JPS61101944A - Charged particle beam focusing system - Google Patents

Charged particle beam focusing system

Info

Publication number
JPS61101944A
JPS61101944A JP22289384A JP22289384A JPS61101944A JP S61101944 A JPS61101944 A JP S61101944A JP 22289384 A JP22289384 A JP 22289384A JP 22289384 A JP22289384 A JP 22289384A JP S61101944 A JPS61101944 A JP S61101944A
Authority
JP
Japan
Prior art keywords
lens
magnetic field
focus correction
focusing
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22289384A
Other languages
Japanese (ja)
Other versions
JPH0447944B2 (en
Inventor
Hirobumi Morita
博文 森田
Teruo Hosokawa
細川 照夫
Akira Shimizu
彰 清水
Akihira Fujinami
藤波 明平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22289384A priority Critical patent/JPS61101944A/en
Publication of JPS61101944A publication Critical patent/JPS61101944A/en
Publication of JPH0447944B2 publication Critical patent/JPH0447944B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/145Combinations of electrostatic and magnetic lenses

Abstract

PURPOSE:To execute a focus compensation in a high speed with a low compensating voltage, by arranging a magnetic field type lens and a static type focus compensating lens so as to overlap partially or thoroughly the distribution area of the focusing magnetic field formed by the magnetic field lens and the potential distribution area formed by the static type focus compensating lens. CONSTITUTION:A static type focus compensating lens 5 is arranged in a mag netic field type object lens 3. The focus compensating lens 5 is an Einzel type static lens, and the compensating voltage is applied to the center electrode while the two outside electrodes are kept at the ground potential. In this case, the distribution area of the magnetic field 11 of the object lens 3 and the distri bution area of the potential 12 of the focus compensating lens 5 overlap on an area 13. The energy of the beam passing through the focusing magnetic field in the area 13 varies with the applied voltage to the focus compensating lens 5, while the focusing magnetic field is very strong. Therefore, the whole focusing performance by all the focusing magnetic field 11 varies remarkably even with a minor beam energy variation. As a result, only a low voltage is required for focus compensation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、磁界型レンズと静電型焦点補正レンズを有す
る荷電粒子ビーム用集束装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a focusing device for a charged particle beam having a magnetic field type lens and an electrostatic focus correction lens.

〔発明の背景〕[Background of the invention]

荷電粒子ビーム(以下ビームという)の集束装置は、ブ
ラウン管、テレビジョン撮像管、走査量子顕微鏡、f1
1子ビーム露光装置、電子ビーム加工機、イオンビーム
露光装置などにおいて、ビームを偏向させる偏向器と組
合わせ、集束偏向装置という形態で広く利用されている
1例えば、超LSI技術の発展に伴って、高速で、しか
も高精度に微細バタンを描画する電子ビーム露光装置の
開発が強く要望されているが、このような露光装置の実
現には、高性能な集束偏向装置を開発することが必要不
可欠である。
Focusing devices for charged particle beams (hereinafter referred to as beams) include cathode ray tubes, television image pickup tubes, scanning quantum microscopes, f1
In single-beam exposure equipment, electron beam processing machines, ion beam exposure equipment, etc., it is widely used in the form of a focusing/deflecting device in combination with a beam deflector.1For example, with the development of VLSI technology, There is a strong demand for the development of an electron beam exposure system that draws fine patterns at high speed and with high precision.To realize such an exposure system, it is essential to develop a high-performance focusing and deflection system. It is.

従来から集束偏向装置に対しては、ビームの偏向に伴う
収差(以下偏向収差という)が小さいことが要求されて
いる。偏向収差には、コマ収差。
BACKGROUND OF THE INVENTION Conventionally, focusing and deflecting devices have been required to have small aberrations associated with beam deflection (hereinafter referred to as deflection aberrations). Deflection aberration includes coma aberration.

非点収差、像面彎曲収差、歪曲収差1色収差等があるが
、通常゛の集束偏向装置においては像面彎曲収差が偏向
収差の大部分を占める場合が多い、像面彎曲収差は偏向
に伴う結像面のずれであるから、偏向に伴って焦点補正
レンズの焦点距離を変えて結像面を試料面上に保つこと
によって(いわゆるDynamic Focusing
)除去できることが知られている。一方、LSIプロセ
スにおいては、シリコンなどのウェハが変形して反る現
象がある。このように反ったウェハを露光する際には、
反りによる試料面の高さの変動で生じる焦点ボケを除去
するための焦点補正が不可欠である。このように偏向収
差の低減と試料面高さの変動に対する補正の両面から、
上記焦点補正レンズが果たす役割は極めて大きい。
There are astigmatism, curvature of field, and monochromatic aberration of distortion, but in normal focusing/deflection devices, curvature of field often accounts for the majority of the deflection aberration.Curvature of field is associated with deflection. Since this is a deviation of the imaging plane, the focal length of the focus correction lens is changed according to the deflection to keep the imaging plane above the sample surface (so-called Dynamic Focusing).
) is known to be able to be removed. On the other hand, in the LSI process, there is a phenomenon in which a wafer made of silicon or the like deforms and warps. When exposing a wafer that is warped in this way,
Focus correction is essential to eliminate defocus caused by variations in the height of the sample surface due to warping. In this way, from both the reduction of deflection aberration and the correction of fluctuations in sample surface height,
The role played by the focus correction lens is extremely important.

高速で、しかも高精度に微細バタンを描画するためには
、焦点補正レンズに対する応答が高速であることが必要
である。高速な応答を実現するに、は、コイルを用いる
磁界型よりも電極板を用いる静電型のレンズの方が原理
的に適している。しかし補正に要する電圧が非常に高い
場合には、W1気回路技術上、高速な電圧印加が不可能
である。シまたがって焦点補正レンズの動作電圧は低く
なければならず、上記事項をまとめると、低い電圧で動
作する静電型の焦点補正レンズが要求されているという
ことになる。
In order to draw fine patterns at high speed and with high precision, it is necessary that the response to the focus correction lens be fast. To achieve high-speed response, an electrostatic type lens using an electrode plate is theoretically more suitable than a magnetic field type lens using a coil. However, if the voltage required for correction is very high, high-speed voltage application is impossible due to W1 circuit technology. The operating voltage of the focus correction lens must be low across the entire range, and to summarize the above points, an electrostatic focus correction lens that operates at a low voltage is required.

例えばJ、 L、 Mauarらによる”Electr
on 0pticsof an Electron−B
eam Lithographic System”。
For example, “Electr
on 0ptics of an Electron-B
eam Lithographic System”.

I[IM J、 RES、 DEVELOP、、 pp
514−521. Nov、 1977に。
I [IM J, RES, DEVELOP,, pp
514-521. Nov. 1977.

焦点補正レンズを備えた電子ビーム露光装置用集束偏向
装置が開示されている。この集束偏向装置では磁界型の
焦点補正レンズ(J、 l、 MauerらはDyna
mic focus coilと表現している)を用い
ているので応答速度が遅い。
A focusing/deflecting device for an electron beam exposure apparatus that includes a focus correction lens is disclosed. This focusing/deflecting device uses a magnetic field type focus correction lens (Dyna et al.
(expressed as a mic focus coil), the response speed is slow.

応答速度を速くするために静電型レンズを焦点補正に使
うことは、従来技術の単純な延長として容易に考えつく
ことができる。しかし集束装置の中に静電型レンズを単
純に配置しても、焦点補正に要する電圧が極めて高くな
るために、実際上高速な応答速度を実現することはでき
ない、そのため実用的な電子ビーム露光装置においては
、今までに静電型焦点補正レンズが用いられなかった。
Using an electrostatic lens for focus correction to increase response speed can be easily conceived as a simple extension of the prior art. However, even if an electrostatic lens is simply placed in a focusing device, the voltage required for focus correction becomes extremely high, making it practically impossible to achieve a high response speed. Until now, electrostatic focusing lenses have not been used in the device.

第7図は従来技術の延長として容易に考えられる集束装
置の一例を示す図である。第7図において物点1には荷
電粒子ビームのクロスオーバ像や成形機が作られ、像点
2に露光装置ではウェハやマスク等の試料が置かれる。
FIG. 7 is a diagram showing an example of a focusing device that can be easily considered as an extension of the prior art. In FIG. 7, at object point 1, a crossover image of a charged particle beam and a molding machine are created, and at image point 2, a sample such as a wafer or mask is placed in an exposure device.

磁界型対物レンズ3の像点2側に静電型偏向器4を設け
、上記磁界型対物レンズ3の中に静電型焦点補正レンズ
5を配している。上記焦点補正レンズとしてアインツェ
ル型静電レンズが用いられ、対物レンズ3の物点1の側
に離れて配置されている。上記静電型焦点補正レンズ5
を構成する3枚の電極のうち、中央の電極に焦点補正の
ための電圧を印加し、外側の2枚の電極はアース電位(
はとんどの場合は像点2の電位をアース電位にとる)に
保つ。第8図も同様に従来技術の延長の集束装置例を示
す図で、アインツェル型静電焦点補正レンズ5が対物レ
ンズ3の像点2の側に離れて配置されている。上記焦点
補正レンズ5への電圧印加法は第7図に示した前例と同
様である。近軸電子光学理論に基づく計算機シミュレー
ションで、上記第7図および第8図に示す従来技術の延
長例に対する焦点補正に必要な電圧を計算した0本計算
では、荷電粒子ビームとして電子ビームを考え、その加
速電圧を30kVとし、200−の試料高さの変動を補
正するものと仮定した。その結果、ともに220ボルト
の印加電圧が必要なことが判った。このような高電圧で
は、電気回路技術上高速応答特性を実現することは困難
である。
An electrostatic deflector 4 is provided on the image point 2 side of the magnetic field objective lens 3, and an electrostatic focus correction lens 5 is disposed within the magnetic field objective lens 3. An Einzel-type electrostatic lens is used as the focus correction lens, and is placed away from the object point 1 of the objective lens 3. The above electrostatic focus correction lens 5
Of the three electrodes that make up the center electrode, a voltage for focus correction is applied to the center electrode, and the two outer electrodes are connected to the ground potential (
In most cases, the potential of image point 2 is kept at ground potential). Similarly, FIG. 8 is a diagram showing an example of a focusing device as an extension of the prior art, in which an Einzel type electrostatic focus correction lens 5 is placed apart from the image point 2 of the objective lens 3. The method of applying voltage to the focus correction lens 5 is the same as the example shown in FIG. A computer simulation based on the paraxial electron optics theory calculates the voltage required for focus correction for the extension of the conventional technology shown in FIGS. 7 and 8. In the calculation, an electron beam is considered as a charged particle beam. It was assumed that the accelerating voltage was 30 kV and that a variation in sample height of 200- was corrected. As a result, it was found that an applied voltage of 220 volts was required for both. At such high voltages, it is difficult to achieve high-speed response characteristics in terms of electrical circuit technology.

上記のように従来装置の構成または従来技術の単純な延
長による装置植成においては、焦点補正を高速に行うこ
と赤できなかった。
As described above, in the configuration of the conventional device or in the device implanted by a simple extension of the conventional technique, focus correction cannot be performed at high speed.

〔発明の目的〕[Purpose of the invention]

本発明は低い補正電圧によって高速に焦点補正動作が実
現できる荷電粒子ビーム用集束装置を得ることを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to obtain a focused device for a charged particle beam that can realize a focus correction operation at high speed with a low correction voltage.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、本発明による荷電粒子ビ
ーム用集束装置は、磁界型レンズと静電型焦点補正レン
ズとを有する荷電粒子ビーム用集束装置において、上記
磁界レンズが作る集束磁界の分布領域と上記静檀型焦点
補正レンズが作る電位の分布領域の一部または全部が重
なり合うように、上記磁界型レンズと上記静電型焦点補
正レンズとを配置したものである。
In order to achieve the above object, a charged particle beam focusing device according to the present invention includes a charged particle beam focusing device having a magnetic field type lens and an electrostatic focus correction lens, in which a focused magnetic field generated by the magnetic field lens is distributed. The magnetic field type lens and the electrostatic type focus correction lens are arranged such that the area and the potential distribution area created by the static type focus correction lens partially or entirely overlap.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による荷電粒子ビーム用集束装置の第1
実施例の断面図、第2図は上記実施例の゛対物レンズ磁
界分布と補正レンズ電位分布との説明図、第3図は本発
明の第2実施例における集束装置の半断面図と対物レン
ズ磁界分布および補正レンズ電位分布との関連を示す説
明図、第4図は本発明の第3実施例における集束装置の
半断面図と対物レンズ磁界分布および補正レンズ電位分
布との関連を示す説明図、第5図は本発明の第4実施例
における集束装置の半断面図と対物レンズ磁界分布およ
び補正レンズ電位分布との関連を示す説明図、第6図は
本発明の第5実施例における集束装置の半断面図と対物
レンズ磁界分布および補正レンズ電位分布との関連を示
す説明図である。第1図において、物点1に荷電粒子ビ
ームのクロスオーバ像や成形像が作られ、像点2に露光
装置ではウェハやマスク等の試料が置かれる。磁界型対
物レンズ3の中に静電型焦点補正レンズ5が配置され、
静電型偏向器4が磁界型対物レンズ3の像点2側に設け
である。上記焦点補正レンズ5はアインツェル型静電レ
ンズで、中央電極に補正のための電圧を印加し、外側の
2枚の電極はアース電位に保つ、なお本実施例では静電
型の偏向器を用いているが、磁界型の偏向器を用いても
よい、また静電型焦点補正レンズとしてアインツエル型
のものを用いているが、軸まわりに回転対称な電位分布
をなすものであれば、電圧印加方法や電極構成が違う形
式の静電レンズを用いてもよい9本実施例において30
kVの電子ビームの結像位置を20017111補正す
るのに必要な印加電圧を計算したら50ボルトであった
0本実施例は前記第7図および第8図に示した従来技術
の延長例に比較して、物点1と像点2の位置、対物レン
ズ3の形状と位置、偏向器4の形状と位置、焦点補正レ
ンズ5の形状と電圧印加方法は同じであり、異なってい
るのは上記焦点補正レンズ5の位置だけであるが、上記
焦点補正レンズ5を対物レンズ3の中に配置したことに
より、補正に必要な電圧が220ボルトから50ボルト
へと、4分の1以下に低減されている。第2図は上記実
施例の説明図で、対物レンズ3が作る軸上集束磁界分布
11と焦点補正レンズ5が作る軸上電位分布12の位置
関係を示している0図に示す13は、磁界分布11と電
位分布12の重なり合っている領域である。第2図に示
すように、本実施例では対物レンズ3の磁界11の分布
領域と焦点補正レンズ5の電位12の分布領域とが、上
記13で示す領域で重なり合っている。このように重な
り合う゛ ように配置することによって、焦点補正に要
する電圧が大幅に低減される原理をつぎに詳記する。
FIG. 1 shows a first diagram of a focusing device for a charged particle beam according to the present invention.
2 is an explanatory diagram of the objective lens magnetic field distribution and correction lens potential distribution in the above embodiment, and FIG. 3 is a half sectional view of the focusing device and the objective lens in the second embodiment of the present invention. FIG. 4 is an explanatory diagram showing the relationship between the magnetic field distribution and the correction lens potential distribution. FIG. , FIG. 5 is an explanatory diagram showing the relationship between the half-sectional view of the focusing device in the fourth embodiment of the present invention, the objective lens magnetic field distribution, and the correction lens potential distribution, and FIG. 6 is the focusing device in the fifth embodiment of the present invention. FIG. 3 is an explanatory diagram showing the relationship between a half-sectional view of the device, an objective lens magnetic field distribution, and a correction lens potential distribution. In FIG. 1, a crossover image or a formed image of a charged particle beam is created at an object point 1, and a sample such as a wafer or mask is placed at an image point 2 in an exposure device. An electrostatic focus correction lens 5 is disposed within the magnetic field objective lens 3,
An electrostatic deflector 4 is provided on the image point 2 side of the magnetic field objective lens 3. The focus correction lens 5 is an Einzel-type electrostatic lens, which applies a voltage for correction to the center electrode, and keeps the two outer electrodes at ground potential. In this embodiment, an electrostatic deflector is used. However, a magnetic field type deflector may be used, and an Einzel type is used as an electrostatic focus correction lens, but as long as it has a rotationally symmetrical potential distribution around the axis, it is possible to apply a voltage. In this example, 30 electrostatic lenses with different methods and electrode configurations may be used.
The applied voltage required to correct the imaging position of the kV electron beam was calculated to be 50 volts. This embodiment is compared with the extension of the prior art shown in FIGS. 7 and 8. The positions of the object point 1 and the image point 2, the shape and position of the objective lens 3, the shape and position of the deflector 4, the shape and voltage application method of the focus correction lens 5 are the same, and the difference is in the above-mentioned focal point. As for the position of the correction lens 5, by placing the focus correction lens 5 inside the objective lens 3, the voltage required for correction is reduced from 220 volts to 50 volts, which is less than one-fourth. There is. FIG. 2 is an explanatory diagram of the above embodiment. Reference numeral 13 in FIG. This is a region where the distribution 11 and the potential distribution 12 overlap. As shown in FIG. 2, in this embodiment, the distribution area of the magnetic field 11 of the objective lens 3 and the distribution area of the potential 12 of the focus correction lens 5 overlap in the area indicated by 13 above. The principle by which the voltage required for focus correction is significantly reduced by arranging them in such an overlapping manner will be described in detail below.

静電型焦点補正レンズ5に電圧が印加されると、上記焦
点補正レンズ5の電位12が分布する領域では焦点補正
レンズ5の電位によってビームのエネルギ(すなわち速
度)が変化する。また磁界型対物レンズ3の集束磁界に
おける集束作用の強さは、通過するビームのエネルギに
よって異なる。そこで焦点補正レンズ5の電位12の分
布領域と対物レンズ3の集車磁界11の分布領域とを重
ね合わ、せると、焦点補正レンズ5への電圧印加に応じ
て、電位12と重なり合った領@13の集束磁界の中を
通過するビームのエネルギが変化し、領域13に存在す
る集束磁界のビームに対する集束作用の強さが相対的に
変化する。これにより結像位置が変化する。
When a voltage is applied to the electrostatic focus correction lens 5, the energy (ie, speed) of the beam changes depending on the potential of the focus correction lens 5 in a region where the potential 12 of the focus correction lens 5 is distributed. Further, the strength of the focusing effect in the focusing magnetic field of the magnetic field type objective lens 3 varies depending on the energy of the beam passing through it. Therefore, when the distribution area of the electric potential 12 of the focus correction lens 5 and the distribution area of the collecting magnetic field 11 of the objective lens 3 are overlapped, an area @13 overlapping with the electric potential 12 is generated according to the voltage application to the focus correction lens 5. The energy of the beam passing through the focusing magnetic field changes, and the strength of the focusing effect of the focusing magnetic field existing in region 13 on the beam changes relatively. This changes the imaging position.

この際印加電圧が小さければビームのエネルギ変化はわ
ずかであり、集束磁界11のビーム集束作用の相対的変
化は小さい。しかし、ビームを結像させるために対物レ
ンズ3の中に存在する集束磁界11は非常に強力で・あ
るため、わずかなビームエネルギの変化に対しても、集
束磁界11の全体による総合的な集束作用は大きく変化
する。その結果。
At this time, if the applied voltage is small, the energy of the beam changes only slightly, and the relative change in the beam focusing effect of the focusing magnetic field 11 is small. However, since the focusing magnetic field 11 that exists in the objective lens 3 for imaging the beam is very strong, even a slight change in beam energy will result in the overall focusing of the focusing magnetic field 11. Effects vary widely. the result.

結像位置は大きく移動する。したがって、わずかな補正
電圧で大きな補正効果が得られるので、焦点補正に要す
る電圧は低くてもよい。
The imaging position moves significantly. Therefore, since a large correction effect can be obtained with a small correction voltage, the voltage required for focus correction may be low.

上記のように、ビームエネルギ変化による磁界の集束作
用の相対的変化が1本発明による集束装置における焦点
補正効果の根本原理であるために。
As mentioned above, the relative change in the focusing effect of the magnetic field due to the change in beam energy is one of the fundamental principles of the focus correction effect in the focusing device according to the invention.

本発明による集束装置の静電型焦点補正レンズ5には、
従来の静電レンズからは考えられない凹レンズの効果を
等価的に持たせることができる。例えは第1図および第
2図に示す第1実施例で、電子ビームの結像位置を補正
する場合を考える。電子は負の荷電粒子なので焦点補正
レンズ5に負の電圧を印加すれば、焦点補正レンズ5の
電位12が分布する領域で電子は減速され、電子ビーム
エネルギは減少する。その結果、焦点補正レンズ5の電
位12と重なり合った領域13の集束磁界11の電子ビ
ームに対する集束作用は相対的に増大し、結像点は物点
1の方向に移動する。この時は焦点補正レンズ5は等価
的に凸レンズとして作用している。
The electrostatic focus correction lens 5 of the focusing device according to the invention includes:
It is possible to equivalently have the effect of a concave lens, which is unimaginable with conventional electrostatic lenses. For example, consider the case where the imaging position of the electron beam is corrected in the first embodiment shown in FIGS. 1 and 2. Since electrons are negatively charged particles, when a negative voltage is applied to the focus correction lens 5, the electrons are decelerated in the region where the potential 12 of the focus correction lens 5 is distributed, and the electron beam energy is reduced. As a result, the focusing effect on the electron beam of the focusing magnetic field 11 in the region 13 overlapping with the potential 12 of the focus correction lens 5 increases relatively, and the imaging point moves toward the object point 1. At this time, the focus correction lens 5 functions equivalently as a convex lens.

しかし焦点補正レンズ5に正の電圧を印加すると、電子
ビームは加速されエネルギが増大するので集束磁界11
の集束作用は相対的に減少し、結像点は物点1の方向と
逆に移動する。この時、上記焦点補正レンズ5は等価的
に凹レンズとして作用している。このように焦点補正レ
ンズ5への印加電圧       )の符号によって、
高さ補正の方向が逆転する。この作用を利用すれば、た
とえば第1実施例における200I1mの高さの補正に
対して、0ボルトから50ボルトの電圧範囲を取るかわ
りに、−50ボルトがら0ボルトの電圧範囲や、−25
ボルトから+25ボルトの電圧範囲を取ることも可能で
ある。この結果、本発明の集束装置の焦点補正において
は、焦、点補正用電源の仕様や他の電子光学系構成部品
との関係を考慮した、最適な電圧範囲を自由に選定する
ことができる。
However, when a positive voltage is applied to the focus correction lens 5, the electron beam is accelerated and its energy increases, so the focusing magnetic field 11
The focusing effect of is relatively reduced and the imaging point moves opposite to the direction of object point 1. At this time, the focus correction lens 5 functions equivalently as a concave lens. In this way, depending on the sign of the voltage applied to the focus correction lens 5 ),
The direction of height correction is reversed. If this effect is used, for example, instead of taking the voltage range from 0 volts to 50 volts for the height correction of 200I1m in the first embodiment, it is possible to change the voltage range from -50 volts to 0 volts, or -25 volts.
Voltage ranges from volts to +25 volts are also possible. As a result, in the focus correction of the focusing device of the present invention, the optimum voltage range can be freely selected in consideration of the specifications of the power source for focus and point correction and the relationship with other components of the electron optical system.

第3図は本発明による荷電粒子ビーム用集束装置の第2
実施例で、4A東装置とその対物レンズ3の軸上磁界分
布11および焦点補正レンズ5の軸上電位分布12との
関連を示している1本実施例は第1図および第2図に示
した第1実施例の黒点補正レンズ5を、図中14で示し
たように6rrnだけ物点1の方向に移動させたもので
ある0本実施例においては、領域13に示すように、軸
上磁界分布11と軸上電位分布12の重なり合った部分
はそれぞれの分布の一部分だけである。そのために30
kVの電子ビームにおける200IRMの高さの補正に
要する電圧は116ボルトと、第1実施例よりも大きく
なっている。しかし第7図または第8図に示した従来技
術の延長例と比較すると約半分の電圧で補正が可能であ
る0本実施例に示すように、磁界型対物3の磁界分布1
1と静電型焦点補正レンズ5の電位分布12の一部分だ
けが重な°り合うことによって、補正電圧を大幅に低減
でき補正の高速化を図ることができる。
FIG. 3 shows a second embodiment of a focusing device for a charged particle beam according to the present invention.
This example shows the relationship between the 4A east device and its axial magnetic field distribution 11 of the objective lens 3 and the axial potential distribution 12 of the focus correction lens 5. This example is shown in FIGS. 1 and 2. In this embodiment, the sunspot correction lens 5 of the first embodiment is moved by 6 rrn in the direction of the object point 1 as shown by 14 in the figure. The overlapping portion of the magnetic field distribution 11 and the axial potential distribution 12 is only a portion of each distribution. 30 for that
The voltage required to correct the height of 200 IRM in a kV electron beam is 116 volts, which is larger than in the first embodiment. However, compared to the extension example of the conventional technology shown in FIG. 7 or 8, correction can be made with about half the voltage.
1 and the potential distribution 12 of the electrostatic focus correction lens 5 overlap, it is possible to significantly reduce the correction voltage and speed up the correction.

第4図は本発明による荷電粒子ビーム用集束装置の第3
実施例を示す図である。1は物点、2は試料が置かれる
像点、3は磁界型対物レンズ、4は静電型偏向器、5は
静電型焦点補正レンズ、7は磁界型縮小レンズである。
FIG. 4 shows the third embodiment of a focusing device for charged particle beams according to the present invention.
It is a figure showing an example. 1 is an object point, 2 is an image point where a sample is placed, 3 is a magnetic field type objective lens, 4 is an electrostatic deflector, 5 is an electrostatic focus correction lens, and 7 is a magnetic field type reduction lens.

中間結像点1′は上記物点1に作られた像が縮小レンズ
7によって縮小され結像される。静電型偏向器4は対物
レンズ3の内部に配置されている。焦点補正レンズ5は
アインツェル型静電レンズである。対物レンズ3の軸上
磁界分布11、縮小レンズ7の軸上磁界分布11’ 、
静電型焦点補正レンズ5の軸上電位分布12、および縮
小レンズ7の軸上磁界分布11’ と静電型焦点補正レ
ンズ5の軸上電位分布I2との重なり合った領域13を
合わせて示している。本実施例においては、静電型焦点
補正レンズ5を縮小レンズ7の内部に置き、集束磁界分
布11’ と電位分布12とが重なり合うようにして焦
点補正の効果を高めている。一般に、静電型偏向器や静
電型レンズなどの静電型電子光学系構成要素を互いに近
接させて配置した場合、互いの電位分布を乱し電子光学
特性が劣化する場合が多い。このような場合には静電型
の電子光学系給電要素を互いに離れた位置に配置する必
要がある。したがって本実施例のように、静電型焦点補
正レンズ5を縮小レンズ7の内部に置けば対物レンズ3
の内部は静電型偏向器4だけが配置されるので、静電型
焦点補正レンズ5と静電型偏向器4の距離を離して互い
の干渉を除去できるという新たな利点がある。さら↓こ
従来利用されることが少ない縮小レンズ7内の空間を利
用することにより、集束装置全体の小形化が−れるとい
う利点もある。なお、本実施例においても第1実施例で
詳記した主うに、集束磁界分布と電位分布を重ね合わせ
たことによって、補正に要する電圧が低減されるという
利点があることは言うまでもない。
The image formed at the object point 1 is reduced by a reduction lens 7 and an image is formed at the intermediate imaging point 1'. The electrostatic deflector 4 is arranged inside the objective lens 3. The focus correction lens 5 is an Einzel type electrostatic lens. On-axis magnetic field distribution 11 of objective lens 3, on-axis magnetic field distribution 11' of reduction lens 7,
The axial potential distribution 12 of the electrostatic focus correction lens 5 and the region 13 where the axial magnetic field distribution 11' of the reduction lens 7 and the axial potential distribution I2 of the electrostatic focus correction lens 5 overlap are also shown. There is. In this embodiment, the electrostatic focus correction lens 5 is placed inside the reduction lens 7, and the focusing magnetic field distribution 11' and the potential distribution 12 overlap to enhance the effect of focus correction. Generally, when components of an electrostatic electron optical system, such as an electrostatic deflector or an electrostatic lens, are arranged close to each other, their potential distributions are disturbed and the electron optical characteristics are often deteriorated. In such a case, it is necessary to arrange the electrostatic type electron optical system feeding elements at positions separated from each other. Therefore, as in this embodiment, if the electrostatic focus correction lens 5 is placed inside the reduction lens 7, the objective lens 3
Since only the electrostatic deflector 4 is disposed inside the lens, there is a new advantage that the electrostatic focus correction lens 5 and the electrostatic deflector 4 can be separated from each other to eliminate mutual interference. Furthermore, by utilizing the space within the reduction lens 7, which is rarely used in the past, there is also the advantage that the entire focusing device can be made smaller. It goes without saying that this embodiment also has the advantage that the voltage required for correction is reduced by superimposing the focusing magnetic field distribution and the potential distribution, as described in detail in the first embodiment.

第5図は本発明による荷電粒子ビーム用集束装置の第4
実施例を示す図で、その軸上磁界分布11゜軸上磁界分
布12、および上記両分布が重なり合った領域13も合
わせ示している0本実施例においては集束磁界がビーム
通路方向に比較的広く分布する対物レンズ3を用いて、
上記対物レンズ3の内部に偏向器4を有し対物レンズ3
の磁界分布11のすそ部分に焦点補正レンズ5を配置し
焦点補正に要する電圧の低減を図っている。なお本実施
例では静電型偏向器4と静電型焦点補正レンズ5とが近
接して配置されているので、設計時の電位解析において
上記偏向器4と焦点補正レンズ5の相互干渉を考慮する
必要がある。
FIG. 5 shows a fourth embodiment of a focusing device for a charged particle beam according to the present invention.
This is a diagram showing an example, and also shows the axial magnetic field distribution 11°, the axial magnetic field distribution 12, and the region 13 where both of the above distributions overlap. In this example, the focusing magnetic field is relatively wide in the beam path direction. Using the distributed objective lens 3,
The objective lens 3 has a deflector 4 inside the objective lens 3.
A focus correction lens 5 is disposed at the base of the magnetic field distribution 11 to reduce the voltage required for focus correction. In this embodiment, since the electrostatic deflector 4 and the electrostatic focus correction lens 5 are arranged close to each other, mutual interference between the deflector 4 and the focus correction lens 5 is taken into consideration in the potential analysis during design. There is a need to.

第6図は本発明による荷電粒子ビーム用集束装置の第5
実施例を示す図で、その軸上磁界分布11、軸上電位分
布12、および上記両分布が重なり合った領域13も合
わせ示している0本実施例では、2個の静電型偏向器4
および4′に、偏向収差をより一層低減させるため一定
の比率を保ちながら電圧が印加される。すなわち2段偏
向系にして偏向収差の低減を図るとともに、第1偏向器
4と第2偏向器4′との間の集束磁界11の比較的強い
領域に静電型焦点補正レンズ5を配置し補正電圧の低減
を図っている。
FIG. 6 shows a fifth embodiment of a focusing device for a charged particle beam according to the present invention.
This is a diagram showing an embodiment, and also shows an axial magnetic field distribution 11, an axial potential distribution 12, and a region 13 where both of the above distributions overlap. In this embodiment, two electrostatic deflectors 4 are used.
and 4', a voltage is applied while maintaining a constant ratio in order to further reduce the deflection aberration. That is, a two-stage deflection system is used to reduce deflection aberrations, and the electrostatic focus correction lens 5 is arranged in a region where the focusing magnetic field 11 is relatively strong between the first deflector 4 and the second deflector 4'. Efforts are being made to reduce the correction voltage.

なお本発明は、上記第1〜第5実施例に限らず。Note that the present invention is not limited to the first to fifth embodiments described above.

磁界型レンズの磁界分布領域と静電型焦点補正レンズの
電位分布領域とが重なり合うように、集束レンズと焦点
補正レンズとを配置することによって同様の効果を得“
ることかできる。
A similar effect can be obtained by arranging the focusing lens and the focus correction lens so that the magnetic field distribution area of the magnetic field type lens and the potential distribution area of the electrostatic focus correction lens overlap.
I can do that.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による荷電粒子ビーム用集束装置は
、磁界型レンズと静電型焦点補正レンズとを有する荷電
粒子ビーム用集束装置において、上記磁界レンズが作る
集束磁界の分布領域と上記静電型焦点補正レンズが作る
電位の分布領域の一部または全部が重なり合うように、
上記磁界型レンズと上記静電型焦点補正レンズとを配置
したことにより、低い補正電圧によって高速な焦点補正
動作を実現し、大きな補正効果を得ることができるとい
う利点がある。
As described above, in the charged particle beam focusing device according to the present invention, the charged particle beam focusing device has a magnetic field type lens and an electrostatic focus correction lens. In such a way that part or all of the potential distribution areas created by the type focus correction lenses overlap,
By arranging the magnetic field type lens and the electrostatic focus correction lens, there is an advantage that a high-speed focus correction operation can be realized with a low correction voltage, and a large correction effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による荷電粒子ビーム用集束装置の第1
実施例の断面図、第2図は上記実施例の対物レンズ磁界
分布ε補正レンズ電位分布との説明図、第3図は本発明
の第2実施例における集束装置の半断面図と対物レンズ
磁界分布および補正レンズ電゛位分布との関連を示す説
明図、第4図は本発明の第3実施例における集束装置の
半断面図と縮小レンズおよび対物レンズ磁界分布および
補正レンズ電位分布との関連を示す説明図、第5図は本
発明の第4実施例における集束装置の半断面図と対物レ
ンズ磁界分布および補正レンズ電位分布との関連を示す
説明図、第6図は本発明の第5実施例における集束装置
の半断面図と対物レンズ磁界分布および補正レンズ電位
分布との関連を示す説明図、第7図および第8図は従来
技術の延長として容易に考えられる荷電粒子ビーム用集
束装置の断面図である。 3・・・磁界型リンズ 5・・・静電型集束補正レンズ 11・・・集束磁界の分布領域 12・・・電位分布領域
FIG. 1 shows a first diagram of a focusing device for a charged particle beam according to the present invention.
A sectional view of the embodiment, FIG. 2 is an explanatory diagram of the objective lens magnetic field distribution ε correction lens potential distribution of the above embodiment, and FIG. 3 is a half sectional view of the focusing device and the objective lens magnetic field in the second embodiment of the present invention. An explanatory diagram showing the relationship between the distribution and the correction lens potential distribution, and FIG. 4 is a half-sectional view of the focusing device in the third embodiment of the present invention, and the relationship between the reduction lens, the objective lens magnetic field distribution, and the correction lens potential distribution. FIG. 5 is an explanatory diagram showing the relationship between the half-sectional view of the focusing device in the fourth embodiment of the present invention, the objective lens magnetic field distribution and the correction lens potential distribution, and FIG. 6 is the fifth embodiment of the present invention. A half-sectional view of the focusing device in the embodiment, an explanatory diagram showing the relationship between the objective lens magnetic field distribution and the correction lens potential distribution, and FIGS. 7 and 8 show a focusing device for charged particle beams that can be easily considered as an extension of the conventional technology. FIG. 3... Magnetic field type lens 5... Electrostatic type focusing correction lens 11... Distribution area of focusing magnetic field 12... Potential distribution area

Claims (5)

【特許請求の範囲】[Claims] (1)磁界型レンズと静電型焦点補正レンズとを有する
荷電粒子ビーム用集束装置において、上記磁界型レンズ
が作る集束磁界の分布領域と上記静電型焦点補正レンズ
が作る電位の分布領域の一部または全部が重なり合うよ
うに、上記磁界型レンズと上記静電型補正レンズとを配
置したことを特徴とする荷電粒子ビーム用集束装置。
(1) In a charged particle beam focusing device having a magnetic field type lens and an electrostatic focus correction lens, the distribution area of the focusing magnetic field created by the magnetic field type lens and the distribution area of the electric potential created by the electrostatic type focus correction lens are A focusing device for a charged particle beam, characterized in that the magnetic field type lens and the electrostatic correction lens are arranged so that they partially or completely overlap.
(2)上記磁界型レンズは、荷電粒子ビームのクロスオ
ーバ像または成形像を縮小して結像させる縮小レンズで
あり、静電型焦点補正レンズを上記縮小レンズの内部に
配置したことを特徴とする特許請求の範囲第1項に記載
した荷電粒子ビーム用集束装置。
(2) The magnetic field type lens is a reduction lens that reduces and forms a crossover image or a formed image of a charged particle beam, and an electrostatic focus correction lens is disposed inside the reduction lens. A focusing device for a charged particle beam according to claim 1.
(3)上記磁界型レンズは、荷電粒子ビームのクロスオ
ーバ像または成形像を試料面上に結像させる対物レンズ
であり、静電型焦点補正レンズを上記対物レンズの内部
に配置したことを特徴とする特許請求の範囲第1項に記
載した荷電粒子ビーム用集束装置。
(3) The magnetic field type lens is an objective lens that forms a crossover image or a formed image of the charged particle beam on the sample surface, and an electrostatic focus correction lens is disposed inside the objective lens. A focusing device for a charged particle beam according to claim 1.
(4)上記荷電粒子ビーム用集束装置は、偏向器を磁界
型レンズの内部に有し、上記静電型焦点補正レンズを上
記偏向器より試料面側に配置したことを特徴とする特許
請求の範囲第1項乃至第3項のいずれかに記載した荷電
粒子ビーム用集束装置。
(4) The charged particle beam focusing device has a deflector inside a magnetic field type lens, and the electrostatic focus correction lens is arranged closer to the sample surface than the deflector. A charged particle beam focusing device according to any one of items 1 to 3.
(5)上記荷電粒子ビーム用集束装置は、2個の偏向器
を有し、上記静電型焦点補正レンズを上記2個の偏向器
の間に配置したことを特徴とする特許請求の範囲第1項
乃至第3項のいずれかに記載した荷電粒子ビーム用集束
装置。
(5) The charged particle beam focusing device has two deflectors, and the electrostatic focus correction lens is disposed between the two deflectors. A charged particle beam focusing device according to any one of items 1 to 3.
JP22289384A 1984-10-25 1984-10-25 Charged particle beam focusing system Granted JPS61101944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22289384A JPS61101944A (en) 1984-10-25 1984-10-25 Charged particle beam focusing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22289384A JPS61101944A (en) 1984-10-25 1984-10-25 Charged particle beam focusing system

Publications (2)

Publication Number Publication Date
JPS61101944A true JPS61101944A (en) 1986-05-20
JPH0447944B2 JPH0447944B2 (en) 1992-08-05

Family

ID=16789514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22289384A Granted JPS61101944A (en) 1984-10-25 1984-10-25 Charged particle beam focusing system

Country Status (1)

Country Link
JP (1) JPS61101944A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115715A (en) * 1985-07-22 1987-05-27 Toshiba Mach Co Ltd Electron-beam exposure device
JPS62219445A (en) * 1986-03-20 1987-09-26 Jeol Ltd Electron beam device
EP0952606A1 (en) * 1998-04-24 1999-10-27 Advantest Corporation Dynamically compensated objective lens-detection device and method
EP0989583A1 (en) * 1998-09-25 2000-03-29 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Method and device for focusing a charged particle beam
JP2004327439A (en) * 2003-04-24 2004-11-18 Fei Co Particle-optical apparatus with permanent-magnetic lens and electrostatic lens
JP2005310778A (en) * 2004-04-22 2005-11-04 Fei Co Particle optical device equipped with lens having permanent magnet material
JP2007095576A (en) * 2005-09-29 2007-04-12 Horon:Kk Charged particle beam device and its focus control method
JP2009065193A (en) * 1997-12-19 2009-03-26 Toshiba Corp Electron beam plotting method and device therefor
JP2009199904A (en) * 2008-02-22 2009-09-03 Hitachi High-Technologies Corp Charged particle beam apparatus including aberration corrector
JP2012222223A (en) * 2011-04-12 2012-11-12 Jeol Ltd Electron beam lithography apparatus
JP2014049545A (en) * 2012-08-30 2014-03-17 Nuflare Technology Inc Charged particle beam drawing method and charged particle beam drawing device
JP2014521193A (en) * 2011-06-29 2014-08-25 ケーエルエー−テンカー コーポレイション Multi-column electron beam apparatus and method
JP2019200983A (en) * 2018-05-18 2019-11-21 株式会社ニューフレアテクノロジー Multi electron beam irradiation device, multi electron beam inspection device, and multi electron beam irradiation method
US10950410B2 (en) 2018-12-04 2021-03-16 Nuflare Technology, Inc. Multiple electron beam inspection apparatus with through-hole with spiral shape
US10998164B2 (en) 2018-06-05 2021-05-04 Nuflare Technology, Inc. Charged particle beam writing apparatus and charged particle beam writing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115715A (en) * 1985-07-22 1987-05-27 Toshiba Mach Co Ltd Electron-beam exposure device
JPS62219445A (en) * 1986-03-20 1987-09-26 Jeol Ltd Electron beam device
JP2009065193A (en) * 1997-12-19 2009-03-26 Toshiba Corp Electron beam plotting method and device therefor
EP0952606A1 (en) * 1998-04-24 1999-10-27 Advantest Corporation Dynamically compensated objective lens-detection device and method
US6555824B1 (en) 1998-09-25 2003-04-29 Applied Materials, Inc. Method and device for focusing a charged particle beam
EP0989583A1 (en) * 1998-09-25 2000-03-29 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Method and device for focusing a charged particle beam
JP2004327439A (en) * 2003-04-24 2004-11-18 Fei Co Particle-optical apparatus with permanent-magnetic lens and electrostatic lens
JP4676714B2 (en) * 2003-04-24 2011-04-27 エフ イー アイ カンパニ Particle optical device comprising a permanent magnetic lens and an electrostatic lens
JP2005310778A (en) * 2004-04-22 2005-11-04 Fei Co Particle optical device equipped with lens having permanent magnet material
JP2007095576A (en) * 2005-09-29 2007-04-12 Horon:Kk Charged particle beam device and its focus control method
JP2009199904A (en) * 2008-02-22 2009-09-03 Hitachi High-Technologies Corp Charged particle beam apparatus including aberration corrector
JP2012222223A (en) * 2011-04-12 2012-11-12 Jeol Ltd Electron beam lithography apparatus
JP2014521193A (en) * 2011-06-29 2014-08-25 ケーエルエー−テンカー コーポレイション Multi-column electron beam apparatus and method
JP2014049545A (en) * 2012-08-30 2014-03-17 Nuflare Technology Inc Charged particle beam drawing method and charged particle beam drawing device
JP2019200983A (en) * 2018-05-18 2019-11-21 株式会社ニューフレアテクノロジー Multi electron beam irradiation device, multi electron beam inspection device, and multi electron beam irradiation method
US10998164B2 (en) 2018-06-05 2021-05-04 Nuflare Technology, Inc. Charged particle beam writing apparatus and charged particle beam writing method
US10950410B2 (en) 2018-12-04 2021-03-16 Nuflare Technology, Inc. Multiple electron beam inspection apparatus with through-hole with spiral shape

Also Published As

Publication number Publication date
JPH0447944B2 (en) 1992-08-05

Similar Documents

Publication Publication Date Title
KR102109963B1 (en) Charged particle beam device for inspection of a specimen with an array of primary charged particle beamlets and method of imaging or illuminating a specimen with an array of primary charged particle beamlets
US6191423B1 (en) Correction device for correcting the spherical aberration in particle-optical apparatus
KR102480232B1 (en) Apparatus of Plural Charged-Particle Beams
US8921782B2 (en) Tilt-imaging scanning electron microscope
JP5097512B2 (en) Orbit corrector for charged particle beam and charged particle beam apparatus
US3930181A (en) Lens and deflection unit arrangement for electron beam columns
JP6341680B2 (en) Low kV enhancement of focused ion beam
JPS61101944A (en) Charged particle beam focusing system
JPH11509972A (en) Correction device for lens aberration correction of particle optics
US6642675B2 (en) Charged particle beam exposing apparatus
US9355818B2 (en) Reflection electron beam projection lithography using an ExB separator
JP2001052998A (en) Method and device for imaging charged particle beam, and exposure device therefor
JPS6042825A (en) Exposure device by charged beam
US11501946B2 (en) Method of influencing a charged particle beam, multipole device, and charged particle beam apparatus
JP2019164886A (en) Beam irradiation device
US4798953A (en) Electronic beam device for projecting an image of an object on a sample
JPS5851384B2 (en) Deflection method of charged particle beam
JPH0234426B2 (en)
US20230066086A1 (en) High resolution, multi-electron beam apparatus
CN112098438B (en) Second-order aberration compensation method of high-resolution large-scanning-field system
US7391034B1 (en) Electron imaging beam with reduced space charge defocusing
JP7076362B2 (en) Charged particle beam device, electrostatic lens
CN116745880A (en) Electron optical column and method for directing primary electron beam onto sample
JPS5853466B2 (en) Charged particle beam focusing/deflecting device
JPS6269455A (en) Electrostatic focusing and deflecting device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term