JPS6340018B2 - - Google Patents

Info

Publication number
JPS6340018B2
JPS6340018B2 JP60278916A JP27891685A JPS6340018B2 JP S6340018 B2 JPS6340018 B2 JP S6340018B2 JP 60278916 A JP60278916 A JP 60278916A JP 27891685 A JP27891685 A JP 27891685A JP S6340018 B2 JPS6340018 B2 JP S6340018B2
Authority
JP
Japan
Prior art keywords
deflection
charged particle
amount
particle beam
main lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60278916A
Other languages
Japanese (ja)
Other versions
JPS61147525A (en
Inventor
Katsuhiro Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60278916A priority Critical patent/JPS61147525A/en
Publication of JPS61147525A publication Critical patent/JPS61147525A/en
Publication of JPS6340018B2 publication Critical patent/JPS6340018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Particle Accelerators (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は荷電粒子線を細く絞り高精度に偏向走
査させる荷電粒子線応用装置に係り、特に荷電粒
子線の偏向量の大きなものに好適な荷電粒子線応
用装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a charged particle beam application device that narrows a charged particle beam and performs deflection scanning with high precision. Regarding particle beam application equipment.

〔発明の背景〕[Background of the invention]

従来の荷電粒子線応用装置の偏向歪み補正は、
補正量に応じた偏向信号を偏向器に与えて行なつ
ている(例えば特開昭56−59445号参照)。この方
法では、要求位置精度を十分に満足するには限界
がある。すなわち偏向歪み量は、偏向量の3乗に
比例するため、偏向量の増大にともない、補正量
は飛躍的に大きなものとなる。したがつて、要求
位置精度に対する補正量が大きくなり、補正限界
に達し、それ以上の偏向は不可能になる。
Deflection distortion correction for conventional charged particle beam application equipment is
This is done by giving a deflection signal corresponding to the amount of correction to the deflector (for example, see Japanese Patent Laid-Open No. 56-59445). This method has a limit in fully satisfying the required positional accuracy. That is, since the amount of deflection distortion is proportional to the cube of the amount of deflection, the amount of correction increases dramatically as the amount of deflection increases. Therefore, the amount of correction for the required positional accuracy becomes large, reaching the correction limit, and further deflection becomes impossible.

〔発明の目的〕[Purpose of the invention]

本発明はこのような光学系固有の偏向歪みを、
各偏向点で行なつている焦点合わせ(以下動的焦
点合わせと言う)時の位置ずれを利用して、見か
け上の偏向歪みを充分小さくする手段を提供する
ことを目的としている。
The present invention eliminates such deflection distortion inherent in optical systems.
The object of the present invention is to provide a means for sufficiently reducing apparent deflection distortion by utilizing positional deviations during focusing (hereinafter referred to as dynamic focusing) performed at each deflection point.

〔発明の概要〕[Summary of the invention]

偏向歪みは歪み量とその方向で表わせ、それぞ
れ偏向量の3乗と2乗に比例する。一方、動的焦
点合わせ量は、偏向量の2乗に比例した量である
が、このときの位置ずれ量とその方向はそれぞれ
3乗と2乗に比例する(但し、主レンズの内部も
しくは、物点側に少なくとも1つの偏向器がある
場合に限られる)。そこで、本発明はこの位置ず
れ量を偏向歪み量と一致させ、方向を逆方向と
し、同時に焦点合わせも行なうごとく構成した。
パラメータが三つゆえ、少なくとも3つの補助レ
ンズがあれば可能となる。
Deflection distortion is expressed by the amount of distortion and its direction, and is proportional to the cube and square of the amount of deflection, respectively. On the other hand, the amount of dynamic focusing is proportional to the square of the amount of deflection, but the amount of positional deviation and its direction are proportional to the cube and square, respectively. (only if there is at least one deflector on the object side). Therefore, in the present invention, the amount of positional shift is made to match the amount of deflection distortion, the direction is set in the opposite direction, and focusing is performed at the same time.
Since there are three parameters, this is possible with at least three auxiliary lenses.

まず、本発明の原理を第1図と第2図を用いて
説明する。
First, the principle of the present invention will be explained using FIGS. 1 and 2.

物点1より出た荷電粒子線は、主レンズ5によ
り試料面3上の中心2上に結像しているものとす
る。偏向器4で偏向された荷電粒子は軌道11と
なりさらに主レンズの軸外を通過することにより
偏向作用を受け軌道12となる。このとき、一般
に焦点が合わなくなるため、補助レンズ6を用い
て焦点合わせ(動的焦点合わせと言う)を行な
い、偏向点7は点8に移動する。この様子を偏向
歪みの観点から示したのが第2図である。偏向領
域をx,y方向それぞれ4分割し、各交点の歪み
量を拡大して示したものである。主レンズ5の内
部もしくは物点1側に偏向器4がある場合、偏向
歪みは一般に第2図のような樽型歪みになる。た
とえば偏向点21は偏向歪みのために点22の位
置に偏向されている。このとき補助レンズ6の作
用により偏向点23に移動する。すなわち、光学
系固有の偏向歪み量は点21と点22間の距離a
で、動的焦点合わせ時の位置ずれ量は点22と点
23間の距離bである。したがつて、見かけ上の
偏向歪み量は点21と点23の距離となる。a,
bにはそれぞれ大きさのみならず方向x,yがあ
るため、第1図のような構成では焦点合わせの制
御をしたときに、bの大きさと方向は一意的に決
まり、制御できない。これらも制御するために
は、補助レンズ6を第3図に示すように3個用い
ればよいことは、制御パラメータ(焦点合わせ,
偏向歪みのx,y)が3個であることより容易に
分かる。この場合、軌道は、15,16,17と
なり、光学軸のまわりの回転をふくめて自由に制
御できることになる。
It is assumed that the charged particle beam emitted from the object point 1 is imaged onto the center 2 on the sample surface 3 by the main lens 5. The charged particles deflected by the deflector 4 have a trajectory 11, and further pass outside the axis of the main lens to undergo a deflection action and become a trajectory 12. At this time, the focus is generally out of focus, so focusing is performed using the auxiliary lens 6 (referred to as dynamic focusing), and the deflection point 7 moves to the point 8. FIG. 2 shows this situation from the viewpoint of deflection distortion. The deflection area is divided into four parts in each of the x and y directions, and the amount of distortion at each intersection is shown enlarged. When the deflector 4 is located inside the main lens 5 or on the object point 1 side, the deflection distortion generally becomes a barrel-shaped distortion as shown in FIG. For example, deflection point 21 is deflected to the position of point 22 due to deflection distortion. At this time, the deflection point 23 is moved by the action of the auxiliary lens 6. In other words, the amount of deflection distortion unique to the optical system is the distance a between points 21 and 22.
The amount of positional shift during dynamic focusing is the distance b between points 22 and 23. Therefore, the apparent amount of deflection distortion is the distance between points 21 and 23. a,
Since each b has not only a size but also a direction x and y, when controlling focusing in the configuration shown in FIG. 1, the size and direction of b are uniquely determined and cannot be controlled. In order to control these as well, it is sufficient to use three auxiliary lenses 6 as shown in FIG.
This can be easily seen from the fact that there are three deflection distortions (x, y). In this case, the orbits are 15, 16, and 17, which can be freely controlled including rotation around the optical axis.

以上実施例において、補助レンズは3個用いた
が、3個以上あれば同様の効果は常に期待できる
ことは言うまでもない。ただ、2個のみでも配
置、大きさ等極めて適度なものであれば同様の効
果が得られるが、その条件は非常に厳しい。実用
上容易に行なえることを考慮すれば少なくとも3
個の補助レンズを設けることが有効である。
Although three auxiliary lenses were used in the above embodiments, it goes without saying that the same effect can always be expected with three or more auxiliary lenses. However, the same effect can be obtained with only two if the arrangement and size are extremely appropriate, but the conditions are very strict. Considering that it can be done easily in practice, at least 3
It is effective to provide several auxiliary lenses.

前記実施例では、補助レンズ61,62,63
は主レンズ5の内部にすべて配置したが、動的焦
点合わせの性質から、少なくとも1個の補助レン
ズが、主レンズ5の内部かもしくはそのごく近傍
にあり、主レンズと磁場の方向が逆であればよ
く、他の補助レンズは、主レンズの内部にある必
要は特にない。
In the embodiment, the auxiliary lenses 61, 62, 63
are all placed inside the main lens 5, but due to the nature of dynamic focusing, at least one auxiliary lens is located inside the main lens 5 or very close to it, and the direction of the magnetic field is opposite to that of the main lens. Other auxiliary lenses do not need to be inside the main lens.

本発明によれば、動的焦点補正用の補正レンズ
により、見かけの偏向歪みを極めて小さくでき、
したがつて、偏向歪みの補正機能が不要になつた
り、必要な場合でもその補正残りを極めて小さく
できる効果がある。又、焦点合せと同時に荷電粒
子線の位置ずれをなくすようにすることも可能で
ある。
According to the present invention, apparent deflection distortion can be extremely reduced by using a correction lens for dynamic focus correction.
Therefore, there is an effect that the correction function of deflection distortion is not necessary, or even if it is necessary, the remaining amount of correction can be made extremely small. It is also possible to eliminate positional deviation of the charged particle beam at the same time as focusing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、動的焦点合わせ前後の荷電粒子線の
軌道を示した断面図、第2図は、第1図構成の光
学系固有の偏向歪みと、動的焦点合わせ時の偏向
歪みを示した説明、第3図は、本発明の一実施例
の光学系とそのときの荷電粒子軌道を示した断面
図である。 1……物点、3……試料面、4……偏向器、5
……レンズ、61〜63……補正レンズ。
Figure 1 is a cross-sectional view showing the trajectory of the charged particle beam before and after dynamic focusing, and Figure 2 shows the deflection distortion inherent in the optical system configured in Figure 1 and the deflection distortion during dynamic focusing. FIG. 3 is a sectional view showing an optical system according to an embodiment of the present invention and charged particle trajectories at that time. 1...Object point, 3...Sample surface, 4...Deflector, 5
... Lens, 61-63 ... Correction lens.

Claims (1)

【特許請求の範囲】[Claims] 1 荷電粒子源より発生した荷電粒子線を細く絞
るための主レンズと、該主レンズの内部もしくは
物点側に配置され上記荷電粒子線を偏向し試料上
を走査する少なくとも1つの偏向器とをそなえた
装置において、試料上の各偏向点で上記荷電粒子
線の焦点を再調整するための補助レンズを少なく
とも3個備え、かつ上記補助レンズのうち少なく
とも1個は、主レンズの内部かもしくはその極く
近傍にあることを特徴とする荷電粒子線応用装
置。
1. A main lens for narrowing a charged particle beam generated from a charged particle source, and at least one deflector disposed inside the main lens or on the object point side for deflecting the charged particle beam and scanning it over a sample. The apparatus includes at least three auxiliary lenses for readjusting the focus of the charged particle beam at each deflection point on the sample, and at least one of the auxiliary lenses is located inside the main lens or inside the main lens. A charged particle beam application device that is characterized by its close proximity.
JP60278916A 1985-12-13 1985-12-13 Charged particle beam applying device Granted JPS61147525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60278916A JPS61147525A (en) 1985-12-13 1985-12-13 Charged particle beam applying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60278916A JPS61147525A (en) 1985-12-13 1985-12-13 Charged particle beam applying device

Publications (2)

Publication Number Publication Date
JPS61147525A JPS61147525A (en) 1986-07-05
JPS6340018B2 true JPS6340018B2 (en) 1988-08-09

Family

ID=17603874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60278916A Granted JPS61147525A (en) 1985-12-13 1985-12-13 Charged particle beam applying device

Country Status (1)

Country Link
JP (1) JPS61147525A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277573A (en) * 1975-12-24 1977-06-30 Hitachi Ltd Magnetic field generating device
JPS5693253A (en) * 1979-12-27 1981-07-28 Fujitsu Ltd Electron beam deflecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277573A (en) * 1975-12-24 1977-06-30 Hitachi Ltd Magnetic field generating device
JPS5693253A (en) * 1979-12-27 1981-07-28 Fujitsu Ltd Electron beam deflecting device

Also Published As

Publication number Publication date
JPS61147525A (en) 1986-07-05

Similar Documents

Publication Publication Date Title
US4914304A (en) Charged-beam exposure system
US5422490A (en) Focused ion beam implantation apparatus
KR20010007211A (en) Apparatus and method for image-forming charged particle beams and charged particle beam exposure apparatus
US5444257A (en) Electron-beam exposure system for reduced distortion of electron beam spot
US5285074A (en) Dynamic compensation of non-linear electron beam landing angle in variable axis lenses
JPS55121259A (en) Elelctron microscope
US4218621A (en) Electron beam exposure apparatus
US5153441A (en) Electron-beam exposure apparatus
JPH0732108B2 (en) Electron beam exposure system
JPS5727551A (en) Electron microscope
JPS6340018B2 (en)
US4097745A (en) High resolution matrix lens electron optical system
US4475044A (en) Apparatus for focus-deflecting a charged particle beam
JPH0234139B2 (en)
US4221992A (en) Scanning area rotation device for an image pickup tube
JPH0414490B2 (en)
JPH0234144B2 (en)
JPH0234426B2 (en)
JPS6338827B2 (en)
JPS5894251U (en) Charged particle beam application equipment
JPH02165549A (en) Charged particle beam blanking device
SU1072139A1 (en) Focusing-deflecting system
JPS62273720A (en) Charged particle beam lithography equipment
JPS63141248A (en) Electron beam exposing device
JPS5841572U (en) Focusing and deflecting device for charged particle beams