JPS6342173A - Manufacture of insulating gate type semiconductor device - Google Patents

Manufacture of insulating gate type semiconductor device

Info

Publication number
JPS6342173A
JPS6342173A JP18575486A JP18575486A JPS6342173A JP S6342173 A JPS6342173 A JP S6342173A JP 18575486 A JP18575486 A JP 18575486A JP 18575486 A JP18575486 A JP 18575486A JP S6342173 A JPS6342173 A JP S6342173A
Authority
JP
Japan
Prior art keywords
titanium nitride
film
gate
nitride film
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18575486A
Other languages
Japanese (ja)
Inventor
Yasuhisa Sato
泰久 佐藤
Kazuhiro Hoshino
和弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18575486A priority Critical patent/JPS6342173A/en
Publication of JPS6342173A publication Critical patent/JPS6342173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent deterioration in withstanding voltage at a junction of a source and a drain and to prevent dark current, by completely covering the substrate surface with a titanium nitride film whose etching rate is extremely low, until patterning is completed including over etching, and eliminating damage of the surface of the substrate and gas-ion implantation. CONSTITUTION:A gate insulating film 3 is formed on a semiconductor substrate 1. A titanium nitride film 4 is formed on the gate insulating film 3. A W conductor layer 5, which is a material for a gate electrode, is formed on the titanium nitride film 4. The conductor layer 5 is selectively etched by a reactive ion etching method having superior selectively to the conductor layer 5. A gate electrode pattern 105 consisting of the conductor layer 5 is formed. The titanium nitride film 4 which is exposed around the gate electrode pattern 105 is removed by reactive ion etching method having superior selectivity to the titanium nitride 4. At this time, the titanium nitride film 4 function as a channel stopper. Thus deterioration in withstanding voltage at a junction of a source and a drain and the yield of dark current can be prevented.

Description

【発明の詳細な説明】 〔概 要〕 絶縁ゲートの形成に際して、ゲート絶縁膜上に窒化チタ
ン膜を形成した後ゲート電極用導電体層を形成し、該窒
化チタン膜をエッチングス)7パとして該導電体層のパ
ターンニングを行ってゲート電極を形成し、しかる後ゲ
ート電極の周辺に表出している用済みの窒化チタン膜を
除去する工程を含み、ゲート電極パターンニングに際し
てゲート近傍の基板面のダメージを防止し、素子性能の
劣化を防止する。
[Detailed Description of the Invention] [Summary] When forming an insulated gate, a titanium nitride film is formed on the gate insulating film, a conductor layer for the gate electrode is formed, and the titanium nitride film is etched as a 7-layer film. The process includes patterning the conductor layer to form a gate electrode, and then removing the used titanium nitride film exposed around the gate electrode. This prevents damage to the device and prevents deterioration of device performance.

〔産業上の利用分野〕[Industrial application field]

本発明は絶縁ゲート型半導体装置の製造方法の改良に係
り、特に薄いゲート絶縁膜を存する絶縁ゲートの形成方
法の改良に関する。
The present invention relates to an improvement in a method for manufacturing an insulated gate type semiconductor device, and particularly to an improvement in a method for forming an insulated gate having a thin gate insulating film.

LSI等高集積化される絶縁ゲート型半導体装置におい
ては、伝達コンダクタンスを高めて高速化を図るために
、ゲート絶縁膜が次第に薄くなる傾向にある。
In insulated gate semiconductor devices that are highly integrated, such as LSIs, gate insulating films tend to become thinner and thinner in order to increase transfer conductance and achieve higher speeds.

一方、ゲート絶縁膜はゲート電極のパターンニングに際
してのりアクティブイオンエツチングのストッパとして
も機能するが、ゲート絶縁膜が極度に薄くなった場合、
該ゲート絶縁膜がストッパ機能を失って、ゲート電極の
パターンユング時にゲート近傍の基板面がダメージ等を
受け、素子性能が劣化する傾向を生ずる。
On the other hand, the gate insulating film also functions as a stopper for active ion etching when patterning the gate electrode, but if the gate insulating film becomes extremely thin,
The gate insulating film loses its stopper function, and the substrate surface near the gate is damaged when the gate electrode is patterned, resulting in a tendency for device performance to deteriorate.

そこで基板面にダメージ等を与えることのない絶縁ゲー
トの形成方法が要望される。
Therefore, there is a need for a method of forming an insulated gate that does not cause damage to the substrate surface.

〔従来の技術〕[Conventional technology]

近時、LSI等においては高速化を図るために、配線抵
抗が減少できる高融点金属ゲートやポリサイドゲートが
用いられ、且つゲート絶縁膜の厚さが100人程人程薄
く形成されるようになって来ている。
Recently, in order to increase the speed of LSI etc., high-melting point metal gates and polycide gates that can reduce wiring resistance are being used, and the thickness of the gate insulating film has been made thinner by about 100 people. It's becoming.

かかる伏況において、従来絶縁ゲートを形成する際、以
下に第3図(a)〜(blを参照し例えばタングステン
(W)ゲートに付いて説明するような方法が用いられて
いた。
Under such circumstances, conventionally, when forming an insulated gate, a method as described below with reference to FIGS. 3(a) to 3(bl), for example, for a tungsten (W) gate has been used.

第3図(al参照 即ち、先ずフィールド酸化膜2によって分離表出された
シリコン(Si)基板1上に熱酸化により厚さ100人
程人程ゲート二酸化シリコン(SiOz)膜3を形成し
た後、該基板上にスパッタリング法により厚さ2000
人程度0W層5を形成する。
Referring to FIG. 3 (al), first, a gate silicon dioxide (SiOz) film 3 with a thickness of about 100 layers is formed by thermal oxidation on a silicon (Si) substrate 1 isolated and exposed by a field oxide film 2. A thickness of 2000 mm was deposited on the substrate by sputtering.
A 0W layer 5 is formed.

第3図(bl参照 次いで上記W層5上にゲートパターンに対応するレート
パターン7を形成し、該レートパターン〃をマスクにし
、弗素系のエツチングガス例えば6弗化硫黄(SF6)
を用いてリアクティブイオンエツチング(RIE)処理
を行う。この際パターンニングを完全にするために、エ
ツチングレートの面内分布や、WJW5の厚さのばらつ
きを考慮して10〜20%程度のオーバエツチングがか
けられる。そして該選択エツチング処理により、ゲート
5i02膜3上にWゲート電極105を形成する方法で
ある。
FIG. 3 (see BL) Next, a rate pattern 7 corresponding to the gate pattern is formed on the W layer 5, and using the rate pattern as a mask, a fluorine-based etching gas such as sulfur hexafluoride (SF6) is used.
A reactive ion etching (RIE) process is performed using. At this time, in order to complete the patterning, overetching of about 10 to 20% is applied, taking into consideration the in-plane distribution of etching rate and the variation in the thickness of the WJW5. Then, by the selective etching process, a W gate electrode 105 is formed on the gate 5i02 film 3.

しかし上記従来方法においては、Wと5iO1とのエツ
チングレート比が6対1程度にしかとれないので、ゲー
ト5i02膜3が上記のように100人程人程薄くなる
と、上記オーバエツチングに際してゲート5i(h膜3
完全に除去されて基板面がエツチングされる場所が生ず
る。
However, in the conventional method described above, the etching rate ratio between W and 5iO1 is only about 6:1, so when the gate 5i02 film 3 becomes thinner by about 100 layers as described above, the gate 5i ( h membrane 3
There are locations where the substrate surface is completely removed and etched.

そのため、その場所の基板面がエツチングガスイオンの
衝撃を直に受けてダメージを受けたり、又該基板面にエ
ツチングガスのイオンが注入されたりして、その領域に
形成されるソース・ドレイよ ン領域に接合耐圧低下や暗電流を生じ、これによって該
絶縁ゲート型半導体装置の性能や製造歩留りが低下する
という問題を生ずる。
As a result, the substrate surface at that location may be damaged by direct impact from the etching gas ions, or the etching gas ions may be implanted into the substrate surface, resulting in source/drain formations being formed in that region. A reduction in junction breakdown voltage and a dark current occur in the region, resulting in a problem that the performance and manufacturing yield of the insulated gate semiconductor device are reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとするのは、上記のように従来の方
法によれば、ゲート絶縁膜が極度に薄くなると、ゲート
電極パターンニングに際してのオーバエツチングを含ん
だ選択エツチングにおいて、ゲート絶縁膜がエツチング
ストッパの役目を完全に果たしきれなくなり、基板面に
形成されるダメージやガスイオンの注入によって、ソー
ス・ドレインの接合耐圧低下や暗電流を生じ、素子性能
や製造歩留りが低下するという問題である。
The problem to be solved by the present invention is that, as described above, according to the conventional method, when the gate insulating film becomes extremely thin, the gate insulating film is etched during selective etching including overetching during gate electrode patterning. The problem is that the stopper cannot completely fulfill its role, and damage formed on the substrate surface and gas ion implantation cause a decrease in source-drain junction breakdown voltage and dark current, resulting in a decrease in device performance and manufacturing yield.

C問題点を解決するための手段〕 上記問題点は、絶縁ゲートの形成に際して、半導体基板
(1)上にゲート絶縁膜(3)を形成する工程と、該ゲ
ート絶縁膜(3)上に窒化チタン膜(4)を形成する工
程と、該窒化チタン膜(4)上にゲート電極の材料であ
る導電体層(5)を形成する工程と、該導電体層(5)
に対して優位な選択性を有するリアクティブイオンエツ
チング方法により該導電体層(5)の選択エツチングを
行って該導電体層(5)よりなるゲート電極パターン(
105)を形成する工程と、窒化チタンに対して優位な
選択性を有するリアクティブイオンエツチング方法によ
り該ゲート電極パターン(105)の周辺に表出してい
る窒化チタン膜(4)を除去する工程とを含む本発明に
よる絶縁ゲート型半導体装置の製造方法によって解決さ
れる。
Means for Solving Problem C] The above problem is caused by the step of forming a gate insulating film (3) on the semiconductor substrate (1) and the step of forming a nitriding film on the gate insulating film (3) when forming an insulated gate. a step of forming a titanium film (4); a step of forming a conductor layer (5), which is a material for a gate electrode, on the titanium nitride film (4); and a step of forming a conductor layer (5), which is a material for a gate electrode.
The conductor layer (5) is selectively etched by a reactive ion etching method that has superior selectivity to
105), and a step of removing the titanium nitride film (4) exposed around the gate electrode pattern (105) using a reactive ion etching method that has superior selectivity to titanium nitride. The problem is solved by a method of manufacturing an insulated gate semiconductor device according to the present invention, which includes the following.

〔作 用〕[For production]

即ち本発明は、絶縁ゲートの形成に際してゲート絶縁膜
上に、ゲート電極のパターンニングに用いる弗素系のエ
ツチングガスに対して極度に低いエツチングレートを有
し、且つゲート電極の下部に残留した際に誘電体層の働
きをしないような高電導性を有する窒化チタン膜を形成
した後、該窒化チタン膜上にゲート電極用導電体層を形
成し、該窒化チタン膜をエツチングストッパとして該導
電体層のリアクティブイオンエツチング法によるパター
ンニングを行ってゲート電極を形成し、しかる後ゲート
電極の周辺に表出している用済みの窒化チタン膜を除去
し、ゲート絶縁膜上に窒化チタン膜を介してゲート電極
が配設された絶縁ゲートを形成する方法である。
That is, the present invention has an extremely low etching rate with respect to a fluorine-based etching gas used for patterning a gate electrode on a gate insulating film when forming an insulated gate, and when remaining under the gate electrode. After forming a highly conductive titanium nitride film that does not function as a dielectric layer, a conductive layer for a gate electrode is formed on the titanium nitride film, and the conductive layer is used as an etching stopper. A gate electrode is formed by patterning using a reactive ion etching method, and then the used titanium nitride film exposed around the gate electrode is removed, and a titanium nitride film is formed on the gate insulating film via the titanium nitride film. This is a method of forming an insulated gate provided with a gate electrode.

そして本発明によれば、ゲート電極をパターンニングす
る際のりアクティブイオンエツチング処理において、上
記オーバエツチングを含んでパターンニングが完了する
まで、エツチングレートの極度に低い上記窒化チタン膜
によって完全に基板面をカバーして基板面のダメージ及
びガスイオン注入をなくし、これによってソース・ドレ
インの接合耐圧劣化や暗電流を防止する。
According to the present invention, in the active ion etching process when patterning the gate electrode, the substrate surface is completely covered with the titanium nitride film having an extremely low etching rate until the patterning, including the overetching, is completed. Covering prevents damage to the substrate surface and gas ion implantation, thereby preventing source/drain junction breakdown voltage deterioration and dark current.

〔実施例〕〔Example〕

以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.

第1図(al〜(81は本発明をW電極を有する絶縁ゲ
ート型半導体装置の製造に適用した第1の実施例の工程
断面図で、第2図(al〜(げ)はポリサイド電極を有
する絶縁ゲート型半導体装置の製造に適用した第2の実
施例の工程断面図である。
Figure 1 (al ~ (81) is a process cross-sectional view of the first embodiment in which the present invention is applied to the manufacture of an insulated gate type semiconductor device having W electrodes, and Figure 2 (al ~ (81) is a process cross-sectional view of the first embodiment in which the present invention is applied to the manufacture of an insulated gate type semiconductor device having a W electrode. FIG. 4 is a process cross-sectional view of a second embodiment applied to manufacturing an insulated gate type semiconductor device having the structure shown in FIG.

全図を通じ同一対象物は同一符合で示す。Identical objects are indicated by the same reference numerals throughout the figures.

第1図(al参照 本発明を適用してW電極を有する絶縁ゲート型半導体装
置を形成するに際しては、通常の方法により例えばp型
Si基Fi1の表面に、チャネルストッパ(図示せず)
を下部に有するフィールド酸化膜2を形成し、該シリコ
ン基板1の素子形成領域OAを分離表出せしめる。
When forming an insulated gate semiconductor device having a W electrode by applying the present invention to FIG.
A field oxide film 2 having a lower part of the field oxide film 2 is formed to separate and expose the element forming area OA of the silicon substrate 1.

次いで通常とおり熱酸化法により、上記素子形成領域0
4面に厚さ例えば100人のゲートSiO□膜3を形成
する。
Next, the above element formation area 0 is formed by thermal oxidation as usual.
A gate SiO□ film 3 having a thickness of, for example, 100 layers is formed on the four sides.

第1図(bl参照 次いで上記基板上にスパッタリング法により厚さ300
人程0の窒化チタン(TiN)膜4を形成し、次いで咳
TiN膜4上にスパッタリング法により厚さ2000人
程度0W層5を形成し、次いで該W膜5上に化学気相成
長(CVD)法により厚さ1000人程度0燐珪酸ガラ
ス(PSG)膜6を形成する。
FIG. 1 (see BL) Next, the above substrate was coated with a thickness of 300 mm by sputtering method.
A titanium nitride (TiN) film 4 with a thickness of 0 is formed, and then a 0W layer 5 with a thickness of approximately 2000 is formed on the TiN film 4 by sputtering, and then on the W film 5 by chemical vapor deposition (CVD). ) method to form a phosphosilicate glass (PSG) film 6 with a thickness of approximately 1000 mm.

第1図(C)参照 次いで通常のフォトプロセスにより上記psa 膜6上
にゲートパターンに対応する形状のレジストパターン7
を形成した後、該レジストパターン7をマスクにし、5
0%4弗化炭素(cps)と50%3弗化メタン(CH
F□)の混合ガスを用いてPSG膜6を、6弗化硫黄(
SF6)を用いてW層5を、リアクティブイオンエツチ
ング(I?IE)処理により続けてパターンニングする
。なおこの際、エツチングレートの面内分布、PSG@
6及びW層5の厚さの面内ばらつきを考慮して10〜2
0%程度(W層のエツチング厚さに換算して200〜4
00人程度)のオーバエツチングを行う。
Referring to FIG. 1(C), a resist pattern 7 having a shape corresponding to the gate pattern is then formed on the PSA film 6 by a normal photo process.
After forming 5, use the resist pattern 7 as a mask and
0% carbon tetrafluoride (cps) and 50% methane trifluoride (CH
The PSG film 6 was coated using a mixed gas of sulfur hexafluoride (F□).
The W layer 5 is subsequently patterned using reactive ion etching (I?IE) using SF6). At this time, the in-plane distribution of etching rate, PSG@
6 and 10 to 2 considering in-plane variations in the thickness of the W layer 5.
Approximately 0% (converted to the etching thickness of the W layer: 200 to 4
00 people).

そしてこの際、TiN膜4はエツチングストッパとして
機能するが、上記SF4等の弗素系ガスに対する該Ti
N膜4のエツチングレートは殆ど0に近いので、前記オ
ーバエツチング程度で該TiN膜4が除去されてストッ
パ機能を失うことは絶対にない。
At this time, the TiN film 4 functions as an etching stopper, but the TiN film 4 functions as an etching stopper.
Since the etching rate of the N film 4 is almost 0, the TiN film 4 is never removed by the above-mentioned overetching and will never lose its stopper function.

第1図(d+参照 次いで上記レジストパターン7をマスクにし、塩素系の
ガス例えば4塩化炭素(CC1*)をエツチングガスに
用いるRIE処理により表出しているTiN膜4を選択
的に除去し、ゲートSiO□膜3上に下部にTiN層4
を介在し、上部にPSG膜6を有するするWゲート電極
105を形成する。なお該CC1゜等の塩素系のガスに
よるTiNとSiO□とのエツチングレートの比は5:
工程度であるので、10〜20%のオ−バエソチングで
ゲート5i02膜3が失われてシリコン基板1面が表出
されることはない。従って基板面にダメージやガスイオ
ン注入領域が形成されることはない。
FIG. 1 (see d+) Next, using the resist pattern 7 as a mask, the exposed TiN film 4 is selectively removed by an RIE process using a chlorine gas such as carbon tetrachloride (CC1*) as an etching gas, and the exposed TiN film 4 is selectively removed. A TiN layer 4 is formed below on the SiO□ film 3.
A W gate electrode 105 having a PSG film 6 thereon is formed therebetween. The etching rate ratio of TiN and SiO□ using a chlorine-based gas such as CC1° is 5:
Since this is a process step, the gate 5i02 film 3 will not be lost and the silicon substrate 1 will not be exposed even with 10 to 20% over-etching. Therefore, no damage or gas ion implantation region is formed on the substrate surface.

第1図(e)参照 次いでレジストパターン7を除去した後、上記ゲート電
極4に整合して素子形成領域OAに例えば砒素(As”
)を高濃度にイオン注入し、所要の活性化処理を行って
n+型ソース領域8及びドレイン9を形成する。なおこ
こでPSG膜6はゲート電極105構成するwlのチャ
ネリング減少を阻止するイオンのマスク膜となる。
Referring to FIG. 1(e), after removing the resist pattern 7, for example, arsenic (As") is applied to the element forming area OA in alignment with the gate electrode 4.
) is ion-implanted at a high concentration and a necessary activation process is performed to form an n+ type source region 8 and drain 9. Here, the PSG film 6 serves as an ion mask film that prevents the channeling of wl forming the gate electrode 105 from decreasing.

以後図示しないが、絶縁膜の形成、絶縁膜へのコンタク
ト窓の形成、ソース・ドレイン配線の形成等がなされて
Wゲートを有する絶縁ゲート型半導体装置が完成する。
Although not shown in the drawings, an insulating gate semiconductor device having a W gate is completed by forming an insulating film, forming a contact window to the insulating film, forming source/drain wiring, etc.

なお上記ゲート電極の下部にTiN膜の介在する構造に
おいて、闇値電圧(Vth)はTiNの仕事関数に依存
するので、これに基づいてチャネルドーズ量を加減し、
これによってvth値を制御する。
In the structure in which a TiN film is interposed below the gate electrode, the dark voltage (Vth) depends on the work function of TiN, so the channel dose is adjusted based on this.
This controls the vth value.

次いでポリサイド電極を有する第2の実施例について説
明する。
Next, a second embodiment having a polycide electrode will be described.

第2図(al参照 第1図(alに示すようにゲート5i02膜3の形成を
終わったシリコン基板1上に、スパッタリング法により
例えば500人程0のTiN膜4を形成し、次いで咳T
iN膜4上にCVD法により厚さ2000人程度0ポリ
Si層10を形成し、次いで該ポリSi層10上にスパ
ッタリング法により厚さ2000人程度0ポタンシリサ
イド(TiSiz)層11を形成する。
As shown in FIG. 2 (al), on the silicon substrate 1 on which the gate 5i02 film 3 has been formed, for example, a TiN film 4 of about 500 layers is formed by a sputtering method, and then
A poly-Si layer 10 having a thickness of about 2,000 layers is formed on the iN film 4 by a CVD method, and then a polysilicide (TiSiz) layer 11 having a thickness of about 2,000 layers is formed on the poly-Si layer 10 by a sputtering method.

第2図(b)参照 次いで第1の実施例同様、レジストパターン7をマスク
にし、SF6によるリアクティブイオンエツチング処理
によりTiSiz層11、ポリSi層10を順次パター
ンニングする。この際前述したようにTiN膜4は殆ど
エツチングされない。
Referring to FIG. 2(b), as in the first embodiment, the TiSiz layer 11 and the poly-Si layer 10 are sequentially patterned by reactive ion etching using SF6 using the resist pattern 7 as a mask. At this time, as mentioned above, the TiN film 4 is hardly etched.

第2図(訪)参照 次いで第1の実施例の第1図(d)と同様に表出するT
iN膜4を除去し、ゲーhsiO□膜3上に、下部にT
iN膜4が介在するポリSi層10とTiSiz層11
との積層ゲート即ちTtNを含むポリサイド電極111
を形成する。
Referring to FIG. 2 (visited), T is then expressed in the same way as FIG.
The iN film 4 is removed, and a T layer is formed on the bottom of the gate hsiO□ film 3.
PolySi layer 10 and TiSiz layer 11 with iN film 4 interposed therebetween
A polycide electrode 111 containing a stacked gate, that is, TtN.
form.

第2図(d)参照 次いでポリサイドゲート111をマスクにしてAs”の
イオン注入を行ってn′″型ソース領域8及びドレイン
9を形成する。
Referring to FIG. 2(d), next, using the polycide gate 111 as a mask, As" ions are implanted to form an n'" type source region 8 and drain 9.

そして以後図示しない絶縁膜の形成、コンタクト窓の形
成、ソース・ドレイン配線の形成等がなされてTiNを
含むポリサイド電極を有する絶縁ゲート型半導体装置が
完成する。
After that, an insulating film (not shown) is formed, a contact window is formed, source/drain wiring is formed, etc., and an insulated gate type semiconductor device having a polycide electrode containing TiN is completed.

以上実施例に示したように本発明の方法においては、ゲ
ート材料となる導電体に比べて極度にエツチングレート
の低いTiN膜をゲート絶縁膜とゲート電極層との間に
介在せしめることにより、ゲート電極層をゲート状にパ
ターンニングする際のオーバエツチングにより基板面が
エツチングされるのを防止する。
As shown in the embodiments above, in the method of the present invention, a TiN film having an extremely low etching rate compared to the conductor serving as the gate material is interposed between the gate insulating film and the gate electrode layer. To prevent the substrate surface from being etched due to overetching when patterning the electrode layer into a gate shape.

従ってゲート近傍の基板面がエツチングのダメージ及び
ガス・イオンの注入を受けることがなくなり、該領域に
形成されるソース・ドレイン領域の接合耐圧低下や、暗
電流が防止される。
Therefore, the substrate surface in the vicinity of the gate is not damaged by etching or gas ion implantation, and a decrease in the junction breakdown voltage and dark current of the source/drain regions formed in this region are prevented.

なお本発明の方法は上記実施例に限らず、多結晶シリコ
ンをゲート電極に用いる絶縁ゲート型半導体装置にも勿
論有効に適用される。
Note that the method of the present invention is not limited to the above-mentioned embodiments, but can of course be effectively applied to insulated gate type semiconductor devices using polycrystalline silicon for the gate electrode.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、高集積化され且つ高
速化されてゲート絶縁膜が極度に薄く形成される絶縁ゲ
ート型半導体装置を製造する際のゲート電極のパターン
ニングに際して、ゲート近傍の基板面がエツチングガス
のイオンによりダメージを受ける2ことがなくなってl
ソース・ドレインの接合耐圧の劣化や暗電流の増大が防
止される。従って絶縁ゲート型半導体装置の性能及び製
造歩留りの向上が図れる。
As described above, according to the present invention, when patterning a gate electrode when manufacturing an insulated gate type semiconductor device that is highly integrated and operates at high speed and has an extremely thin gate insulating film, it is possible to The substrate surface is no longer damaged by etching gas ions2.
Deterioration of source/drain junction breakdown voltage and increase in dark current are prevented. Therefore, the performance and manufacturing yield of the insulated gate semiconductor device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の工程断面図、第2図は
本発明の第2の実施例の工程断面図、第3図は従来方法
の工程断面図である。 図において、 1はp型Si基板、 2はフィールド酸化膜、 3はゲート5in2膜、 4はTiN膜、 5はW層、 6はPSG膜、 7はレジストパターン、 8はn1型ソース領域、 9はn“型ドレイン領域、 10はポリSi層、 11はTiSi2層、 DAは素子形成領域 を示す。 ↓  ↓  1  ↓  ↓〜S7”6RIEL  L
  L  L  )  !  rs’迩従永方法の工程
跡面馨 草3 図
FIG. 1 is a cross-sectional view of the process of the first embodiment of the present invention, FIG. 2 is a cross-sectional view of the process of the second embodiment of the present invention, and FIG. 3 is a cross-sectional view of the process of the conventional method. In the figure, 1 is a p-type Si substrate, 2 is a field oxide film, 3 is a gate 5in2 film, 4 is a TiN film, 5 is a W layer, 6 is a PSG film, 7 is a resist pattern, 8 is an n1-type source region, 9 indicates an n" type drain region, 10 indicates a poly-Si layer, 11 indicates a TiSi2 layer, and DA indicates an element formation area. ↓ ↓ 1 ↓ ↓〜S7"6RIEL L
LL)! Figure 3 of the process trace of the rs' Tokonei method

Claims (1)

【特許請求の範囲】 絶縁ゲートの形成に際して、 半導体基板(1)上にゲート絶縁膜(3)を形成する工
程と、 該ゲート絶縁膜(3)上に窒化チタン膜(4)を形成す
る工程と、 該窒化チタン膜(4)上にゲート電極の材料である導電
体層(5)を形成する工程と、 該導電体層(5)に対して優位な選択性を有するリアク
ティブイオンエッチング方法により該導電体層(5)の
選択エッチングを行って該導電体(5)層よりなるゲー
ト電極パターン(105)を形成する工程と、 窒化チタン(4)に対して優位な選択性を有するリアク
ティブイオンエッチング方法により該ゲート電極パター
ン(105)の周辺に表出している窒化チタン膜(4)
を除去する工程とを含むことを特徴とする絶縁ゲート型
半導体装置の製造方法。
[Claims] When forming an insulated gate, there are the steps of forming a gate insulating film (3) on a semiconductor substrate (1), and forming a titanium nitride film (4) on the gate insulating film (3). A step of forming a conductive layer (5), which is a material for a gate electrode, on the titanium nitride film (4), and a reactive ion etching method having superior selectivity to the conductive layer (5). selectively etching the conductive layer (5) to form a gate electrode pattern (105) made of the conductive layer (5); Titanium nitride film (4) exposed around the gate electrode pattern (105) by active ion etching method
1. A method of manufacturing an insulated gate semiconductor device, comprising the step of removing.
JP18575486A 1986-08-07 1986-08-07 Manufacture of insulating gate type semiconductor device Pending JPS6342173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18575486A JPS6342173A (en) 1986-08-07 1986-08-07 Manufacture of insulating gate type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18575486A JPS6342173A (en) 1986-08-07 1986-08-07 Manufacture of insulating gate type semiconductor device

Publications (1)

Publication Number Publication Date
JPS6342173A true JPS6342173A (en) 1988-02-23

Family

ID=16176280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18575486A Pending JPS6342173A (en) 1986-08-07 1986-08-07 Manufacture of insulating gate type semiconductor device

Country Status (1)

Country Link
JP (1) JPS6342173A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599725A (en) * 1992-06-18 1997-02-04 International Business Machines Corporation Method for fabricating a MOS transistor with two-layer inverse-T tungsten gate structure
US5783478A (en) * 1992-12-11 1998-07-21 Intel Corporation Method of frabricating a MOS transistor having a composite gate electrode
US6432776B1 (en) 1999-08-23 2002-08-13 Nec Corporation Method of manufacturing semiconductor device
JP2004247414A (en) * 2003-02-12 2004-09-02 Sharp Corp Transistor and its manufacturing method, and liquid crystal display device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599725A (en) * 1992-06-18 1997-02-04 International Business Machines Corporation Method for fabricating a MOS transistor with two-layer inverse-T tungsten gate structure
US5783478A (en) * 1992-12-11 1998-07-21 Intel Corporation Method of frabricating a MOS transistor having a composite gate electrode
US6432776B1 (en) 1999-08-23 2002-08-13 Nec Corporation Method of manufacturing semiconductor device
JP2004247414A (en) * 2003-02-12 2004-09-02 Sharp Corp Transistor and its manufacturing method, and liquid crystal display device using the same
JP4599603B2 (en) * 2003-02-12 2010-12-15 シャープ株式会社 Method for manufacturing transistor

Similar Documents

Publication Publication Date Title
US6790719B1 (en) Process for forming dual metal gate structures
JP4606525B2 (en) Semiconductor device
JP2757927B2 (en) Method of interconnecting spaced silicon regions on a semiconductor substrate
KR970077674A (en) Manufacturing method of semiconductor integrated circuit device
JP3415496B2 (en) Semiconductor device and manufacturing method thereof
JPH07176626A (en) Formation of semiconductor integrated circuit
JPH0669099B2 (en) MIS type semiconductor device
JPH0620987A (en) Method for formation of contact hole in doped region
JPS6342173A (en) Manufacture of insulating gate type semiconductor device
JPS60123060A (en) Semiconductor device
JPS60113460A (en) Dynamic memory element
JPH065852A (en) Mosfet and manufacture thereof
US6716760B2 (en) Method for forming a gate of a high integration semiconductor device including forming an etching prevention or etch stop layer and anti-reflection layer
US6706577B1 (en) Formation of dual gate oxide by two-step wet oxidation
JP2000049352A (en) Semiconductor device and its manufacture
JP2674112B2 (en) Method for manufacturing semiconductor device
JPS61129872A (en) Manufacture of semiconductor device
JPH0142147B2 (en)
JPH06196689A (en) Insulated gate field-effect semiconductor device and manufacture thereof
KR100447989B1 (en) Gate electrode formation method of semiconductor device
JPH03257873A (en) Non-volatile semiconductor memory device and manufacture thereof
KR100256259B1 (en) Method of preparing common gate in semiconductor device
JPH01298758A (en) Manufacture of semiconductor device
KR0165340B1 (en) Semiconductor device and manufacture thereof
JPS59136973A (en) Semiconductor device