JPS6341223B2 - - Google Patents

Info

Publication number
JPS6341223B2
JPS6341223B2 JP53111717A JP11171778A JPS6341223B2 JP S6341223 B2 JPS6341223 B2 JP S6341223B2 JP 53111717 A JP53111717 A JP 53111717A JP 11171778 A JP11171778 A JP 11171778A JP S6341223 B2 JPS6341223 B2 JP S6341223B2
Authority
JP
Japan
Prior art keywords
gate
voltage
polysilicon
type
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53111717A
Other languages
Japanese (ja)
Other versions
JPS5539605A (en
Inventor
Satoshi Meguro
Osamu Yamashiro
Kanji Yo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11171778A priority Critical patent/JPS5539605A/en
Priority to IN118/CAL/79A priority patent/IN151981B/en
Priority to CH1621/79A priority patent/CH657712A5/en
Priority to DE2954543A priority patent/DE2954543C2/de
Priority to IT20368/79A priority patent/IT1111987B/en
Priority to NL7901335A priority patent/NL7901335A/en
Priority to CA000321955A priority patent/CA1149081A/en
Priority to DE19792906527 priority patent/DE2906527A1/en
Priority to FR7904226A priority patent/FR2447036B1/en
Priority to GB8119559A priority patent/GB2081014B/en
Priority to GB8119562A priority patent/GB2081458B/en
Priority to GB8119561A priority patent/GB2100540B/en
Priority to GB7907817A priority patent/GB2016801B/en
Priority to GB8119560A priority patent/GB2081015B/en
Publication of JPS5539605A publication Critical patent/JPS5539605A/en
Priority to CA000395811A priority patent/CA1145063A/en
Priority to CA000395813A priority patent/CA1143010A/en
Priority to CA000395812A priority patent/CA1146223A/en
Priority to CA000395810A priority patent/CA1154880A/en
Priority to US06/484,351 priority patent/US4559694A/en
Priority to HK80/84A priority patent/HK8084A/en
Priority to SG41684A priority patent/SG41684G/en
Priority to SG417/84A priority patent/SG41784G/en
Priority to SG41584A priority patent/SG41584G/en
Priority to MY1984375A priority patent/MY8400375A/en
Priority to CH1928/85A priority patent/CH672391B5/en
Priority to HK351/85A priority patent/HK35185A/en
Priority to HK364/85A priority patent/HK36485A/en
Priority to HK363/85A priority patent/HK36385A/en
Priority to MY658/85A priority patent/MY8500658A/en
Priority to MY672/85A priority patent/MY8500672A/en
Priority to MY671/85A priority patent/MY8500671A/en
Publication of JPS6341223B2 publication Critical patent/JPS6341223B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/143Detection of memory cassette insertion or removal; Continuity checks of supply or ground lines; Detection of supply variations, interruptions or levels ; Switching between alternative supplies
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45744Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by offset reduction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0233Bistable circuits
    • H03K3/02337Bistables with hysteresis, e.g. Schmitt trigger
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45394Indexing scheme relating to differential amplifiers the AAC of the dif amp comprising FETs whose sources are not coupled, i.e. the AAC being a pseudo-differential amplifier

Description

【発明の詳細な説明】 本発明は、特に基準電圧発生装置に応用可能な
一対の絶縁ゲート型電界効果トランジスタの製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a pair of insulated gate field effect transistors, which is particularly applicable to a reference voltage generator.

各種の半導体電子回路において、基準となる電
圧を発生させるには電圧の次元を持つた物理量を
利用することが必須の条件である。これまで、そ
の物理量としてはもつぱらPN接合ダイオードの
順方向電圧降下VFや逆方向降伏電圧(ツエナ電
圧)VZ並びに絶縁ゲート型電界効果トランジス
タ(IGFET、MOSFETで代表されることが多
い)のしきい値電圧Vth等が利用されている。
In various semiconductor electronic circuits, in order to generate a reference voltage, it is essential to use a physical quantity having the dimension of voltage. Until now, physical quantities such as the forward voltage drop V F of a PN junction diode, the reverse breakdown voltage (Zena voltage) V Z , and the insulated gate field effect transistor (often represented by an IGFET or MOSFET) have been considered. Threshold voltage V th etc. are used.

これらの物理量は絶対的な電圧値を示すもので
なく、その電圧値はさまざまなフアクターによつ
て変動を受ける。従つて、これらの物理量を各種
電子回路の基準電圧発生装置として利用するため
には、得られる電圧値の変動要素と許容できる変
動幅に注意を払わなければならない。
These physical quantities do not indicate absolute voltage values, and the voltage values are subject to fluctuations depending on various factors. Therefore, in order to utilize these physical quantities as a reference voltage generating device for various electronic circuits, it is necessary to pay attention to the fluctuation factors of the obtained voltage value and the permissible fluctuation range.

まず、これら物理量の温度特性について言え
ば、上記VFやVthは通常2〜3mV/℃程度の温
度依存性を持つており、この温度変化に伴なう基
準電圧の温度変化は用途によつては実用を断念せ
ざるを得ない程の大きさに及ぶ。
First, regarding the temperature characteristics of these physical quantities, the above V F and V th usually have a temperature dependence of about 2 to 3 mV/°C, and the temperature change in the reference voltage that accompanies this temperature change varies depending on the application. In some cases, the size is such that we have no choice but to give up on practical use.

次に、これら物理量の製造バラツキについて
は、MOSFETのしきい値電圧Vthは±0.2V程度
のバラツキがあり、このバラツキは温度変化より
も大きくなる。従つて、上述のバツテリ・チエツ
カをVthを利用してIC(集積回路)化した場合基
準電圧補正のための外部部品と接続ピン(端子)
のみならず、IC製造後の調整の手間が必要とな
る。
Next, regarding manufacturing variations in these physical quantities, the threshold voltage V th of the MOSFET has a variation of about ±0.2V, and this variation is larger than the temperature change. Therefore, when the battery checker described above is made into an IC (integrated circuit) using V th , external components and connection pins (terminals) for reference voltage correction are required.
Not only that, but it also requires time and effort for adjustments after the IC is manufactured.

また、ツエナ電圧VZは低い電圧では3V程度が
限度があり、1〜3V程度の低電圧範囲で使用す
る基準電圧としては不適当であり、又、ツエナ電
圧及びダイオードの順方向降下電圧を基準電圧と
して使用するのには、数mA〜数十mA程度の電
流を流す必要があり、低消費電力化という点でも
不適当である。
In addition, the Zener voltage V Z has a low voltage limit of about 3V, which is inappropriate as a reference voltage for use in the low voltage range of about 1 to 3V. In order to use it as a voltage, it is necessary to flow a current of several mA to several tens of mA, which is also inappropriate in terms of reducing power consumption.

以上の説明から明らかなように、Vth、VFおよ
びVZを利用した従来の基準電圧発生装置は、温
度特性、製造バラツキ、消費電力および電圧レベ
ル等を考えれば、必ずしもあらゆる用途に適合す
るものではなく、極めて厳しい特性が要求される
用途に対しては実用化や量産化を断念せねばなら
なくなるケースがしばしばであつた。
As is clear from the above explanation, conventional reference voltage generators using V th , V F , and V Z are not necessarily suitable for all uses, considering temperature characteristics, manufacturing variations, power consumption, voltage levels, etc. In many cases, practical application or mass production had to be abandoned for applications requiring extremely strict characteristics.

本発明者らは、以上のような検討から従来の基
準電圧発生装置の改良には物理的に限界があると
知り、新しい考え、発想を持つた基準電圧発生装
置の研究、開発に踏み切つた。
From the above studies, the present inventors learned that there are physical limits to the improvement of conventional reference voltage generators, and decided to research and develop a reference voltage generator with new ideas and ideas. .

かかる点に関し、本発明者は同一チヤンネルで
異なる導電型のゲート電極を有する一対の絶縁ゲ
ート型電界効果トランジスタ(MOSFET)を使
用して基準電圧発生装置を構成することを発明し
た。この基準電圧発生装置は後述から明らかにさ
れるように、次の利点を有している。
Regarding this point, the present inventor has invented a reference voltage generating device using a pair of insulated gate field effect transistors (MOSFETs) having the same channel and gate electrodes of different conductivity types. This reference voltage generator has the following advantages, as will become clear from the description below.

(a) 電子回路の設計、量産化を容易にすることが
できる。
(a) Design and mass production of electronic circuits can be facilitated.

(b) 温度変化が小さい。(b) Small temperature changes.

(c) 電圧値の変動が製造条件の変動に対して小さ
い、例えばロツト間の製造バラツキ(偏差)が
小さいものが得られる。
(c) Variations in voltage values are smaller than variations in manufacturing conditions, for example, products with small manufacturing variations (deviations) between lots can be obtained.

(d) 製造後の調整が不要な程に製造バラツキを小
さくできる集積回路化されたものが得られる。
(d) It is possible to obtain an integrated circuit that can reduce manufacturing variations to such an extent that post-manufacturing adjustments are not required.

(e) 目標仕様に対して大きい余裕度を以つて製造
することが可能なものが得られる。
(e) A product that can be manufactured with a large margin for target specifications can be obtained.

(f) 製造歩留りの高い基準電圧発生装置を含む集
積回路化された電子回路装置を得ることができ
る。
(f) It is possible to obtain an integrated electronic circuit device including a reference voltage generator with a high manufacturing yield.

本発明は以上の利点をもつ基準電圧発生装置の
製作に好適な絶縁ゲート型電界効果トランジスタ
の製法を提供することを目的とし、特に、絶縁ゲ
ート型電界効果半導体装置を具備する集積回路と
コンパチブルな製法を提供することを目的とす
る。
It is an object of the present invention to provide a method for manufacturing an insulated gate field effect transistor suitable for manufacturing a reference voltage generating device having the above-mentioned advantages. The purpose is to provide a manufacturing method.

まず、本発明者によつて構成された基準電圧発
生装置について説明する。この基準電圧発生装置
は半導体物性の原点にたちかえり、特にエネルギ
ーギヤツプEg、フエルミ準位Ef等に着眼して成
されたものである。
First, a reference voltage generator constructed by the inventor of the present invention will be described. This reference voltage generator was created by going back to the origins of semiconductor physical properties and paying particular attention to the energy gap Eg, Fermi level Ef, etc.

第1図に本発明の基準電圧発生装置の一実施例
を構成するN型ポリシリコン5をゲート電極とす
るPチヤネルMOSFET(A)とP型ポリシリコン6
をゲート電極とするPチヤネルMOSFET(B)を示
した。
FIG. 1 shows a P-channel MOSFET (A) with an N-type polysilicon 5 as a gate electrode and a P-type polysilicon 6, which constitute an embodiment of the reference voltage generating device of the present invention.
A P-channel MOSFET (B) is shown in which the gate electrode is .

これらのFETはゲート電極の導電型を除いて
ほぼ同じ条件で製造されるので、両者のVthの差
はほぼP型シリコンとN型シリコンのフエルミ準
位の差に等しくなる。各ゲート電極には飽和濃度
付近にそれぞれの不純物がドープされ、この差は
シリコンのエネルギー・ギヤツプEg(約1.1V)に
ほぼ等しくなり、また、両者のチヤネル寸法を同
一にすることによりこのVth差を高精度でとりだ
すことが可能でこれが基準電圧源として利用され
る。
Since these FETs are manufactured under almost the same conditions except for the conductivity type of the gate electrode, the difference in V th between them is approximately equal to the difference in Fermi level between P-type silicon and N-type silicon. Each gate electrode is doped with each impurity near the saturation concentration, and this difference is approximately equal to the silicon energy gap E g (approximately 1.1V), and by making both channel dimensions the same, this V It is possible to extract the th difference with high precision, and this is used as a reference voltage source.

このような構成に基ずく基準電圧発生装置は温
度依存性が小さくまた製造偏差も小さいので、各
種電子回路の基準電圧発生装置として利用され得
る。
A reference voltage generating device based on such a configuration has low temperature dependence and small manufacturing deviation, so it can be used as a reference voltage generating device for various electronic circuits.

なお第1図において1はN型シリコン基体、2
はFET素子分離用の厚い酸化膜、3はゲート酸
化膜、4はソース、ドレインのP型不純物層、5
はN型ポリシリコン、6はP型ポリシリコンであ
る。ここで上記N型ポリシリコンゲート5はN型
不純物及びP型不純物の両方がドープされてお
り、しかもN型不純物の濃度がP型不純物の濃度
の1.5倍以上である構造、あるいはP型不純物は
ほぼ含まず、N型不純物がドープされているにも
かかわらず、ソース、ドレインとセルフアライン
構造となつているものである。
In FIG. 1, 1 is an N-type silicon substrate, 2
is a thick oxide film for FET element isolation, 3 is a gate oxide film, 4 is a P-type impurity layer for source and drain, and 5 is a thick oxide film for FET element isolation.
6 is N-type polysilicon, and 6 is P-type polysilicon. Here, the N-type polysilicon gate 5 is doped with both an N-type impurity and a P-type impurity, and has a structure in which the concentration of the N-type impurity is 1.5 times or more than the concentration of the P-type impurity, or the P-type impurity is doped. Although it contains almost no impurity and is doped with N-type impurities, it has a self-aligned structure with the source and drain.

ここで上記N型不純物の濃度が上記P型不純物
濃度の1.5倍以上である必要性は下記の理由によ
る。すなわち通常の高濃度不純物ドープ技術にお
いては、濃度の制御制は設定値±20%程度のバラ
ツキがあり、従つて上記N型不純物濃度と上記P
型不純物濃度の比は(1.5±0.3)/(1.1±0.2)
となり、この比の最小値は1/1となるため、上
記N型およびP型不純物両方がドープされたポリ
シリコンのフエルミ準位は大きく変化してしま
う。
The need for the concentration of the N-type impurity to be 1.5 times or more the concentration of the P-type impurity is as follows. In other words, in normal high-concentration impurity doping technology, the concentration control system varies by about ±20% of the set value, and therefore the above N-type impurity concentration and the above P
The ratio of type impurity concentration is (1.5±0.3)/(1.1±0.2)
Since the minimum value of this ratio is 1/1, the Fermi level of the polysilicon doped with both N-type and P-type impurities changes greatly.

従つてある程度の製造バラツキを許容するため
必ず、上記不純物濃度の比は1.5/1以上の必要
がある。
Therefore, in order to allow for a certain degree of manufacturing variation, the ratio of the impurity concentrations must be 1.5/1 or more.

本発明はかかる要求を満足するために、次の工
程から成る一対のMOSFETを含む絶縁ゲート型
電界効果半導体装置の製法を提供するものであ
る。
In order to satisfy such requirements, the present invention provides a method for manufacturing an insulated gate field effect semiconductor device including a pair of MOSFETs, which includes the following steps.

(a) 半導体基板表面の第1の部分および第2の部
分を覆つてゲート絶縁膜を介してポリシリコン
膜を形成し、前記第2の部分を覆うポリシリコ
ン膜を除き、前記第1の部分を覆うポリシリコ
ン膜に第1導電型の不純物をドープする工程、 (b) 前記第1の部分および前記第2の部分におい
て第1のゲート電極および第2のゲート電極を
それぞれ形成するために前記ポリシリコン膜を
除去する工程、 (c) 前記第1および第2のゲート電極で覆われな
かつた前記第1および第2の部分、ならび、前
記第1および第2のゲート電極に対し、前記第
1導電型と反対導電型の第2導電型の不純物
を、前記第1のゲート電極における前記第1導
電型の不純物濃度より低いドープ量となるよう
に、ドープすることによつて、前記第1および
第2のゲート電極のそれぞれに関して第2導電
型のソースおよびドレイン領域を形成するとと
もに、前記第2のゲート電極を第2導電型に規
定する工程、 第2図a,bは本発明に係るIGFETの製造方
法を示したものである。
(a) A polysilicon film is formed via a gate insulating film to cover a first part and a second part of the surface of the semiconductor substrate, and the polysilicon film covering the second part is removed from the first part. (b) doping the polysilicon film covering the polysilicon film with an impurity of a first conductivity type to form a first gate electrode and a second gate electrode in the first portion and the second portion, respectively; (c) removing the polysilicon film from the first and second portions not covered by the first and second gate electrodes and the first and second gate electrodes; The first conductivity type is doped with an impurity of a second conductivity type, which is an opposite conductivity type to the first conductivity type, so that the doping amount is lower than the impurity concentration of the first conductivity type in the first gate electrode. and a step of forming source and drain regions of a second conductivity type for each of the second gate electrodes and defining the second gate electrodes as the second conductivity type. This shows a method for manufacturing an IGFET.

(a) N型Si基体1を酸化して素子分離用の厚い酸
化膜2を形成し、この開口部にゲート酸化膜3
を形成した後、気相成長法により真性半導体ポ
リシリコン膜を被着し更に気相成長酸化膜7を
部分的に形成する。酸化膜7をマスクとして、
リン、ヒ素などの不純物を上記ポリシリコンに
選択的にドープすることにより、N型ポリシリ
コン5および真性ポリシリコン6を得る。
(a) N-type Si substrate 1 is oxidized to form a thick oxide film 2 for element isolation, and a gate oxide film 3 is placed in this opening.
After forming, an intrinsic semiconductor polysilicon film is deposited by a vapor phase growth method, and a vapor phase growth oxide film 7 is further formed partially. Using the oxide film 7 as a mask,
By selectively doping the polysilicon with impurities such as phosphorus and arsenic, N-type polysilicon 5 and intrinsic polysilicon 6 are obtained.

(b) 酸化膜7を除去した後、ゲートポリシリコン
電極のホトエツチングによる加工を行い、ソー
ス、ドレインP型不純物層4を通常の熱拡散法
により形成する。ここで(a)でポリシリコンにド
ープするn型不純物濃度を(b)のP型不純物拡散
で上記ポリシリコンにドープするP型不純物濃
度の1.5倍以上とすることにより、ポリシリコ
ンゲート5はN型に保たれる。
(b) After removing the oxide film 7, the gate polysilicon electrode is processed by photoetching, and the source and drain P-type impurity layers 4 are formed by the usual thermal diffusion method. Here, by setting the n-type impurity concentration doped into the polysilicon in (a) to be at least 1.5 times the P-type impurity concentration doped into the polysilicon in the P-type impurity diffusion in (b), the polysilicon gate 5 is kept in shape.

かかる本発明の製造方法は、次に第3図を基に
述べる本発明者によつて考えられた他の製造方法
に比較して、ゲート電極に対して特別なマスクあ
るいはエツチング工程を必要としないので、より
有利である。
The manufacturing method of the present invention does not require a special mask or etching process for the gate electrode, compared to other manufacturing methods devised by the inventor, which will be described next with reference to FIG. Therefore, it is more advantageous.

第3図a,b,c,dは本発明の基準電圧発生
装置の他の製造方法を示すものであり、aは第2
図aと同一の製造工程を示したものである。
3a, b, c, and d show other manufacturing methods of the reference voltage generator of the present invention, and a is the second
This figure shows the same manufacturing process as in Figure a.

(b) 酸化膜7を除去した後、ゲートポリシリコン
電極のホトエツチングによる加工を行いポリシ
リコンゲートをマスクとしてソース、ドレイン
となる部分のゲート酸化膜を除去した後750℃
〜900℃スチーム中で60秒から600秒間酸化す
る。
(b) After removing the oxide film 7, the gate polysilicon electrode is processed by photoetching, and the gate oxide film in the portions that will become the source and drain is removed using the polysilicon gate as a mask, and then heated at 750°C.
Oxidize for 60 to 600 seconds in ~900°C steam.

この酸化により、ソース、ドレインとなる部
分9、および真性ポリシリコン6の表面には、
20〜40Åの酸化膜8および10が形成され、N
型型ポリシリコンゲートの表面には70〜200Å
の酸化膜9が形成される。
As a result of this oxidation, the portions 9 that will become the source and drain, and the surface of the intrinsic polysilicon 6 have
Oxide films 8 and 10 of 20 to 40 Å are formed, and N
70 to 200 Å on the surface of the molded polysilicon gate.
An oxide film 9 is formed.

(c) この後、950〜1000℃でホウ素を約20分熱拡
散することにより、酸化膜8および10を突き
通してP形不純物層4、P形ポリシリコン層6
を形成する。この時N型ポリシリコン層5は酸
化膜9により保護され、ホウ素はドープされな
い。あるいはホウ素の熱拡散の前にHF:H2O
=1:99のエツチ液で60secエツチすることに
より酸化膜8、および10を除去しかつ酸化膜
9は40〜150Å残して上記ホウ素の熱拡散を行
つても同様の構造が得られる。
(c) After this, by thermally diffusing boron at 950 to 1000°C for about 20 minutes, the oxide films 8 and 10 are penetrated into the P-type impurity layer 4 and the P-type polysilicon layer 6.
form. At this time, N-type polysilicon layer 5 is protected by oxide film 9 and is not doped with boron. or HF: H2O before thermal diffusion of boron
A similar structure can be obtained by removing oxide films 8 and 10 by etching for 60 seconds with an etchant of 1:99, leaving 40 to 150 Å of oxide film 9, and carrying out the thermal diffusion of boron.

(d) この後リンガラス膜11を形成し、コンタク
ト穴を形成し、Al電極12を形成して完成す
る。
(d) After this, a phosphor glass film 11 is formed, a contact hole is formed, and an Al electrode 12 is formed to complete the process.

本製造方法はSiゲートPチヤネルMOSFETの
場合について説明したが、SiゲートCMOSICの
場合のPチヤネルMOSFETについても全く同様
である。
Although this manufacturing method has been described for the case of a Si gate P-channel MOSFET, it is exactly the same for a P-channel MOSFET in the case of a Si gate CMOSIC.

以下に、本発明の製造方法によつて得られた一
対のMOSFETを使用する基準電圧発生装置にお
いて、基準電圧を取り出す方法について述べる。
Below, a method for extracting a reference voltage in a reference voltage generator using a pair of MOSFETs obtained by the manufacturing method of the present invention will be described.

次にMOSFETトランジスタのVthの差を取り
出す回路について説明する。
Next, a circuit for extracting the difference in V th of MOSFET transistors will be explained.

以下に説明する回路は上述したフエルミ準位の
差(Efo−Efp)を取り出すための一方法となり得
るが、その他一般的に、異なるVthを持つFETの
Vthの差に基ずく電圧を基準電圧として利用する
基準電圧発生装置として応用できる。
The circuit described below can be a method for extracting the above-mentioned Fermi level difference (E fo −E fp ), but it is also generally used for FETs with different V th
It can be applied as a reference voltage generator that uses the voltage based on the difference in V th as a reference voltage.

第4図は、MOSトランジスタのしきい値電圧
に対応する電圧を発生する回路である。T1,T2
はドレインとゲートが共通に接続された、いわゆ
るMOSダイオードを構成している。
FIG. 4 shows a circuit that generates a voltage corresponding to the threshold voltage of a MOS transistor. T 1 , T 2
constitutes a so-called MOS diode whose drain and gate are commonly connected.

I0は定電流源、T1,T2は異なるしきい値電圧
Vth1、Vth2とほぼ等しい相互コンダクタンスβを
持つMOSFETであり、各々のドレイン電圧を
V1、V2とすれば I0=1/2β(V1−Vth12=1/2β(V2−Vth22 であるから V1=Vth1+√20 ……(2) V2=Vth2+√20 ……(3) となり、ドレイン電圧の差をとれば、しきい値電
圧の差を取り出すことができる。
I 0 is a constant current source, T 1 and T 2 are different threshold voltages
It is a MOSFET with mutual conductance β almost equal to V th1 and V th2 , and each drain voltage is
If V 1 and V 2 , then I 0 = 1/2β (V 1 −V th1 ) 2 = 1/2β (V 2 −V th2 ) 2 , so V 1 =V th1 +√2 0 ...(2 ) V 2 =V th2 +√2 0 (3), and by taking the difference in drain voltage, the difference in threshold voltage can be extracted.

定電流源としては、十分大きな抵抗を使つても
良く、特性のそろつたものであれば、拡散抵抗、
多結晶Si抵抗、イオン打込みによつて作られた抵
抗、MOSトランジスタによる抵抗を使用するこ
とができる。
As a constant current source, a sufficiently large resistor may be used, and as long as it has the same characteristics, a diffused resistor,
Polycrystalline Si resistors, resistors made by ion implantation, and resistors made from MOS transistors can be used.

この回路でT1,T2として先に説明したN+ゲー
トMOS及びP+ゲートMOSを使用すれば、しきい
値電圧の差とほぼ等しい値の、N型半導体とP型
半導体のフエルミ・準位の差(Efo−Efp)を取り
出すことができる。
If the N + gate MOS and P + gate MOS described earlier are used as T 1 and T 2 in this circuit, the fermi quasi of the N-type semiconductor and the P-type semiconductor can be The difference in position (E fo −E fp ) can be extracted.

第5図および第6図は、異なるしきい値電圧を
持つFETをMOSダイオード形式に直列に接続し
て、しきい値電圧の差を取り出す回路例である。
T1はしきい値電圧Vth1、T2はしきい値電圧Vth2
を持つているとする。
FIGS. 5 and 6 are examples of circuits in which FETs having different threshold voltages are connected in series in the form of MOS diodes to extract the difference in threshold voltage.
T 1 is the threshold voltage V th1 and T 2 is the threshold voltage V th2
Suppose you have

抵抗R1がT1のインピーダンスに比較して十分
大きく、抵抗R2がT2のインピーダンスに比較し
て十分大きい条件では V1−V2≒Vth1 ……(4) V1≒Vth2 ……(5) ゆえに、 V2≒Vth1−Vth2 ……(6) となる。
Under the condition that the resistance R 1 is sufficiently large compared to the impedance of T 1 and the resistance R 2 is sufficiently large compared to the impedance of T 2 , V 1 −V 2 ≒V th1 ...(4) V 1 ≒V th2 ... …(5) Therefore, V 2 ≒V th1 −V th2 …(6).

第7図aは、容量の両端子にしきい値電圧に対
応する電圧を加え、容量に保持された電圧を差電
圧として取り出すものである。第7図bはその動
作タイミングを表わしたものである。クロツクパ
ルスφ1によりT5,T6をオンさせて容量C1にT1
T2のしきい値電圧Vth1、Vth2の差電圧をチヤージ
する。
In FIG. 7a, a voltage corresponding to the threshold voltage is applied to both terminals of the capacitor, and the voltage held in the capacitor is extracted as a differential voltage. FIG. 7b shows the operation timing. T 5 and T 6 are turned on by clock pulse φ 1 , and T 1 and T 6 are applied to capacitor C 1 .
The difference voltage between the threshold voltages V th1 and V th2 of T 2 is charged.

φ1が切れた後、クロツφ2によりT3をオンさせ
C1のノードを接地する。この時C1にはしきい
値電圧の差電圧が保持されているから、ノード
にはその電位をそのままでる。後で述べるような
電圧検出回路に使用する場合には、この時のノー
ドの電位をそのまま基準電圧として使用するこ
ともできる。が、より一般的な形で使用できるた
めには、クロツクφ2が入つている時間内にクロ
ツクφ3によつてトランス・ミツシヨンゲートT6
T7をオンさせて、容量C2にその電位をとり込み、
演算増幅器5の逆相入力(−)へ出力を全面帰還
した、いわゆるボルテージ・フオロアで受けれ
ば、その出力として、十分内部インピーダンスの
低い状態で、T1,T2のしきい値電圧の差が基準
電圧として得られる。
After φ 1 is cut, turn on T 3 using Crochet φ 2 .
Ground the C1 node. At this time, since the difference voltage between the threshold voltages is held in C1 , that potential is output to the node as is. When used in a voltage detection circuit as described later, the potential of the node at this time can be used as it is as a reference voltage. However, in order to be able to use it in a more general form, the transmission gate T 6 is input by clock φ 3 during the time when clock φ 2 is entered.
Turn on T 7 , take that potential into capacitor C 2 ,
If the output is received by a so-called voltage follower that completely feeds back the output to the negative phase input (-) of the operational amplifier 5, the difference between the threshold voltages of T 1 and T 2 will be the output with sufficiently low internal impedance. Obtained as a reference voltage.

第8図は同様に容量C2を利用した基準電圧発
生装置である。クロツクφ1によりT8をオンさせ
る。この時T9はクロツクφ2によりオフ状態であ
る。ノードの電位はノードの電位よりT1
しきい値電圧Vth1だけ下がり、ノードの電位は
ノードの電位よりT2のしきい値電圧Vth2だけ
下がり、容量Cの両端には両者の差電圧がチヤー
ジされる。次にφ1によりT8をオフし、φ2により
T9をオンさせるとノードにしきい値電圧の差
電圧が得られる。
FIG. 8 shows a reference voltage generating device that similarly utilizes capacitance C2 . Turn on T8 by clock φ1 . At this time, T9 is in an off state due to clock φ2 . The potential of the node is lower than the potential of the node by the threshold voltage V th1 of T 1 , the potential of the node is lower than the potential of the node by the threshold voltage V th2 of T 2 , and the difference voltage between the two is across the capacitor C. is charged. Then φ 1 turns off T 8, and φ 2 turns off T 8 .
When T9 is turned on, a voltage difference between the threshold voltages is obtained at the node.

第9図は、第7図の回路で使用される公知の演
算増幅器を示したものである。T1,T2は差動増
幅回路を構成している差動対であり、T5,T6
その能動負荷である。T7は、T3,T4によるバイ
アス回路と共に定電流回路を構成している。T8
T7はT7を定電流源負荷とするレベル・変動兼出
力バツフアー回路である。図ではC−MOSでの
回路構成例を示したが、シングル・チヤネル
MOSでも構成できることは言うまでもない。
FIG. 9 shows a known operational amplifier used in the circuit of FIG. T 1 and T 2 are a differential pair forming a differential amplifier circuit, and T 5 and T 6 are active loads thereof. T7 constitutes a constant current circuit together with the bias circuit formed by T3 and T4 . T8 ,
T7 is a level/variation/output buffer circuit that uses T7 as a constant current source load. The figure shows an example of a C-MOS circuit configuration, but single channel
Needless to say, it can also be configured using MOS.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成に必要なフエルミ準位の
異なつたゲート電極を持つMOSFETの断面図、
第2図a,b、第3図a,b,c,dはそれぞれ
本発明に係るMOSFETの製造方法を示す断面
図、第4図、第5図、第6図、第7図a、第8
図、第9図はそれぞれフエルミ準位の異つたゲー
ト電極を持つMOSFETを利用した基準電圧発生
回路図、第7図bは、第7図aの回路の動作タイ
ミングを表わす信号波形タイムチヤート図、をそ
れぞれ示すものである。 1……N型シリコン基体、2……酸化膜、3…
…ゲート酸化膜、4……P型層、5……N型ポリ
シリコン、6……P型ポリシリコン、7……気相
成長酸化膜。
Figure 1 is a cross-sectional view of a MOSFET having gate electrodes with different Fermi levels, which is necessary for the configuration of the present invention.
2a, b, 3a, b, c, and d are cross-sectional views showing the MOSFET manufacturing method according to the present invention, and FIGS. 4, 5, 6, and 7a and 7, respectively. 8
Figure 9 is a reference voltage generation circuit diagram using MOSFETs having gate electrodes with different Fermi levels, Figure 7b is a signal waveform time chart showing the operation timing of the circuit in Figure 7a, are shown respectively. 1... N-type silicon substrate, 2... Oxide film, 3...
...Gate oxide film, 4...P-type layer, 5...N-type polysilicon, 6...P-type polysilicon, 7...Vapor-phase growth oxide film.

Claims (1)

【特許請求の範囲】 1 (a) 半導体基板表面の第1の部分および第2
の部分を覆つてゲート絶縁膜を介してポリシリ
コン膜を形成し、前記第2の部分を覆うポリシ
リコン膜を除き、前記第1の部分を覆うポリシ
リコン膜に第1導電型の不純物をドープする工
程、 (b) 前記第1の部分および前記第2の部分におい
て第1のゲート電極および第2のゲート電極を
それぞれ形成するために前記ポリシリコン膜を
除去する工程、 (c) 前記第1および第2のゲート電極で覆われな
かつた前記第1および第2の部分、ならび、前
記第1および第2のゲート電極に対し、前記第
1導電型と反対導電型の第2導電型の不純物
を、前記第1のゲート電極における前記第1導
電型の不純物濃度より低いドープ量となるよう
に、ドープすることによつて、前記第1および
第2のゲート電極のそれぞれに関して第2導電
型のソースおよびドレイン領域を形成するとと
もに、前記第2のゲート電極を第2導電型に規
定する工程、 とから成る異なる導電型のゲート電極をもつ同一
チヤンネル型の一対の絶縁ゲート型電界効果トラ
ンジスタを形成することを特徴とする絶縁ゲート
型電界効果半導体装置の製法。
[Claims] 1 (a) A first portion and a second portion of the surface of a semiconductor substrate.
a polysilicon film is formed via a gate insulating film to cover the second part, and the polysilicon film covering the first part is doped with a first conductivity type impurity, except for the polysilicon film covering the second part. (b) removing the polysilicon film to form a first gate electrode and a second gate electrode in the first portion and the second portion, respectively; (c) removing the polysilicon film in the first portion and the second portion; and an impurity of a second conductivity type opposite to the first conductivity type to the first and second portions not covered with the second gate electrode and the first and second gate electrodes. by doping so that the doping amount is lower than the impurity concentration of the first conductivity type in the first gate electrode. forming a pair of insulated gate field effect transistors of the same channel type having gate electrodes of different conductivity types, comprising: forming source and drain regions and defining the second gate electrode as a second conductivity type; A method for manufacturing an insulated gate field effect semiconductor device characterized by:
JP11171778A 1978-03-08 1978-09-13 Reference voltage generation device Granted JPS5539605A (en)

Priority Applications (31)

Application Number Priority Date Filing Date Title
JP11171778A JPS5539605A (en) 1978-09-13 1978-09-13 Reference voltage generation device
IN118/CAL/79A IN151981B (en) 1978-09-13 1979-02-08
CH1621/79A CH657712A5 (en) 1978-03-08 1979-02-19 REFERENCE VOLTAGE GENERATOR.
DE2954543A DE2954543C2 (en) 1978-03-08 1979-02-20
IT20368/79A IT1111987B (en) 1978-03-08 1979-02-20 REFERENCE VOLTAGE GENERATOR DEVICE
NL7901335A NL7901335A (en) 1978-03-08 1979-02-20 GENERATOR FOR A REFERENCE VOLTAGE.
CA000321955A CA1149081A (en) 1978-03-08 1979-02-20 Reference voltage generator device
DE19792906527 DE2906527A1 (en) 1978-03-08 1979-02-20 REFERENCE VOLTAGE GENERATOR
FR7904226A FR2447036B1 (en) 1978-03-08 1979-02-20 REFERENCE VOLTAGE GENERATOR
GB8119559A GB2081014B (en) 1978-03-08 1979-03-06 Improvements in the manufacture of semiconductor devices
GB8119562A GB2081458B (en) 1978-03-08 1979-03-06 Voltage comparitors
GB8119561A GB2100540B (en) 1978-03-08 1979-03-06 Reference voltage generators
GB7907817A GB2016801B (en) 1978-03-08 1979-03-06 Referenc voltage generating device
GB8119560A GB2081015B (en) 1978-03-08 1979-03-06 Improvements in the manufacture of semiconductor devices
CA000395813A CA1143010A (en) 1978-03-08 1982-02-08 Reference voltage generator device
CA000395811A CA1145063A (en) 1978-03-08 1982-02-08 Reference voltage generator device
CA000395810A CA1154880A (en) 1978-03-08 1982-02-08 Reference voltage generator device
CA000395812A CA1146223A (en) 1978-03-08 1982-02-08 Battery checker
US06/484,351 US4559694A (en) 1978-09-13 1983-04-12 Method of manufacturing a reference voltage generator device
HK80/84A HK8084A (en) 1978-03-08 1984-01-24 A battery checker
SG41684A SG41684G (en) 1978-03-08 1984-06-04 Improvements in the manufacture of a semiconductor device
SG417/84A SG41784G (en) 1978-03-08 1984-06-04 Reference voltage generating device
SG41584A SG41584G (en) 1978-03-08 1984-06-04 Reference voltage generating device
MY1984375A MY8400375A (en) 1978-03-08 1984-12-31 A battery checker
CH1928/85A CH672391B5 (en) 1978-03-08 1985-02-19 REFERENCE VOLTAGE GENERATOR.
HK363/85A HK36385A (en) 1978-03-08 1985-05-09 Improvements in the manufacture of a semiconductor device
HK351/85A HK35185A (en) 1978-03-08 1985-05-09 Reference voltage generating device
HK364/85A HK36485A (en) 1978-03-08 1985-05-09 Reference voltage generating device
MY658/85A MY8500658A (en) 1978-03-08 1985-12-30 Reference voltage generating device
MY672/85A MY8500672A (en) 1978-03-08 1985-12-30 Reference voltage generating device
MY671/85A MY8500671A (en) 1978-03-08 1985-12-30 Reference voltage generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11171778A JPS5539605A (en) 1978-09-13 1978-09-13 Reference voltage generation device

Publications (2)

Publication Number Publication Date
JPS5539605A JPS5539605A (en) 1980-03-19
JPS6341223B2 true JPS6341223B2 (en) 1988-08-16

Family

ID=14568369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11171778A Granted JPS5539605A (en) 1978-03-08 1978-09-13 Reference voltage generation device

Country Status (1)

Country Link
JP (1) JPS5539605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443128U (en) * 1990-08-10 1992-04-13
JPH0714922U (en) * 1993-08-25 1995-03-14 日本針布株式会社 Hair straightening brush for animals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50777A (en) * 1973-05-02 1975-01-07
JPS511397A (en) * 1974-05-24 1976-01-08 Deepsea Ventures Inc
JPS51149780A (en) * 1975-06-16 1976-12-22 Hewlett Packard Yokogawa Standard voltage generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50777A (en) * 1973-05-02 1975-01-07
JPS511397A (en) * 1974-05-24 1976-01-08 Deepsea Ventures Inc
JPS51149780A (en) * 1975-06-16 1976-12-22 Hewlett Packard Yokogawa Standard voltage generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443128U (en) * 1990-08-10 1992-04-13
JPH0714922U (en) * 1993-08-25 1995-03-14 日本針布株式会社 Hair straightening brush for animals

Also Published As

Publication number Publication date
JPS5539605A (en) 1980-03-19

Similar Documents

Publication Publication Date Title
JPH04312107A (en) Constant voltage circuit
JPH0210678Y2 (en)
CN101673743A (en) Semiconductor device
JP3517343B2 (en) Self-correcting constant current circuit
JPH0740050B2 (en) Voltage detection circuit
JPS6153860B2 (en)
JPS6341223B2 (en)
US4942312A (en) Integrated-circuit having two NMOS depletion mode transistors for producing stable DC voltage
JPS645327B2 (en)
JPS6243546B2 (en)
JPS6319884B2 (en)
KR830001615B1 (en) Manufacturing Method of Semiconductor Device
JPS6216682Y2 (en)
JPH0226816B2 (en)
JPS63169113A (en) Resistor circuit network for semiconductor integrated circuit
JPH0341843B2 (en)
JPH0421214B2 (en)
JPS6235272B2 (en)
JPH0341844B2 (en)
JPH0243203B2 (en)
JPS58221418A (en) Device for generating reference voltage
JPH065850A (en) Semiconductor device and manufacture thereof and semiconductor integrated circuit device using the device
JPS6319885B2 (en)
JPS6214733Y2 (en)
JPS60252924A (en) Constant current circuit