JPS61147525A - Charged particle beam applying device - Google Patents

Charged particle beam applying device

Info

Publication number
JPS61147525A
JPS61147525A JP60278916A JP27891685A JPS61147525A JP S61147525 A JPS61147525 A JP S61147525A JP 60278916 A JP60278916 A JP 60278916A JP 27891685 A JP27891685 A JP 27891685A JP S61147525 A JPS61147525 A JP S61147525A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
deflection
main lens
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60278916A
Other languages
Japanese (ja)
Other versions
JPS6340018B2 (en
Inventor
Katsuhiro Kuroda
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60278916A priority Critical patent/JPS61147525A/en
Publication of JPS61147525A publication Critical patent/JPS61147525A/en
Publication of JPS6340018B2 publication Critical patent/JPS6340018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Particle Accelerators (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To sufficiently reduce an apparent deflection distortion by providing three or more auxiliary lenses for reregulating the focus of charged particle beam at every deflecting point. CONSTITUTION:Charged particle beam emitted from an article point is focused through a main lens 5 on the center 2 of a sample surface 3. Charged particles deflected by a deflector 4 become an orbit 11, and further pass the out of the axis of a main lens to be deflected to become an orbit 12. Auxiliary lenses 61, 62, 63 are provided, focused, and corrected for the distortions of x- and y-directions. The orbits become 15, 16, 17 and can be freely controlled including the rotation around the optical axis.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は荷電粒子線を細く絞り高精度に偏向走査させる
荷電粒子線応用装置に係り、特に荷電粒子線の偏向量の
大きなものに好適な荷電粒子線応用装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a charged particle beam application device that narrows a charged particle beam and performs deflection scanning with high precision. Regarding particle beam application equipment.

〔発明の背景〕[Background of the invention]

従来の荷電粒子線応用装置の偏向歪み補正は。 Deflection distortion correction for conventional charged particle beam application equipment.

補正量に応じた偏向信号を偏向器に与えて行なっている
(例えば特開昭56−59445号参照)。
This is accomplished by applying a deflection signal corresponding to the amount of correction to the deflector (for example, see Japanese Patent Laid-Open No. 56-59445).

この方法では、要求位置精度を十分に満足するには限界
がある。すなわち、偏向歪み量は、偏向量の3乗に比例
するため、偏向量の増大にともない。
This method has a limit in fully satisfying the required positional accuracy. That is, since the amount of deflection distortion is proportional to the cube of the amount of deflection, as the amount of deflection increases.

補正量は飛躍的に大きなものとなる。したがって、要求
位置精度に対する補正量が大きくなり、補正限界に達し
、それ以上の偏向は不可能になる。
The amount of correction becomes dramatically large. Therefore, the amount of correction for the required position accuracy becomes large, reaching the correction limit, and further deflection becomes impossible.

〔発明の目的〕[Purpose of the invention]

本発明はこのような光学系固有の偏向歪みを、各偏向点
で行なっている焦点合わせ(以下動的焦点合わせと言う
)時の位置ずれを利用して、見かけ上の偏向歪みを充分
小さくする手段を提供することを目的としている。
The present invention sufficiently reduces the apparent deflection distortion inherent in such an optical system by utilizing positional deviations during focusing (hereinafter referred to as dynamic focusing) performed at each deflection point. The purpose is to provide a means.

〔発明の概要〕[Summary of the invention]

偏向歪みは歪み量とその方向で表わせ、それぞれ偏向量
の3乗と2乗に比例する。一方、動的焦点合わせ量は、
偏向量の2乗に比例した量であるが、このときの位置ず
れ量とその方向はそれぞれ3乗と2乗に比例する(但し
、主レンズの内部もしくは、物点側に少なくとも!っの
偏向器がある場合に限られる)。そこで1本発明はこの
位置ずれ量を偏向歪み量と一致させ、方向を逆方向とし
、同時に焦点合わせも行なうごとく構成した。パラメー
タが三つゆえ、少なくとも3つの補助レンズがあれば可
能となる。
Deflection distortion is expressed by the amount of distortion and its direction, and is proportional to the cube and square of the amount of deflection, respectively. On the other hand, the amount of dynamic focusing is
The amount of positional deviation is proportional to the square of the amount of deflection, but the amount of positional deviation and its direction are proportional to the cube and square, respectively (however, if there is at least ! deflection inside the main lens or on the object point side) (Limited to cases where equipment is available) Therefore, one aspect of the present invention is to make the amount of positional shift match the amount of deflection distortion, reverse the direction, and perform focusing at the same time. Since there are three parameters, this is possible with at least three auxiliary lenses.

まず、本発明の原理を第1図と第2図を用いて説明する
First, the principle of the present invention will be explained using FIGS. 1 and 2.

物点1より出た荷電粒子線は、主レンズ5により試料面
3上の中心2上に結像しているものとする。偏向器4で
偏向された荷電粒子は軌道11となりさらに主レンズの
軸外を通過することにより偏向作用を受は軌道12とな
る。このとき、一般に焦点が合わなくなるため、補助レ
ンズ6を用いて焦点合わせ(動的焦点合わせと言う)を
行ない、偏向点7は点8に移動する。この様子を偏向歪
みの観点から示したのが第2図である。偏向領域をx、
y方向それぞれ4分割し、各交点の歪み量を拡大して示
したものである。主レンズ5の内部もしくは物点1側に
偏向器4がある場合、偏向歪みは一般に第2図のような
樽型歪みになる。たとえば偏向点21は偏向歪みのため
に点22の位置に偏向されている。このとき補助レンズ
6の作用により偏向点23に移動する。すなわち、光学
系固有の偏向歪み量は点21と点22間の距離aで、動
的焦点合わせ時の位置ずれ量は点22と点23間の距離
すである。したがって、見かけ上の偏向歪み量は点21
と点23の距離となる。a、bにはそれぞれ大きさのみ
ならず方向(xt y)があるため、第1図のような構
成では焦点合わせの制御をしたときに、bの大きさと方
向は一意的に決まり、制御できない。これらも制御する
ためには、補助レンズ6を第3図に示すように3個用い
ればよいことは、制御パラメータ(焦点合わせ、偏向歪
みのxyy)が3個であることより容易に分かる。この
場合、軌道は、15,16.17となり、光学軸のまわ
りの回転をふくめで自由に制御できることになる。
It is assumed that the charged particle beam emitted from the object point 1 is imaged onto the center 2 on the sample surface 3 by the main lens 5. The charged particles deflected by the deflector 4 become orbits 11, and further pass outside the axis of the main lens to receive the deflection action and become orbits 12. At this time, the focus is generally out of focus, so focusing is performed using the auxiliary lens 6 (referred to as dynamic focusing), and the deflection point 7 moves to the point 8. FIG. 2 shows this situation from the viewpoint of deflection distortion. The deflection area is x,
It is divided into four parts in the y direction, and the amount of distortion at each intersection is shown enlarged. When the deflector 4 is located inside the main lens 5 or on the object point 1 side, the deflection distortion generally becomes a barrel-shaped distortion as shown in FIG. For example, deflection point 21 is deflected to the position of point 22 due to deflection distortion. At this time, the deflection point 23 is moved by the action of the auxiliary lens 6. That is, the amount of deflection distortion unique to the optical system is the distance a between points 21 and 22, and the amount of positional shift during dynamic focusing is the distance between points 22 and 23. Therefore, the apparent amount of deflection distortion is at point 21
is the distance of point 23. Since a and b each have a direction (xt y) as well as a size, in the configuration shown in Figure 1, when controlling focusing, the size and direction of b are uniquely determined and cannot be controlled. . In order to control these as well, it is easy to understand that three auxiliary lenses 6 may be used as shown in FIG. 3 from the fact that there are three control parameters (focusing, deflection distortion xyy). In this case, the orbits are 15, 16, and 17, and can be freely controlled including rotation around the optical axis.

以上実施例において、補助レンズは3個用いたが、3個
以上あれば同様の効果は常に期待できることは言うまで
もない。ただ、2個のみでも配置。
Although three auxiliary lenses were used in the above embodiments, it goes without saying that the same effect can always be expected with three or more auxiliary lenses. However, even if only two are placed.

大きさ等極めて適度なものであれば同様の効果が得られ
るが、その条件は非常に厳しい。実用上容易に行なえる
ことを考慮すれば少なくとも3個の補助レンズを設ける
ことが有効である。
A similar effect can be obtained if the size is extremely moderate, but the conditions are very strict. Considering that it can be done easily in practice, it is effective to provide at least three auxiliary lenses.

前記実施例では、補助レンズ61,62.63は主レン
ズ5の内部にすべて配置したが、動的焦点合わせの性質
から、少なくとも1個の補助レンズが、主レンズ5の内
部かもしくはそのごく近傍にあり、主レンズと磁場の方
向が逆であればよく、他の補助レンズは、主レンズの内
部にある必要は特にない。
In the embodiment described above, the auxiliary lenses 61, 62, and 63 were all placed inside the main lens 5, but due to the nature of dynamic focusing, at least one auxiliary lens is placed inside the main lens 5 or very close to it. The other auxiliary lenses need not be located inside the main lens, as long as the direction of the magnetic field is opposite to that of the main lens.

本発明によれば、動的焦点補正用の補正レンズにより、
見かけ上の偏向歪みを極めて小さくでき。
According to the present invention, with the correction lens for dynamic focus correction,
Apparent deflection distortion can be made extremely small.

したがって、偏向歪みの補正機能が不要になったり、必
要な場合でもその補正残りを極めて小さくできる効果が
ある。又、焦点合せと同時に荷電粒子線の位置ずれをな
くすようにすることも可能である。
Therefore, there is an effect that the correction function for deflection distortion is not necessary, or even if it is necessary, the amount of correction remaining is extremely small. It is also possible to eliminate positional deviation of the charged particle beam at the same time as focusing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、動的焦点合わせ前後の荷電粒子線の軌道を示
した断面図、第2図は、第1図構成の光学系固有の偏向
歪みと、動的焦点合わせ時の偏向歪みを示した説明、第
3図は1本発明の一実施例の光学系とそのときの荷電粒
子軌道を示した断面図である。 l・・・物点、3・・・試料面、4・・・偏向器、5・
・・レンズ、61〜63・・・補正レンズ。 代理人 弁理士 小 川 勝 男 箔1図 冨 Z 図 え
Figure 1 is a cross-sectional view showing the trajectory of the charged particle beam before and after dynamic focusing, and Figure 2 shows the deflection distortion inherent in the optical system configured in Figure 1 and the deflection distortion during dynamic focusing. FIG. 3 is a sectional view showing an optical system according to an embodiment of the present invention and charged particle trajectories at that time. l...object point, 3...sample surface, 4...deflector, 5...
...Lens, 61-63...Correction lens. Agent: Patent Attorney Masaru Ogawa

Claims (1)

【特許請求の範囲】 1、荷電粒子源より発生した荷電粒子線を細く絞るため
の主レンズと、上記荷電粒子線を2次元に偏向走査する
偏向器とをそなえた装置において、各偏向点で上記荷電
粒子線の焦点を再調整するための補助レンズを少なくと
も3個備えたことを特徴とする荷電粒子線応用装置。 2、補助レンズのうち少なくとも1個は、主レンズの内
部に配置されたことを特徴とする特許請求の範囲第1項
記載の荷電粒子線応用装置。
[Scope of Claims] 1. In an apparatus equipped with a main lens for focusing a charged particle beam generated from a charged particle source, and a deflector for deflecting and scanning the charged particle beam in two dimensions, at each deflection point. A charged particle beam application device comprising at least three auxiliary lenses for readjusting the focus of the charged particle beam. 2. The charged particle beam application device according to claim 1, wherein at least one of the auxiliary lenses is disposed inside the main lens.
JP60278916A 1985-12-13 1985-12-13 Charged particle beam applying device Granted JPS61147525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60278916A JPS61147525A (en) 1985-12-13 1985-12-13 Charged particle beam applying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60278916A JPS61147525A (en) 1985-12-13 1985-12-13 Charged particle beam applying device

Publications (2)

Publication Number Publication Date
JPS61147525A true JPS61147525A (en) 1986-07-05
JPS6340018B2 JPS6340018B2 (en) 1988-08-09

Family

ID=17603874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60278916A Granted JPS61147525A (en) 1985-12-13 1985-12-13 Charged particle beam applying device

Country Status (1)

Country Link
JP (1) JPS61147525A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277573A (en) * 1975-12-24 1977-06-30 Hitachi Ltd Magnetic field generating device
JPS5693253A (en) * 1979-12-27 1981-07-28 Fujitsu Ltd Electron beam deflecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277573A (en) * 1975-12-24 1977-06-30 Hitachi Ltd Magnetic field generating device
JPS5693253A (en) * 1979-12-27 1981-07-28 Fujitsu Ltd Electron beam deflecting device

Also Published As

Publication number Publication date
JPS6340018B2 (en) 1988-08-09

Similar Documents

Publication Publication Date Title
US4914304A (en) Charged-beam exposure system
US5422490A (en) Focused ion beam implantation apparatus
KR20010007211A (en) Apparatus and method for image-forming charged particle beams and charged particle beam exposure apparatus
JPS61101944A (en) Charged particle beam focusing system
JPS55121259A (en) Elelctron microscope
US5153441A (en) Electron-beam exposure apparatus
JPS6362321A (en) Charged particle exposing apparatus
JPH0732108B2 (en) Electron beam exposure system
US4218621A (en) Electron beam exposure apparatus
JPS5727551A (en) Electron microscope
JPS61147525A (en) Charged particle beam applying device
US4097745A (en) High resolution matrix lens electron optical system
US4475044A (en) Apparatus for focus-deflecting a charged particle beam
US4221992A (en) Scanning area rotation device for an image pickup tube
JPH0414490B2 (en)
JPH0234144B2 (en)
JPH0234426B2 (en)
JPH0525161Y2 (en)
JPH06290726A (en) Charged particle beam converging apparatus
JPS5894251U (en) Charged particle beam application equipment
JPH0234751Y2 (en)
JPH0535556Y2 (en)
JPS57210548A (en) Method for scanning charged corpuscular beam
JPH02165549A (en) Charged particle beam blanking device
JPS60225344A (en) Electron beam focusing/deflecting system