、比較的長時間の冷媒停止
運転とを交互に実施する。
When the required heat quantity Q decreases with the passage of time, the timing control means 235 causes the timing control means 235 to perform a short-time refrigerant flow operation (the combustion speed of the gas burner 13 is 7 speeds, and the rotation speed of the combustion fan 16 is 7 speeds). ) And the refrigerant stop operation for a relatively long time are alternately performed.

【0062】又、図6に示す様に、室内ファン31の風
量を1速に固定(微風)した場合、目標室温Ttと検出
室温Tnとの温度差、つまり必要熱量Qが大きい暖房運
転初期には、ガスバーナ13は燃焼速数1速で燃焼し、
燃焼ファン16は燃焼速数1速に適した低回転数で回転
し、タイミング制御手段235は冷媒流通運転を継続し
て行う。又、時間が経過して必要熱量Qが小さくなる
と、タイミング制御手段235は、風量7速より長時間
の冷媒流通運転(ガスバーナ13の燃焼速数は1速、燃
焼ファン16の回転速数は1速)と、冷媒停止運転とを
交互に実施する。
Further, as shown in FIG. 6, when the air volume of the indoor fan 31 is fixed to 1st speed (light wind), the temperature difference between the target room temperature Tt and the detected room temperature Tn, that is, the required heat quantity Q is large at the beginning of the heating operation. , The gas burner 13 burns at a burning speed of 1,
The combustion fan 16 rotates at a low rotation speed suitable for the first combustion speed, and the timing control means 235 continues the refrigerant circulation operation. When the required heat quantity Q becomes smaller with the passage of time, the timing control means 235 causes the timing control means 235 to perform a refrigerant circulation operation for a time longer than the 7th speed airflow (the combustion speed of the gas burner 13 is 1 speed, and the rotation speed of the combustion fan 16 is 1 speed Speed) and the refrigerant stop operation are alternately performed.

【0063】尚、風量手動暖房運転の過渡期(風量7速
→風量4速→風量7速)における各部の温度変化のデー
タと、安定状態(風量7速、風量4速)における各部の
温度・圧力データとを、図7及び表1に示し、ガス冷暖
房装置Aは安定に動作する事が確認された。
The data of the temperature change of each part in the transitional period of the air volume manual heating operation (7th speed of air volume → 4th speed of air volume → 7th speed of air volume) and the temperature of each part in a stable state (7th speed of air volume, 4th speed of air volume) The pressure data are shown in FIG. 7 and Table 1, and it was confirmed that the gas cooling and heating apparatus A operates stably.

【0064】[0064]

【表1】 [Table 1]

【0065】本実施例のガス冷暖房装置Aは、以下の利
点を有する。 〔ア〕風量自動暖房運転及び風量手動暖房運転の何方の
運転時にも、圧縮機1の能力を可変せず、ガスバーナ1
3の燃焼量及び室内ファン31の回転数を増減して暖房
能力の増減を行う構成であるので、圧縮機1への通電量
を連続可変する為のインバータ回路が不要である。この
為、高価な電子部品を使用する必要が無いとともに、ノ
イズ洩れ対策や電源波形の歪み(高調波)対策等を行う
必要も無く、安価にガス冷暖房装置Aを製造する事がで
きる。
The gas cooling / heating apparatus A of this embodiment has the following advantages. [A] The capacity of the compressor 1 is not changed and the gas burner 1 is operated during either operation of the air volume automatic heating operation and the air volume manual heating operation.
Since the configuration is such that the heating capacity is increased / decreased by increasing / decreasing the combustion amount of No. 3 and the rotation speed of the indoor fan 31, an inverter circuit for continuously varying the energization amount to the compressor 1 is unnecessary. Therefore, it is not necessary to use expensive electronic parts, and it is not necessary to take measures against noise leakage, distortion of power supply waveform (harmonic), etc., and the gas cooling and heating apparatus A can be manufactured at low cost.

【0066】〔イ〕圧縮機1への通電量を一定に維持し
て、冷媒を、所定の速度で所定の流量流す構成であるの
で、風量自動暖房運転及び風量手動暖房運転の何方の運
転開始においても暖房の立ち上がりが良い。又、風量手
動暖房運転時において、室内ファン31の風量段数を大
きくした場合には、圧縮機1への通電量を一定に維持し
て、冷媒を、所定の速度で所定の流量流す冷媒流通運転
が行われるので暖房能力の応答性に優れる。
[A] Since the amount of electricity supplied to the compressor 1 is maintained constant and the refrigerant is supplied at a predetermined flow rate at a predetermined speed, either operation of the air volume automatic heating operation and the air volume manual heating operation is started. Even in the case of heating, the rise of heating is good. Further, in the air volume manual heating operation, when the number of air flow stages of the indoor fan 31 is increased, the amount of electricity supplied to the compressor 1 is maintained constant and the refrigerant flow operation in which the refrigerant flows at a predetermined flow rate at a predetermined speed. Therefore, the responsiveness of the heating capacity is excellent.

【0067】〔ウ〕設定室温を設定するだけで温調を行
う(室内ファン31の風量は自動的に制御される)風量
自動暖房運転及び設定室温を設定し室内ファン31の風
量を手動設定して温調を行う風量手動運転の何れかを、
使用者の好みにより、自由に選択する事ができる。
[C] The temperature control is performed only by setting the set room temperature (the air volume of the indoor fan 31 is automatically controlled). The air volume automatic heating operation and the set room temperature are set, and the air volume of the indoor fan 31 is manually set. One of the air volume manual operation for temperature control by
It can be freely selected according to the preference of the user.

【0068】尚、上記の実施例では、目標室温Ttと検
出室温Tnとの温度差(Tt−Tn)に基づいて燃焼フ
ァン16の風量及びガスバーナ13の燃焼量を決定する
ものを示したが、検出温度Tn、室内ファン31の風
量、及び室内機側熱交換器3の温度等から冷媒凝縮工程
における室内機側熱交換器3の放熱量を算出し、該放熱
量に基づいて燃焼ファン16の風量及びガスバーナ13
の燃焼量を決定する様にしても良い。
In the above embodiment, the air flow rate of the combustion fan 16 and the combustion quantity of the gas burner 13 are determined based on the temperature difference (Tt-Tn) between the target room temperature Tt and the detected room temperature Tn. The heat radiation amount of the indoor unit side heat exchanger 3 in the refrigerant condensing process is calculated from the detected temperature Tn, the air flow rate of the indoor fan 31, the temperature of the indoor unit side heat exchanger 3, etc., and the combustion fan 16 of the combustion fan 16 is calculated based on the heat radiation amount. Air volume and gas burner 13
You may make it determine the combustion amount of.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷媒加熱式のガス冷暖房装置の原理図である。FIG. 1 is a principle view of a refrigerant heating type gas cooling and heating device.

【図2】そのガス冷暖房装置のブロック図である。FIG. 2 is a block diagram of the gas cooling and heating device.

【図3】そのガス冷暖房装置に用いる冷媒の状態変化を
示すP- h線図である。
FIG. 3 is a Ph diagram showing a state change of a refrigerant used in the gas cooling and heating apparatus.

【図4】そのガス冷暖房装置を風量自動暖房運転する場
合の、経過時間- 室温、運転速数変化を示すグラフであ
る。
FIG. 4 is a graph showing changes in elapsed time-room temperature and operating speed when the gas cooling and heating apparatus is operated by automatic air volume heating.

【図5】そのガス冷暖房装置を風量手動暖房運転(運転
速数=7速)する場合の、経過時間- 室温変化及び冷媒
停止運転のタイミングを示すグラフである。
FIG. 5 is a graph showing the elapsed time-room temperature change and refrigerant stop operation timing when the gas cooling and heating apparatus is in the air volume manual heating operation (operating speed = 7th speed).

【図6】そのガス冷暖房装置を風量手動暖房運転(運転
速数=1速)する場合の、経過時間- 室温変化及び冷媒
停止運転のタイミングを示すグラフである。
FIG. 6 is a graph showing the elapsed time-room temperature change and refrigerant stop operation timing when the gas cooling and heating apparatus is in the air volume manual heating operation (operation speed = 1st speed).

【図7】そのガス冷暖房装置を風量手動暖房運転する場
合の、経過時間- 各部の温度変化データを示すグラフで
ある。
FIG. 7 is a graph showing elapsed time-temperature change data of each part when the gas cooling and heating apparatus is operated by air volume manual heating.

【図8】冷媒加熱式冷暖房装置の冷凍サイクルを説明す
る為の説明図である。
FIG. 8 is an explanatory diagram for explaining a refrigerating cycle of the refrigerant heating type air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機(電動圧縮機) 3 室内機側熱交換器 5 冷媒加熱器 13 ガスバーナ(加熱手段) 14 比例電磁弁 16 燃焼ファン 21 温度設定器 22 室温センサ 31 室内ファン 231 放熱量算出手段 232 室内ファン制御手段 233 燃焼ファン制御手段(加熱能力制御手段) 234 比例弁制御手段(加熱能力制御手段) 235 タイミング制御手段 DESCRIPTION OF SYMBOLS 1 Compressor (electric compressor) 3 Indoor unit side heat exchanger 5 Refrigerant heater 13 Gas burner (heating means) 14 Proportional solenoid valve 16 Combustion fan 21 Temperature setting device 22 Room temperature sensor 31 Indoor fan 231 Heat dissipation amount calculation means 232 Indoor fan Control means 233 Combustion fan control means (heating capacity control means) 234 Proportional valve control means (heating capacity control means) 235 Timing control means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 室内機側熱交換器から流出する冷媒を冷
媒加熱器に送り、 加熱手段により加熱される冷媒加熱器内で冷媒を蒸発さ
せ、 前記冷媒加熱器から搬出するガス冷媒を電動圧縮機で断
熱圧縮し、 前記電動圧縮機から吐出する高温高圧のガス冷媒を、室
内ファンを付設した室内機側熱交換器内で凝縮させる事
により室内に放熱して暖房運転を行う冷媒加熱式冷暖房
装置において、 前記電動圧縮機への通電量を一定に維持した状態で、前
記加熱手段の加熱量及び前記室内ファンの送風量を増減
して暖房能力を制御する事を特徴とする冷媒加熱式冷暖
房装置。
1. A refrigerant flowing out of an indoor unit side heat exchanger is sent to a refrigerant heater, the refrigerant is evaporated in the refrigerant heater heated by a heating means, and a gas refrigerant carried out from the refrigerant heater is electrically compressed. A high-temperature high-pressure gas refrigerant that is adiabatically compressed by a compressor and discharged from the electric compressor is condensed in an indoor unit heat exchanger equipped with an indoor fan to radiate heat indoors to perform heating operation. In the device, a refrigerant heating type heating / cooling device characterized in that the heating capacity is controlled by increasing / decreasing the heating amount of the heating means and the blowing amount of the indoor fan in a state where the amount of electricity supplied to the electric compressor is kept constant. apparatus.
【請求項2】 室内機側熱交換器から流出する冷媒を冷
媒加熱器に送り、 加熱手段により加熱される冷媒加熱器内で冷媒を蒸発さ
せ、 前記冷媒加熱器から搬出するガス冷媒を電動圧縮機で断
熱圧縮し、 前記電動圧縮機から吐出する高温高圧のガス冷媒を、室
内ファンを付設した室内機側熱交換器内で凝縮させる事
により室内に放熱して暖房運転を行う冷媒加熱式冷暖房
装置において、 前記室内ファンの室内機側熱交換器への送風量が、一又
は複数段階に決まっている場合、 前記電動圧縮機への通電量を一定に維持した状態で、前
記送風量に応じて設定された各加熱量で前記加熱手段を
作動させる冷媒流通運転と、 少なくとも前記加熱手段の作動を停止させる冷媒停止運
転とを交互に実施して暖房能力を制御する事を特徴とす
る冷媒加熱式冷暖房装置。
2. The refrigerant flowing out from the indoor unit side heat exchanger is sent to the refrigerant heater, the refrigerant is evaporated in the refrigerant heater heated by the heating means, and the gas refrigerant carried out from the refrigerant heater is electrically compressed. A high-temperature high-pressure gas refrigerant that is adiabatically compressed by a compressor and discharged from the electric compressor is condensed in an indoor unit heat exchanger equipped with an indoor fan to radiate heat indoors to perform heating operation. In the device, when the amount of air blown to the indoor unit side heat exchanger of the indoor fan is determined in one or more stages, depending on the amount of air blown in a state where the amount of electricity supplied to the electric compressor is maintained constant. Refrigerant heating characterized by controlling the heating capacity by alternately performing a refrigerant circulation operation for operating the heating means at each heating amount set by the above and at least a refrigerant stop operation for stopping the operation of the heating means. Cold Heating system.
【請求項3】 目標室温を設定する温度設定器と、 室温を検出する室温センサと、 目標室温と検出室温との差に基づき、前述の冷媒凝縮工
程で前記室内機側熱交換器が放出すべき必要熱量を算出
する放熱量算出手段と、 算出された必要熱量に比例して前記室内ファンの送風量
を決定し、該送風量が得られる様に前記室内ファンを制
御する室内ファン制御手段と、 算出された必要熱量に相当する加熱量、又は前記室内機
側熱交換器で放熱した熱量を前述の冷媒蒸発工程で前記
加熱手段に出力させる加熱能力制御手段とを設けた請求
項1記載の冷媒加熱式冷暖房装置。
3. A temperature setter for setting a target room temperature, a room temperature sensor for detecting the room temperature, and the indoor unit side heat exchanger discharges in the refrigerant condensing step based on the difference between the target room temperature and the detected room temperature. A heat radiation amount calculating means for calculating a necessary heat amount, an indoor fan control means for determining an air blowing amount of the indoor fan in proportion to the calculated necessary heat amount, and controlling the indoor fan so as to obtain the air blowing amount; The heating capacity control means for outputting the heating quantity corresponding to the calculated required heat quantity or the heat quantity radiated by the indoor unit side heat exchanger to the heating means in the refrigerant evaporation step. Refrigerant heating type air conditioner.
【請求項4】 目標室温を設定する温度設定器と、 室温を検出する室温センサと、 目標室温と検出室温との差に基づき、前述の冷媒凝縮工
程で前記室内機側熱交換器が放出すべき必要熱量を算出
する放熱量算出手段と、 算出された必要熱量に相当する加熱量、又は前記室内機
側熱交換器で放熱した熱量を前述の冷媒蒸発工程で前記
加熱手段が出力する様に、上記冷媒停止運転の動作時期
や時間を制御するタイミング制御手段とを設けた請求項
2記載の冷媒加熱式冷暖房装置。
4. The temperature setter for setting the target room temperature, the room temperature sensor for detecting the room temperature, and the indoor unit side heat exchanger discharging in the refrigerant condensing step based on the difference between the target room temperature and the detected room temperature. The heat radiation amount calculation means for calculating the necessary heat amount to be calculated, the heating amount corresponding to the calculated necessary heat amount, or the heat amount radiated by the indoor unit side heat exchanger is output by the heating means in the refrigerant evaporation step described above. 3. The refrigerant heating type cooling and heating apparatus according to claim 2, further comprising a timing control means for controlling the operation timing and time of the refrigerant stop operation.
【請求項5】 前記加熱手段は、通電量に応じた開度を
示す比例電磁弁を介してガスが供給されるガスバーナと
該ガスバーナに適量の燃焼用空気を供給する燃焼ファン
とにより構成され、 前記比例電磁弁への通電量及び前記燃焼ファンの回転数
は前記加熱能力制御手段により制御され、 前記室内ファン制御手段は、算出された必要熱量に比例
して室内ファンの回転数を決定し、該回転数が得られる
様に前記室内ファンを制御する請求項3記載の冷媒加熱
式冷暖房装置。
5. The heating means is composed of a gas burner to which gas is supplied via a proportional solenoid valve showing an opening degree according to an energization amount, and a combustion fan to supply an appropriate amount of combustion air to the gas burner, The energization amount to the proportional solenoid valve and the rotation speed of the combustion fan are controlled by the heating capacity control means, the indoor fan control means determines the rotation speed of the indoor fan in proportion to the calculated required heat amount, The refrigerant heating and cooling apparatus according to claim 3, wherein the indoor fan is controlled so as to obtain the rotation speed.
JP6103876A 1994-05-18 1994-05-18 Refrigerant heating type cooler/heater Pending JPH07310945A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6103876A JPH07310945A (en) 1994-05-18 1994-05-18 Refrigerant heating type cooler/heater
KR1019950002042A KR0141541B1 (en) 1994-05-18 1995-02-06 Refrigerant Heating Air Conditioning Unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6103876A JPH07310945A (en) 1994-05-18 1994-05-18 Refrigerant heating type cooler/heater

Publications (1)

Publication Number Publication Date
JPH07310945A true JPH07310945A (en) 1995-11-28

Family

ID=14365645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6103876A Pending JPH07310945A (en) 1994-05-18 1994-05-18 Refrigerant heating type cooler/heater

Country Status (2)

Country Link
JP (1) JPH07310945A (en)
KR (1) KR0141541B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108422A (en) * 1997-09-30 1999-04-23 Matsushita Electric Ind Co Ltd Method of controlling multi-room air conditioner during change in number of operating room units
JP5734306B2 (en) * 2010-11-04 2015-06-17 三菱電機株式会社 Air conditioner
CN106839309A (en) * 2017-02-04 2017-06-13 青岛海尔空调器有限总公司 A kind of control method of air-conditioning, device and air-conditioning
CN113465133A (en) * 2020-03-30 2021-10-01 广东美的制冷设备有限公司 Air conditioner control method, air conditioner and medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108422A (en) * 1997-09-30 1999-04-23 Matsushita Electric Ind Co Ltd Method of controlling multi-room air conditioner during change in number of operating room units
JP5734306B2 (en) * 2010-11-04 2015-06-17 三菱電機株式会社 Air conditioner
US9372021B2 (en) 2010-11-04 2016-06-21 Mitsubishi Electric Corporation Air-conditioning apparatus
CN106839309A (en) * 2017-02-04 2017-06-13 青岛海尔空调器有限总公司 A kind of control method of air-conditioning, device and air-conditioning
CN113465133A (en) * 2020-03-30 2021-10-01 广东美的制冷设备有限公司 Air conditioner control method, air conditioner and medium

Also Published As

Publication number Publication date
KR0141541B1 (en) 1998-07-01
KR950033307A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
JPH07107469B2 (en) Refrigerant heating type heating device
JPH07310945A (en) Refrigerant heating type cooler/heater
KR100215283B1 (en) Cooling system with heat pump
JPH07310946A (en) Refrigerant heating type cooler/heater
JP3456871B2 (en) Refrigeration circuit with heat exchanger for refrigeration capacity control
JP2540254B2 (en) Air conditioner
JPH09170799A (en) Control device for air conditioner system
JP2001193990A (en) Hot water air conditioner
JPH09273762A (en) Control apparatus for floor heating system
JP2004286412A (en) Heat pump type hot water floor heating device with air conditioning function
JPS6342183B2 (en)
JP2919317B2 (en) Control device for hot water heating system
KR960005775B1 (en) Room heating device
JP2919311B2 (en) Refrigerant heating type heating device
US11668506B2 (en) System and method for operating a variable speed compressor of an air conditioner unit
JP2919316B2 (en) Control device for floor heating system
JP3740234B2 (en) Control device for hot water heating system
JP3425306B2 (en) Hot water heating system
JPH09287749A (en) Control equipment of floor heating system
JP3037090B2 (en) Refrigerant heating air conditioner
JPH09113001A (en) Control apparatus for air conditioner system
JPH09170764A (en) Control apparatus for hot water heating system
KR20010065318A (en) Heat pump air-conditioner and control method thereof
JP3425282B2 (en) Control device for combined hot water heating system
JP2004125230A (en) Heating operation method of air conditioning system