JP2001052998A - Method and device for imaging charged particle beam, and exposure device therefor - Google Patents
Method and device for imaging charged particle beam, and exposure device thereforInfo
- Publication number
- JP2001052998A JP2001052998A JP2000148417A JP2000148417A JP2001052998A JP 2001052998 A JP2001052998 A JP 2001052998A JP 2000148417 A JP2000148417 A JP 2000148417A JP 2000148417 A JP2000148417 A JP 2000148417A JP 2001052998 A JP2001052998 A JP 2001052998A
- Authority
- JP
- Japan
- Prior art keywords
- charged particle
- particle beam
- imaging
- lens
- optical axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002245 particle Substances 0.000 title claims abstract description 157
- 238000003384 imaging method Methods 0.000 title claims abstract description 115
- 238000000034 method Methods 0.000 title description 16
- 230000003287 optical effect Effects 0.000 claims abstract description 47
- 230000004075 alteration Effects 0.000 claims abstract description 40
- 210000001747 pupil Anatomy 0.000 claims abstract description 17
- 238000012937 correction Methods 0.000 claims description 38
- 238000007493 shaping process Methods 0.000 claims description 10
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims description 2
- 238000010894 electron beam technology Methods 0.000 abstract description 65
- 230000005684 electric field Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 206010010071 Coma Diseases 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 201000009310 astigmatism Diseases 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 208000001644 thecoma Diseases 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/317—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
- H01J37/3174—Particle-beam lithography, e.g. electron beam lithography
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/153—Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/30—Electron or ion beam tubes for processing objects
- H01J2237/317—Processing objects on a microscale
- H01J2237/3175—Lithography
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子ビーム露光装
置などの荷電粒子ビーム露光装置で使用される荷電粒子
ビーム結像方法、結像装置、及びそのような結像装置を
使用する荷電粒子ビーム露光装置に関し、例えば、ビー
ム収束角を実質的に大きくしても収差の小さな荷電粒子
ビーム結像方法、結像装置、及びそのような結像装置を
使用する荷電粒子ビーム露光装置に関する。The present invention relates to a charged particle beam imaging method used in a charged particle beam exposure apparatus such as an electron beam exposure apparatus, an imaging apparatus, and a charged particle beam using such an imaging apparatus. The present invention relates to an exposure apparatus, for example, a charged particle beam imaging method and an imaging apparatus having a small aberration even when a beam convergence angle is substantially increased, and a charged particle beam exposure apparatus using such an imaging apparatus.
【0002】[0002]
【従来の技術】近年半導体技術は益々発達し、半導体集
積回路(IC)の集積度と機能が向上してコンピュー
タ、通信機械制御など広く産業全般に渡る技術進歩の核
技術としてその役割が期待されている。ICは、2年か
ら3年で4倍の高集積化を達成しており、例えば、ダイ
ナミック・ランダムアクセス・メモリ(DRAM:Dyna
mic Random Access Memory)においては、その記憶容量
が、1M、4M、16M、256M、そして1Gと増大
している。このようなICの高集積化は、半導体製造技
術における微細加工技術、特に露光技術の進歩に依存す
るところが大きい。2. Description of the Related Art In recent years, semiconductor technology has been developed more and more, and the degree of integration and functions of semiconductor integrated circuits (ICs) have been improved, and their role is expected as a core technology of technological progress in a wide range of industries such as computer and communication machine control. ing. ICs have achieved four times higher integration in two to three years. For example, a dynamic random access memory (DRAM: Dyna
mic random access memory), its storage capacity has increased to 1M, 4M, 16M, 256M, and 1G. Such high integration of ICs largely depends on the progress of fine processing technology in semiconductor manufacturing technology, particularly, exposure technology.
【0003】従来使用されているステッパなどに用いら
れる光露光技術の限界が予想されており、電子ビーム露
光技術などの荷電粒子ビーム露光技術は、光露光技術に
代わって微細加工の次世代を担う可能性の高い技術であ
る。以下の説明では、電子ビーム露光装置を例として説
明を行うが、本発明はこれに限定されるものではなく、
荷電粒子ビーム露光装置及びその結像方法及び結像装置
であれば適用可能である。It is expected that the light exposure technology used in steppers and the like conventionally used is limited, and charged particle beam exposure technology such as electron beam exposure technology will take the next generation of fine processing in place of light exposure technology. This is a highly promising technology. In the following description, an electron beam exposure apparatus will be described as an example, but the present invention is not limited to this.
The present invention can be applied to a charged particle beam exposure apparatus, an imaging method thereof, and an imaging apparatus.
【0004】電子ビーム露光装置には、可変矩形露光方
式、ブロック露光方式、マルチビーム露光方式などの方
式がある。ブロック露光方式を例として電子ビーム露光
装置を簡単に説明する。ブロック露光方式は、繰り返し
図形の単位となるパターンを透過マスク上に持ち、これ
に電子ビームを透過させて単位パターンを一度に発生さ
せ、これをつないで繰り返し図形を露光する方法であ
る。There are various types of electron beam exposure systems, such as a variable rectangular exposure system, a block exposure system, and a multi-beam exposure system. An electron beam exposure apparatus will be briefly described using a block exposure method as an example. The block exposure method is a method in which a pattern serving as a unit of a repeated figure is held on a transmission mask, an electron beam is transmitted through the mask to generate a unit pattern at a time, and the pattern is connected to expose the figure repeatedly.
【0005】図1は、ブロック露光方式の電子ビーム露
光装置におけるビーム照射系の構成を示す図である。図
1において、電子ビーム露光装置は、電子ビームを発生
する電子銃11と、電子銃11からの電子ビームを平行
ビームにする第1の収束レンズ12と、通過する平行ビ
ームを所定の形状に成形するアパーチャ板13と、成形
されたビームを絞る第2の収束レンズ14と、成形用の
偏向器15と、第1のマスク偏向器16と、マスクによ
る非点収差を動的に補正する偏向器17と、第2のマス
ク偏向器18と、マスク用収束コイル19と、第1の成
形用レンズ20と、ステージ21Aで移動されるブロッ
クマスク21と、第2の成形用レンズ22と、第3のマ
スク偏向器23と、ビームをオン・オフ制御するための
ブランキング偏向器24と、第4のマスク偏向器25
と、第3のレンズ26と、円形アパーチャ27と、縮小
レンズ28と、ダイナミックフォーカスコイル29と、
結像レンズ30と、電磁的な主偏向器31と、静電的な
副偏向器32と、試料1に照射された電子ビームの反射
電子を検出して反射電子信号を出力する反射電子検出器
33とを有する。投影レンズ30により電子ビーム10
がステージ2に載置された試料(ウエハ)1に収束され
る。ステージ2はウエハ1を電子ビーム10に垂直な平
面内で二次元的に移動させる。以上の部分が電子光学鏡
筒部(コラム)と呼ばれる筐体内に収容され、コラム内
は真空にされて露光が行われる。電子ビーム露光装置
は、さらに所望のパターンを露光するようにコラムの各
部を制御する露光制御部を有するが、ここでは説明を省
略する。FIG. 1 is a diagram showing the configuration of a beam irradiation system in a block exposure type electron beam exposure apparatus. In FIG. 1, an electron beam exposure apparatus includes an electron gun 11 for generating an electron beam, a first converging lens 12 for converting the electron beam from the electron gun 11 into a parallel beam, and forming the passing parallel beam into a predetermined shape. Aperture plate 13, a second converging lens 14 for narrowing the shaped beam, a shaping deflector 15, a first mask deflector 16, and a deflector for dynamically correcting astigmatism due to the mask 17, a second mask deflector 18, a mask focusing coil 19, a first shaping lens 20, a block mask 21 moved by a stage 21A, a second shaping lens 22, and a third shaping lens 22. Mask deflector 23, a blanking deflector 24 for controlling the beam on / off, and a fourth mask deflector 25
A third lens 26, a circular aperture 27, a reduction lens 28, a dynamic focus coil 29,
An imaging lens 30, an electromagnetic main deflector 31, an electrostatic sub deflector 32, and a backscattered electron detector for detecting backscattered electrons of the electron beam applied to the sample 1 and outputting a backscattered electron signal 33. The electron beam 10 is projected by the projection lens 30.
Is focused on the sample (wafer) 1 placed on the stage 2. The stage 2 moves the wafer 1 two-dimensionally in a plane perpendicular to the electron beam 10. The above parts are accommodated in a housing called an electron optical column (column), and the inside of the column is evacuated to perform exposure. The electron beam exposure apparatus further has an exposure control unit for controlling each part of the column so as to expose a desired pattern, but the description is omitted here.
【0006】上記の結像レンズ30は、一般に電磁レン
ズで作られるが、静電レンズで実現したり、電磁レンズ
と静電レンズを組み合わせて実現することも可能であ
る。電子ビームは、結像レンズ30により試料1の表面
に収束される。露光位置は、主偏向器31及び副偏向器
32(以下、まとめて偏向器と称する。)によって変化
され、大きく露光位置を変化させる場合には、ステージ
2により試料が移動される。ブロック露光法でも、1シ
ョットで露光されるパターンは10μm□以下であり、
偏向器により隣接するように偏向した上で順に露光され
る。The above-mentioned imaging lens 30 is generally made of an electromagnetic lens, but it can also be realized by an electrostatic lens or by a combination of an electromagnetic lens and an electrostatic lens. The electron beam is converged on the surface of the sample 1 by the imaging lens 30. The exposure position is changed by a main deflector 31 and a sub deflector 32 (hereinafter collectively referred to as deflectors). When the exposure position is largely changed, the sample is moved by the stage 2. Even in the block exposure method, the pattern exposed in one shot is 10 μm □ or less,
After being deflected to be adjacent by a deflector, exposure is performed in order.
【0007】電子ビーム露光法は、現在LSI製造に広
く用いられている光露光法に比べて、きわめて高い解像
性と焦点深度を有し、光露光法では実現できないレベル
の微細パターンを描画できるが、その一方光露光法より
も処理能力、すなわち、スループットが著しく低いた
め、量産性に劣るという問題がある。この理由は、以下
の通りである。特定の感度を有するレジスト材料を高速
に感光させるためには、試料面における電子ビームの電
流量を大きくすることが必要である。しかし、電流量を
多くすると、電子同士の反発力によって解像性が劣化す
るという問題が生じる。この減少を一般的にクーロン効
果という。クーロン効果を低減するためには、第1の方
法として加速電圧を増加させること、第2の方法として
ビーム整形からのビーム軌道を短くすること、第3の方
法として収束半角を大きくすることが考えられる。しか
しながら、第1及び第2の方法は、どちらもビーム偏向
の偏向効率を劣化させる要因を含んでいる。偏向効率が
悪いと、ビーム偏向の整定待ち時間が長くなって、スル
ープットを低下させるという問題が生じるため、これら
の方法には限界がある。また、第3の方法については、
コイルによる電磁レンズは、球面レンズの特性を有する
ため、収束半角αを一定以上大きくすると、収差が大き
くなり解像度を劣化させるという問題があり、これにも
限界がある。これについて図を参照して更に説明する。The electron beam exposure method has extremely high resolution and depth of focus as compared with the light exposure method widely used in the manufacture of LSIs at present, and can draw a fine pattern at a level that cannot be realized by the light exposure method. However, on the other hand, there is a problem that the processing capability, that is, the throughput is remarkably lower than that of the light exposure method, so that mass productivity is inferior. The reason is as follows. In order to expose a resist material having a specific sensitivity at high speed, it is necessary to increase the amount of current of the electron beam on the sample surface. However, when the amount of current is increased, there is a problem that the resolving force between electrons deteriorates the resolution. This decrease is generally called the Coulomb effect. In order to reduce the Coulomb effect, the first method is to increase the accelerating voltage, the second method is to shorten the beam trajectory from beam shaping, and the third method is to increase the convergent half angle. Can be However, both the first and second methods include a factor that deteriorates the deflection efficiency of beam deflection. If the deflection efficiency is low, the waiting time for stabilizing the beam deflection becomes longer, which causes a problem of lowering the throughput. Therefore, these methods have limitations. Also, regarding the third method,
Since the electromagnetic lens using a coil has the characteristics of a spherical lens, there is a problem that if the convergent half angle α is made larger than a certain value, the aberration becomes large and the resolution is deteriorated. This will be further described with reference to the drawings.
【0008】図2は、収束半角αが大きくなると、収差
が大きくなる原理を説明する図である。αに依存する収
差は、球面収差、コマ収差、非点収差、色収差の4つで
ある。非点収差は補正する技術が公知であり、コマ収差
はコラム設計によって十分小さくすることが可能であ
り、また、色収差は光源の設計などで十分に小さくする
ことが可能である。従って、通常問題とされるのは球面
収差である。FIG. 2 is a view for explaining the principle that the aberration increases as the convergence half angle α increases. There are four aberrations depending on α: spherical aberration, coma, astigmatism, and chromatic aberration. Techniques for correcting astigmatism are known, and coma can be made sufficiently small by column design, and chromatic aberration can be made sufficiently small by designing a light source. Therefore, what is usually considered as a problem is spherical aberration.
【0009】球面収差は、電磁レンズの特性が光学レン
ズでいうところの球面レンズの特性を有していることに
起因する。図2に示すように、点0を物面41上の1点
とし、点0からの電子ビームが結像レンズ42の瞳面を
通過して像面44に結像する場合を考える。瞳面上に光
軸を原点とする座標軸aを設け、像面44上に光軸を原
点とする座標軸xを設ける。この時、結像(球面)レン
ズ42の球面収差を考慮すると、点0からでて瞳面上で
a=rの位置を通過した電子ビームは、瞳面44上でx
=cr3の位置に投影される。ここで、cは定数であ
る。従って、瞳面上の絞り43の大きさを±Rにした
時、像面44上の像の収差はcR3程度となる。一方、
収束半角αはRに比例するので、球面収差は収束半角α
の3乗に比例する。[0009] Spherical aberration is caused by the fact that the characteristics of an electromagnetic lens have the characteristics of a spherical lens, which is what is called an optical lens. As shown in FIG. 2, consider a case where point 0 is one point on the object surface 41, and the electron beam from point 0 passes through the pupil plane of the imaging lens 42 and forms an image on the image plane 44. A coordinate axis a having the optical axis as the origin is provided on the pupil plane, and a coordinate axis x having the optical axis as the origin is provided on the image plane 44. At this time, considering the spherical aberration of the imaging (spherical) lens 42, the electron beam that has passed from the point 0 and passed through the position of a = r on the pupil plane becomes x
= Cr 3 is projected. Here, c is a constant. Therefore, when the size of the aperture 43 on the pupil plane and to ± R, aberration of the image on the image plane 44 is approximately cR 3. on the other hand,
Since the convergence half angle α is proportional to R, the spherical aberration becomes the convergence half angle α
Is proportional to the cube of.
【0010】このように、コイルによる電磁レンズは球
面レンズの特性を有しているため、収束半角αの3乗に
比例する球面収差を生じる。このような球面収差をコイ
ルの配置などで補正して非球面無収差レンズを製作する
ことは、現状では極めて困難である。一方、クーロン相
互作用による像のボケは、電流量を一定とした場合、経
験的に(シミュレーションから)αにほぼ反比例すると
言われている。これは、電流量を一定とすると、αが小
さい方が同じ量の電子をより狭い空間に閉じ込めるた
め、クーロン効果が大きくなることを示している。実際
の像のボケは、クーロン効果による像のボケと、球面収
差による像のボケを合わせたもので、これをαの関数と
して示したのが図3である。従って、所望の電流値にお
いて解像度がもっとも良いのは、クーロン効果による像
のボケと球面収差による像のボケがほぼ等しい点Pにお
ける収束半角ということになる。通常は、この最小とな
る条件で収束半角αを決定し、解像度とスループットを
両立するように設計される。As described above, since the electromagnetic lens formed of the coil has the characteristics of a spherical lens, a spherical aberration proportional to the cube of the convergence half angle α occurs. At present, it is extremely difficult to manufacture such an aspherical aberration-free lens by correcting such spherical aberration by disposing a coil. On the other hand, it is empirically said that blurring of an image due to Coulomb interaction is almost inversely proportional to α (from simulation) when the amount of current is constant. This indicates that when the amount of current is constant, the smaller α is, the more the same amount of electrons are confined in a narrower space, so that the Coulomb effect increases. The actual image blur is a combination of the image blur due to the Coulomb effect and the image blur due to spherical aberration, and FIG. 3 shows this as a function of α. Therefore, the best resolution at the desired current value is the half angle of convergence at the point P where the blur of the image due to the Coulomb effect and the blur of the image due to the spherical aberration are substantially equal. Normally, the convergence half angle α is determined under the minimum condition, and the design is made so as to achieve both resolution and throughput.
【0011】[0011]
【発明が解決しようとする課題】しかしながら、解像度
と電流密度(スループット)は、十分な解像度が得られ
る条件では、電流密度が小さく、また十分な電流密度を
得ようとすれば解像度が不十分であるという、トレード
オフの関係にある。もしも、球面収差を補正することが
できれば、αを更に大きくとることができ、所望の電流
量において、更に高い解像度を得ることができる。また
逆に、所望の解像度のビームであれば、より大きな電流
量が得られることになる。However, the resolution and the current density (throughput) are low under the condition that a sufficient resolution can be obtained, and the resolution is insufficient if a sufficient current density is to be obtained. There is a trade-off relationship. If the spherical aberration can be corrected, α can be further increased, and a higher resolution can be obtained with a desired current amount. Conversely, if the beam has a desired resolution, a larger amount of current can be obtained.
【0012】また、電子ビーム等の荷電粒子ビームを用
いた装置においては、装置内にコンタミネーションが蓄
積され、これによって電子ビームにドリフトを生じさせ
るという問題が生じる。Further, in an apparatus using a charged particle beam such as an electron beam, there is a problem that contamination is accumulated in the apparatus, thereby causing a drift in the electron beam.
【0013】本発明は、このような点に着目して、収束
半角αを実質的に大きくしても球面収差が大きくならな
いようにすることで、トレードオフの限界を改善し、高
い電流密度で高い解像度が得られる荷電粒子ビーム結像
方法及び荷電粒子ビーム結像装置を実現し、それを使用
した荷電粒子ビーム露光装置のスループットを、解像度
を劣化させることなく改善することを目的とする。更
に、本発明は、電子ビームのコンタミネーションをも低
減することを目的とする。これら目的は特許請求の範囲
における独立項に記載の特徴の組み合わせにより達成さ
れる。また従属項は本発明の更なる有利な具体例を規定
する。The present invention focuses on such a point and prevents the spherical aberration from increasing even if the convergent half angle α is substantially increased, thereby improving the trade-off limit and improving the current density at a high current density. It is an object of the present invention to realize a charged particle beam imaging method and a charged particle beam imaging device capable of obtaining a high resolution, and to improve the throughput of a charged particle beam exposure apparatus using the same without deteriorating the resolution. Another object of the present invention is to reduce the electron beam contamination. These objects are achieved by combinations of the features described in the independent claims. The dependent claims define further advantageous embodiments of the present invention.
【0014】[0014]
【課題を解決するための手段】上記目的を実現するた
め、本発明の第1の形態に係る荷電粒子ビーム結像方法
は、荷電粒子ビームを、電磁レンズと静電レンズの少な
くとも一方を有する結像レンズで結像する荷電粒子ビー
ム結像方法であって、荷電粒子ビームを複数の荷電粒子
通過部を有するアパーチャ板で子ビームに分割し、複数
の子ビームの少なくとも一部を、結像レンズの収差を補
正して結像するように、偏向することを特徴とする。荷
電粒子通過部は、開口であってもよい。結像レンズの瞳
面近傍で、複数の子ビームの少なくとも一部を偏向する
ようにしてもよい。In order to achieve the above object, a charged particle beam imaging method according to a first embodiment of the present invention is to form a charged particle beam into an image having at least one of an electromagnetic lens and an electrostatic lens. A charged particle beam imaging method for imaging with an image lens, wherein the charged particle beam is divided into child beams by an aperture plate having a plurality of charged particle passage portions, and at least a part of the plurality of child beams is formed into an imaging lens. Is deflected so as to form an image by correcting aberrations. The charged particle passage may be an opening. At least a part of the plurality of sub-beams may be deflected near the pupil plane of the imaging lens.
【0015】上記目的を実現するため、本発明の第2の
形態に係る荷電粒子ビーム結像装置は、荷電粒子ビーム
を結像する荷電粒子ビーム結像装置であって、電磁レン
ズと静電レンズの少なくとも一方を有し、荷電粒子ビー
ムを結像する結像レンズと、荷電粒子ビームを複数の子
ビームに分割する複数の荷電粒子通過部を有するアパー
チャ板と、複数の子ビームの少なくとも一部を、結像レ
ンズの収差を補正して結像するように、偏向する補正偏
向器とを備えることを特徴とする。To achieve the above object, a charged particle beam imaging apparatus according to a second aspect of the present invention is a charged particle beam imaging apparatus for forming an image of a charged particle beam, comprising an electromagnetic lens and an electrostatic lens. An imaging lens having at least one of the following, and imaging a charged particle beam; an aperture plate having a plurality of charged particle passages for dividing the charged particle beam into a plurality of child beams; and at least a part of the plurality of child beams And a correction deflector that deflects the image so as to form an image by correcting the aberration of the imaging lens.
【0016】荷電粒子通過部は、開口であってもよい。
補正偏向器は、結像レンズの瞳面近傍に配置されてもよ
い。アパーチャ板は、結像レンズの瞳面近傍に配置され
てもよい。補正偏向器は、結像レンズの光軸に向かう方
向又は光軸から離れる方向に子ビームを偏向し、その偏
向の強さは、子ビームの前記光軸からの距離に依存する
ようにしてもよい。荷電粒子ビームを偏向する偏向器を
更に備え、補正偏向器は、結像レンズの光軸に向かう方
向又は光軸から離れる方向に前記子ビームを偏向し、そ
の偏向の強さは、偏向器の偏向量の変化に対応して変化
するようにしてもよい。The charged particle passage may be an opening.
The correction deflector may be arranged near the pupil plane of the imaging lens. The aperture plate may be arranged near the pupil plane of the imaging lens. The correction deflector deflects the child beam in a direction toward or away from the optical axis of the imaging lens, and the intensity of the deflection depends on the distance of the child beam from the optical axis. Good. The deflector further deflects the charged particle beam, and the correction deflector deflects the sub-beam in a direction toward or away from the optical axis of the imaging lens, and the intensity of the deflection is determined by the deflector. It may be changed in response to a change in the amount of deflection.
【0017】アパーチャ板は、結像レンズの光軸を含む
第1荷電粒子通過部と、第1荷電粒子通過部の周囲に少
なくとも一つの第2荷電粒子通過部とを有し、補正偏向
器は、第1荷電粒子通過部を通過した子ビームは偏向せ
ず、少なくとも1つの第2荷電粒子通過部を通過した子
ビームを、光軸に向かう方向又は光軸から離れる方向に
偏向するようにしてもよい。The aperture plate has a first charged particle passing portion including the optical axis of the imaging lens, and at least one second charged particle passing portion around the first charged particle passing portion. The child beam that has passed through the first charged particle passage portion is not deflected, and the child beam that has passed through at least one second charged particle passage portion is deflected in a direction toward or away from the optical axis. Is also good.
【0018】第1荷電粒子通過部は、結像レンズの光軸
を中心とする略円形であってもよい。第1荷電粒子通過
部は、結像レンズによる収差が所定の許容範囲に収まる
全ての荷電粒子ビームを通過させる形状であってもよ
い。第1荷電粒子通過部の周囲に、接地された電極を有
するようにしてもよい。第2荷電粒子通過部は、結像レ
ンズの光軸を中心とした2つの同心円に囲まれた略環状
であってもよい。第2荷電粒子通過部は、結像レンズの
光軸を中心とした2つの同心円に囲まれた略環状であ
り、少なくとも1つの第2荷電粒子通過部を囲む前記2
つの同心円の半径の差は、第1荷電粒子通過部の直径よ
り小さくてもよい。The first charged particle passage portion may be substantially circular with the optical axis of the imaging lens as a center. The first charged particle passing unit may have a shape that allows all charged particle beams in which aberration caused by the imaging lens falls within a predetermined allowable range. A grounded electrode may be provided around the first charged particle passage section. The second charged particle passing portion may have a substantially annular shape surrounded by two concentric circles around the optical axis of the imaging lens. The second charged particle passing portion is substantially annular and is surrounded by two concentric circles around the optical axis of the imaging lens, and surrounds at least one second charged particle passing portion.
The difference between the radii of the two concentric circles may be smaller than the diameter of the first charged particle passage portion.
【0019】補正偏向器は、少なくとも1つの第2荷電
粒子通過部の前記結像レンズの光軸中心側と、光軸中心
反対側とに略円形の補正偏向電極を備え、当該補正偏向
電極により、少なくとも1つの第2荷電粒子通過部を通
過した子ビームを偏向するようにしてもよい。アパーチ
ャ板は、第2荷電粒子通過部を複数有し、結像レンズの
光軸中心から遠い第2荷電粒子通過部ほど当該第2荷電
粒子通過部を囲む2つの同心円の半径の差は小さくても
よい。第1荷電粒子通過部の面積は、第2荷電粒子通過
部の面積より大きくてもよい。アパーチャ板は、第2荷
電粒子通過部を複数有し、第2荷電粒子通過部の面積
は、光軸から離れるほど小さくてもよい。The correction deflector includes a substantially circular correction deflection electrode on the optical axis center side of the imaging lens of the at least one second charged particle passing portion and on the side opposite to the optical axis center. Alternatively, the sub-beam that has passed through at least one second charged particle passing section may be deflected. The aperture plate has a plurality of second charged particle passing portions, and the difference between the radii of two concentric circles surrounding the second charged particle passing portion is smaller as the second charged particle passing portion is farther from the optical axis center of the imaging lens. Is also good. The area of the first charged particle passage may be larger than the area of the second charged particle passage. The aperture plate may include a plurality of second charged particle passages, and the area of the second charged particle passage may be smaller as the distance from the optical axis increases.
【0020】補正偏向器は、結像レンズの光軸中心から
遠い第2荷電粒子通過部ほど偏向量を大きくしてもよ
い。補正偏向器は、アパーチャ板に設けられていてもよ
い。補正偏向器は、アパーチャ板により分割された子ビ
ームを遮蔽しない基板に設けられていてもよい。オゾン
を供給するオゾン供給部を更に備えてもよい。[0020] The correction deflector may increase the deflection amount in the second charged particle passage portion farther from the optical axis center of the imaging lens. The correction deflector may be provided on the aperture plate. The correction deflector may be provided on a substrate that does not block the sub-beam split by the aperture plate. An ozone supply unit for supplying ozone may be further provided.
【0021】上記目的を実現するため、本発明の第3の
形態に係る荷電粒子ビーム露光装置は、試料を露光する
荷電粒子ビーム露光装置であって、荷電粒子ビームを発
生する荷電粒子ビーム発生器と、荷電粒子ビームを整形
する整形器と、荷電粒子ビームを偏向する偏向器と、試
料を保持する試料ステージと、電磁レンズと静電レンズ
の少なくとも一方を有し、荷電粒子ビームを試料上に結
像する結像レンズと、複数の子ビームの少なくとも一部
を、結像レンズの収差を補正して結像するように、偏向
する補正偏向器とを備えることを特徴とする。試料上に
結像された荷電粒子ビームを観測する荷電粒子ビーム観
測器を更に備え、補正偏向器の偏向量は、荷電粒子ビー
ム観測器で観測した荷電粒子ビームの解像性が最高にな
るように決定されるようにしてもよい。なお、上記の発
明の概要は、本発明の必要な特徴の全てを列挙したもの
ではなく、これらの特徴群のサブコンビネーションも又
発明となりうる。In order to achieve the above object, a charged particle beam exposure apparatus according to a third aspect of the present invention is a charged particle beam exposure apparatus for exposing a sample, wherein the charged particle beam generator generates a charged particle beam. , A shaper for shaping the charged particle beam, a deflector for deflecting the charged particle beam, a sample stage for holding the sample, and at least one of an electromagnetic lens and an electrostatic lens, wherein the charged particle beam is placed on the sample. An imaging lens for forming an image and a correction deflector for deflecting at least a part of the plurality of sub-beams so as to form an image by correcting aberration of the imaging lens are provided. It further comprises a charged particle beam observer for observing the charged particle beam imaged on the sample, and the amount of deflection of the correction deflector is such that the resolution of the charged particle beam observed by the charged particle beam observer is the highest. May be determined. Note that the above summary of the present invention does not list all of the necessary features of the present invention, and a sub-combination of these features may also be an invention.
【0022】[0022]
【発明の実施の形態】以下、発明の実施の形態を通じて
本発明を説明するが、以下の実施形態は特許請求の範囲
に係る発明を限定するものではなく、又実施形態の中で
説明されている特徴の組み合わせの全てが発明の解決手
段に必須であるとは限らない。図4と図5は、本発明の
原理を説明する図である。図2に示すように、球面収差
によるずれはビームの収束半角αに従って大きくなる。
そこで、図4に示すように、結像レンズ42の瞳面にア
パーチャ板45を設け、荷電粒子通過部及び第1荷電粒
子通過部の一例としての中央の開口60を解像度の許容
される収束半角αのビームAが生成されるようにする。
そして、瞳面上で光軸からR離れた位置を中心とする荷
電粒子通過部及び第2荷電粒子通過部の一例としての開
口61を設け、反対側に荷電粒子通過部及び第2荷電粒
子通過部の一例としての開口62を設け、それぞれビー
ムBとCが生成されるようにする。開口61と62の幅
は、開口60より狭い。ビームAは、瞳面上でa=0の
近傍を通過するので、像面44上の位置x=0の位置に
結像する。この像は、cr3程度の微少なボケを有す
る。ビームBとCは、それぞれ瞳面上でa=+R、−R
の位置を通過し、像面上でそれぞれ−cR3、+cR3
だけずれた位置を中心に結像する。ビームBとCのそれ
ぞれのボケの量は、c((R+r)3−R3)程度であ
る。なお、瞳面は、絞りを置く面である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described through embodiments of the present invention. Not all combinations of the features are necessarily essential to the solution of the invention. 4 and 5 are diagrams illustrating the principle of the present invention. As shown in FIG. 2, the deviation due to the spherical aberration increases according to the half angle of convergence α of the beam.
Therefore, as shown in FIG. 4, an aperture plate 45 is provided on the pupil plane of the imaging lens 42, and the central opening 60 as an example of the charged particle passing portion and the first charged particle passing portion is formed with a convergent half angle with an allowable resolution. A beam A of α is generated.
An opening 61 is provided as an example of a charged particle passing portion and a second charged particle passing portion centered on a position distant from the optical axis on the pupil plane, and the charged particle passing portion and the second charged particle passing portion are provided on opposite sides. An opening 62 is provided as an example of the part so that beams B and C are generated, respectively. The width of the openings 61 and 62 is smaller than the opening 60. Since the beam A passes through the vicinity of a = 0 on the pupil plane, it forms an image at the position x = 0 on the image plane 44. This image has a slight blur of about cr 3 . Beams B and C are respectively a = + R and -R on the pupil plane.
, And -cR 3 and + cR 3 on the image plane, respectively.
An image is formed at a position shifted by only the center. The amount of each blur of the beam B and C is about c ((R + r) 3 -R 3). Note that the pupil plane is a plane on which the stop is placed.
【0023】ここで、図5に示すように、図4と同様の
開口を有するアパーチャ板50の下面に各開口60、6
1、62に対応して対向する電極対51と52、53と
54、55と56を設け、補正偏向器とする。電極対5
1と52には電圧を印加せずグランド(接地)レベルと
し、周囲からの電界の影響を遮蔽する。電極対53と5
4に電圧を印加して開口61の部分に電界を生じさせ、
ビームBの像面上での位置を+cR3だけずらす。すな
わち、ビームBを像面上でx=0の位置に結像させる。
同様に、電極対55と56に電圧を印加してビームCを
像面上でx=0の位置に結像させる。これにより、3つ
のビームA、B、Cは、像面上のx=0の位置に結像す
る。この結果、光学系の収束半角はαより大きな値にな
ったにもかかわらず、球面収差によるボケの大きさは、
各々のビームの軌道による像のボケ量、すなわちc
((R+r)3−R3)程度となり、大きくならない。Here, as shown in FIG. 5, the openings 60, 6 are formed on the lower surface of the aperture plate 50 having the same openings as those shown in FIG.
Electrode pairs 51 and 52, 53 and 54, 55 and 56 facing each other are provided corresponding to 1 and 62, respectively, to provide a correction deflector. Electrode pair 5
No voltage is applied to 1 and 52 to ground (ground) level, and the influence of an electric field from the surroundings is shielded. Electrode pairs 53 and 5
4 to generate an electric field in the opening 61,
Shifting the position on the image surface of the beam B only + cR 3. That is, the beam B is imaged at a position of x = 0 on the image plane.
Similarly, a voltage is applied to the electrode pairs 55 and 56 to form the beam C at the position of x = 0 on the image plane. Thus, the three beams A, B, and C form an image at the position of x = 0 on the image plane. As a result, despite the fact that the half angle of convergence of the optical system was larger than α, the magnitude of blur due to spherical aberration was:
The amount of image blur due to the trajectory of each beam, ie c
((R + r) 3 −R 3 ) and does not increase.
【0024】従って、本発明の荷電粒子ビーム結像装置
では、図3における直線Bが右側に平行移動したことに
なり、点Pの位置は直線Aに沿って右側に移動し、実質
的に収束半角aは大きいが球面収差は小さい状態、すな
わち、高い電流密度で高い解像度が得られることにな
る。これにより、荷電粒子ビーム結像方法及び荷電粒子
ビーム結像装置におけるトレードオフの限界が改善さ
れ、スループットを、解像度を劣化させることなく改善
することが可能になる。Therefore, in the charged particle beam imaging apparatus according to the present invention, the straight line B in FIG. 3 has been translated to the right, and the position of the point P has been moved to the right along the straight line A and substantially converged. The half angle a is large, but the spherical aberration is small, that is, a high resolution can be obtained at a high current density. Thereby, the limit of the trade-off in the charged particle beam imaging method and the charged particle beam imaging apparatus is improved, and the throughput can be improved without deteriorating the resolution.
【0025】以下、本発明の実施例を説明する。本発明
の第1実施例の電子ビーム結像装置は、図5に示すよう
な断面形状を有する。更に、図6は第1実施例で使用さ
れるアパーチャ板50の構成を示す平面図であり、Q−
Q’の断面が図5のアパーチャ板50に相当する。図6
に示すように、アパーチャ板50は、荷電粒子通過部及
び第1荷電粒子通過部の一例としての略円形の開口60
を結像レンズ42の光軸中心に有し、その周囲に結像レ
ンズ42の光軸を中心とする同心円に囲まれた略環状の
第2荷電粒子通過部の一例としての開口61、62を有
する。(すなわち、図5の開口61と62はつながって
いる。)環状の開口61、62の幅は、中心に略円形の
開口60の直径より小さい。環状の開口61、62の一
部には、開口60を形成する部分を支持するための部分
63が設けられている。開口60の周囲には略円形の電
極51、52を設けて、0Vを印加する。(すなわち、
図5の電極51、52はつながっている。)また、環状
の開口61、62の内側の周囲である結像レンズ42の
光軸中心側には略円形の電極54、55を設け、外側の
周囲である光軸中心反対側には略円形の電極53、56
を設け、電極54、55には負の電圧−V1を、電極5
3、56には正の電圧+V1を印加する。これにより、
環状の開口61、62には瞳面の中心(光軸)に向かう
一様な電界が形成され、開口を通過した電子ビームは、
結像レンズ42の光軸に対して離れる方向に偏向され
る。V1を適当に設定すれば、開口61、62を通過し
た電子ビーム(ビームBとC)が、像面44上のx=0
の位置に照射される。なお、一旦設定したV1は、変更
されることなく、維持される。V1の設定は、像面での
電子ビームの結像状態を観察しながら、もっとも解像度
がよくなるように設定する。Hereinafter, embodiments of the present invention will be described. The electron beam imaging apparatus according to the first embodiment of the present invention has a sectional shape as shown in FIG. FIG. 6 is a plan view showing the structure of the aperture plate 50 used in the first embodiment.
The cross section of Q ′ corresponds to the aperture plate 50 of FIG. FIG.
As shown in FIG. 5, the aperture plate 50 has a substantially circular opening 60 as an example of a charged particle passing portion and a first charged particle passing portion.
Are provided at the center of the optical axis of the imaging lens 42, and openings 61 and 62 as an example of a substantially annular second charged particle passing portion surrounded by a concentric circle centered on the optical axis of the imaging lens 42 are provided therearound. Have. (That is, the openings 61 and 62 in FIG. 5 are connected.) The width of the annular openings 61 and 62 is smaller than the diameter of the substantially circular opening 60 at the center. A part 63 for supporting a part forming the opening 60 is provided in a part of the annular openings 61 and 62. Substantially circular electrodes 51 and 52 are provided around the opening 60 to apply 0V. (That is,
The electrodes 51 and 52 in FIG. 5 are connected. In addition, substantially circular electrodes 54 and 55 are provided on the optical axis center side of the imaging lens 42, which is the inner periphery of the annular openings 61, 62, and the substantially circular electrodes 54, 55 are provided on the outer peripheral side opposite to the optical axis center. Electrodes 53, 56
And a negative voltage −V1 is applied to the electrodes 54 and 55, and the electrode 5
A positive voltage + V1 is applied to 3, 56. This allows
A uniform electric field directed toward the center (optical axis) of the pupil plane is formed in the annular openings 61 and 62, and the electron beam passing through the openings is
The light is deflected in a direction away from the optical axis of the imaging lens 42. If V1 is set appropriately, the electron beams (beams B and C) that have passed through the openings 61 and 62 become x = 0 on the image plane 44.
Is irradiated to the position. Note that V1 once set is maintained without being changed. The setting of V1 is set so that the resolution becomes the best while observing the image formation state of the electron beam on the image plane.
【0026】なお、光軸に近い開口60の直径を大きく
し、光軸から遠い開口61、62の径(幅)、すなわ
ち、開口61、62を囲む2つの同心円の半径の差を小
さくして、像面における各開口を通過した電子ビームに
おける収差の大きさを同程度にすることにより、より収
差の小さい光学系を設計することができる。The diameter of the opening 60 near the optical axis is increased and the diameter (width) of the openings 61 and 62 far from the optical axis, that is, the difference between the radii of two concentric circles surrounding the openings 61 and 62 is reduced. By making the magnitude of the aberration in the electron beam passing through each aperture in the image plane approximately the same, an optical system with smaller aberration can be designed.
【0027】図7は、第2実施例の電子ビーム結像装置
の断面形状を示す図であり、図8は、そこで使用される
アパーチャ板70の構成を示す平面図である。第2実施
例の電子ビーム結像装置は、第1実施例と類似の構成を
有するが、アパーチャ板70に略円形の第1荷電粒子通
過部の一例としての開口81と、2重の環状の第2荷電
粒子通過部の一例としての開口82、83が設けられて
いる点が異なる。環状の開口82、83の一部には、内
側の部分を支持するための部分84、85、86が設け
られている。開口81の直径は、開口82の幅より大き
く、開口82の幅は開口83の幅より大きい。開口81
の周囲には電極71が設けられ、0Vが印加される。環
状の開口82の内側の周囲には略円形の電極72が設け
られ、外側の周囲には略円形の電極73が設けられ、電
極72には負の電圧−V1が印加され、電極73には正
の電圧+V1が印加される。更に、環状の開口83の内
側の周囲には略円形の電極74が設けられ、外側の周囲
には略円形の電極75が設けられ、電極74には負の電
圧−V2が印加され、電極75には正の電圧+V2が印
加される。V1とV2は、それぞれ環状の開口82、8
3を通過した電子ビームが、像面44上のx=0の位置
に照射されるように設定される。従って、V2はV1よ
り大きい。FIG. 7 is a view showing a cross-sectional shape of the electron beam imaging apparatus according to the second embodiment, and FIG. 8 is a plan view showing a configuration of an aperture plate 70 used therein. The electron beam imaging apparatus according to the second embodiment has a configuration similar to that of the first embodiment, except that an aperture 81 as an example of a substantially circular first charged particle passage portion and a double annular The difference is that openings 82 and 83 are provided as an example of the second charged particle passage section. Portions 84, 85, 86 for supporting the inner portions are provided in some of the annular openings 82, 83. The diameter of the opening 81 is larger than the width of the opening 82, and the width of the opening 82 is larger than the width of the opening 83. Opening 81
An electrode 71 is provided around the, and 0 V is applied. A substantially circular electrode 72 is provided around the inside of the annular opening 82, and a substantially circular electrode 73 is provided around the outside. A negative voltage −V1 is applied to the electrode 72, and a negative voltage −V1 is applied to the electrode 73. A positive voltage + V1 is applied. Further, a substantially circular electrode 74 is provided around the inside of the annular opening 83, and a substantially circular electrode 75 is provided around the outside. A negative voltage -V2 is applied to the electrode 74, and the electrode 75 Is applied with a positive voltage + V2. V1 and V2 are annular openings 82, 8 respectively.
3 is set so that the electron beam passing through 3 is irradiated on the position of x = 0 on the image plane 44. Therefore, V2 is greater than V1.
【0028】図9は、第3実施例の電子ビーム結像装置
の断面形状を示す図である。第3実施例では、第1実施
例と同じ補正偏向電極が設けられたアパーチャ板50を
使用するが、これに加えて、アパーチャ板50の開口に
対応する開口、すなわち、アパーチャ板50の開口を通
過する電子ビームのみを通過させる開口を有するアパー
チャ板57を、アパーチャ板50に対して電子ビームの
入射側に設ける点が異なる。補正偏向電極を有するアパ
ーチャ板50の前面に電子ビームが照射されると補正偏
向電極が損傷することがある。アパーチャ板57を設け
ることにより、アパーチャ板50への電子ビームの照射
量が低減されるので、その分補正偏向電極の損傷の発生
が低減される。FIG. 9 is a diagram showing a cross-sectional shape of the electron beam imaging apparatus according to the third embodiment. In the third embodiment, the aperture plate 50 provided with the same correction deflection electrode as that of the first embodiment is used. In addition to this, an opening corresponding to the opening of the aperture plate 50, that is, the opening of the aperture plate 50 is changed. The difference is that an aperture plate 57 having an opening for passing only the passing electron beam is provided on the electron beam incident side with respect to the aperture plate 50. When the front surface of the aperture plate 50 having the correction deflection electrode is irradiated with the electron beam, the correction deflection electrode may be damaged. By providing the aperture plate 57, the irradiation amount of the electron beam to the aperture plate 50 is reduced, and accordingly, the occurrence of damage to the correction deflection electrode is reduced.
【0029】第1から第3実施例では、アパーチャ板の
開口は中心の略円形の開口と少なくとも1つの環状の開
口であったが、他の形状の開口も可能である。図10
は、第4実施例の電子ビーム結像装置のアパーチャ板の
平面図である。図10に示すように、第4実施例のアパ
ーチャ板は、結像レンズの光軸中心に合わせる位置を中
心に6角形の第1荷電粒子通過部の一例としての中心開
口91を有し、中心開口91の周囲に中心開口91より
面積が小さい第2荷電粒子通過部の一例としての6個の
周辺開口92A〜92Fを有する。周辺開口92A〜9
2Fの中心は、中心開口91の中心を中心とする円軌跡
の上にある。中心開口91の周囲には、各辺に対応して
遮蔽電極93が設けられており、0Vが印加される。ま
た、各周辺開口92A〜92Fの周囲には、各辺に対応
して補正偏向電極93〜98が設けられている。中心開
口91の辺と接する辺に設けられた電極96には−Vが
印加され、対応する辺の補正偏向電極93には+Vが印
加され、電極96の両側の2つの補正偏向電極95と9
7には−0.5Vが印加され、電極93の両側の2つの
補正偏向電極94と98には+0.5Vが印加される。
周辺開口92A〜92Fの対応する補正偏向電極は相互
に接続され、電圧が印加される。Vの値は、第1実施例
と同様に、像面での電子ビームの結像状態を観察しなが
ら、もっとも解像度がよくなるように設定する。In the first to third embodiments, the aperture of the aperture plate is a substantially circular opening at the center and at least one annular opening, but other shapes of openings are also possible. FIG.
FIG. 14 is a plan view of an aperture plate of the electron beam imaging device according to the fourth embodiment. As shown in FIG. 10, the aperture plate of the fourth embodiment has a hexagonal center opening 91 as an example of a first charged particle passing portion centered on a position aligned with the optical axis center of the imaging lens. Around the opening 91, there are six peripheral openings 92A to 92F as an example of a second charged particle passage portion having an area smaller than the center opening 91. Peripheral openings 92A-9
The center of 2F is on a circular locus about the center of the center opening 91. Around the center opening 91, shielding electrodes 93 are provided corresponding to each side, and 0 V is applied. Around the peripheral openings 92A to 92F, correction deflection electrodes 93 to 98 are provided corresponding to each side. -V is applied to the electrode 96 provided on the side in contact with the side of the center opening 91, + V is applied to the correction deflection electrode 93 on the corresponding side, and the two correction deflection electrodes 95 and 9 on both sides of the electrode 96 are applied.
7, a voltage of -0.5 V is applied, and two correction deflection electrodes 94 and 98 on both sides of the electrode 93 are applied with +0.5 V.
The corresponding correction deflection electrodes of the peripheral openings 92A to 92F are connected to each other, and a voltage is applied. As in the first embodiment, the value of V is set so as to obtain the highest resolution while observing the image formation state of the electron beam on the image plane.
【0030】以上、第1から第4実施例の電子ビーム結
像装置を説明したが、次に、このような電子ビーム結像
装置を使用した電子ビーム露光装置について説明する。
図11は、本発明の電子ビーム結像装置を使用した電子
ビーム露光装置の構成を示す図である。この電子ビーム
露光装置は、図1で説明した構成と類似の構成を有する
が、ブロックマスクに関係する部分などは省略してあ
る。また、図1と同一要素部分には、同一符号を付して
いる。電子銃11で発生された電子ビームは、第1の整
形アパーチャ13により矩形形状に整形され、電磁レン
ズ14により第2の整形アパーチャ(絞り)27の位置
に収束される。第2の整形アパーチャ27の部分には電
磁レンズ26も設けられている。絞りを通過した電子ビ
ームは電磁レンズ28により一旦収束された後広げられ
て結像レンズ30に入射し、試料1上に収束される。こ
こでは、結像レンズ30の近傍の電子ビームの入射側
に、補正偏向電極101を有するアパーチャ板100が
設けられている。補正偏向電極101に印加する電圧
は、像面での電子ビームの結像状態を観察する観察装置
を用いて、もっとも解像度がよくなるように設定され
る。この電子ビーム結像装置においては、例えば電子ビ
ームが照射されている場合において、オゾン供給部33
からアパーチャ板13より下流の電子レンズ14等を含
むチャンバに供給されている。The electron beam imaging apparatuses of the first to fourth embodiments have been described above. Next, an electron beam exposure apparatus using such an electron beam imaging apparatus will be described.
FIG. 11 is a diagram showing a configuration of an electron beam exposure apparatus using the electron beam image forming apparatus of the present invention. This electron beam exposure apparatus has a configuration similar to that described with reference to FIG. 1, but omits parts related to the block mask. The same elements as those in FIG. 1 are denoted by the same reference numerals. The electron beam generated by the electron gun 11 is shaped into a rectangular shape by the first shaping aperture 13, and converged by the electromagnetic lens 14 at the position of the second shaping aperture (aperture) 27. An electromagnetic lens 26 is also provided at the second shaping aperture 27. The electron beam that has passed through the stop is once converged by the electromagnetic lens 28, then expanded and incident on the imaging lens 30, and converged on the sample 1. Here, an aperture plate 100 having a correction deflection electrode 101 is provided on the electron beam incident side near the imaging lens 30. The voltage applied to the correction deflecting electrode 101 is set so as to obtain the highest resolution by using an observation device that observes the image forming state of the electron beam on the image plane. In this electron beam imaging apparatus, for example, when the electron beam is irradiated,
Is supplied to a chamber including an electron lens 14 and the like downstream of the aperture plate 13.
【0031】本発明の電子ビーム結像装置を使用するこ
とにより、収束半角αを実質的に大きくしても球面収差
は大きくならない。収束半角αが実質的に大きくなるの
で、クーロン相互作用によるボケが小さく且つ球面収差
が小さい状態、すなわち、高い電流密度で高い解像度が
得られることになる。これにより、荷電粒子ビーム露光
装置のスループットを、解像度を劣化させることなく改
善することが可能になる。また、オゾンが供給されてい
るので、電子ビームが照射されることにより発生される
コンタミネーションを取り除くことができ、電子ビーム
にドリフトが発生することを適切に防ぎ、電子ビームに
発生する収差を適切に低減することができる。By using the electron beam imaging apparatus of the present invention, the spherical aberration does not increase even if the convergence half angle α is substantially increased. Since the convergence half angle α is substantially increased, blurring due to Coulomb interaction is small and spherical aberration is small, that is, high resolution can be obtained at a high current density. This makes it possible to improve the throughput of the charged particle beam exposure apparatus without deteriorating the resolution. In addition, since ozone is supplied, it is possible to remove contamination caused by irradiation of the electron beam, appropriately prevent drift from occurring in the electron beam, and appropriately reduce aberrations generated in the electron beam. Can be reduced.
【0032】なお、図11の構成で、補正偏向電極10
1を有するアパーチャ板100として、図10に示した
第4実施例の電子ビーム結像装置を使用し、各周辺開口
の補正偏向電極に印加する電圧を独立に制御できるよう
にし、偏向器(図示せず)の偏向量に応じて補正偏向電
極に印加する電圧を変化させると、コマ収差を補正(低
減)することも可能である。前述のように、コマ収差は
コラム設計によって十分小さくすることが可能である
が、第4実施例の電子ビーム結像装置を使用してコマ収
差を低減することにより、コラム設計の自由度が向上す
ることができる。In the configuration shown in FIG.
The electron beam imaging apparatus of the fourth embodiment shown in FIG. 10 is used as the aperture plate 100 having the first aperture plate 1 and the voltage applied to the correction deflection electrode of each peripheral aperture can be controlled independently. The coma aberration can be corrected (reduced) by changing the voltage applied to the correction deflection electrode according to the deflection amount (not shown). As described above, coma can be made sufficiently small by column design. However, by reducing coma using the electron beam imaging apparatus of the fourth embodiment, the degree of freedom in column design is improved. can do.
【0033】図12は、図11の構成において、複数の
電子銃11A〜11Cを設け、それぞれの電子銃で発生
された電子ビームが、アパーチャ板100の各開口を通
過するようにした構成を示す図である。これにより、複
数の電子銃を使用することにより、ビーム10Bと10
Cの収束半角(試料への入射角)を大きくしてもそれぞ
れ高いビーム強度を得ることができるようになる。FIG. 12 shows a configuration in which a plurality of electron guns 11A to 11C are provided in the configuration of FIG. 11, and the electron beams generated by the respective electron guns pass through the respective apertures of the aperture plate 100. FIG. Thus, by using a plurality of electron guns, the beams 10B and 10B can be used.
Even if the half angle of convergence of C (the incident angle to the sample) is increased, it is possible to obtain a high beam intensity.
【0034】本発明は上記の実施形態に限定されるもの
ではなく、種々の変形が可能である。例えば、上記の実
施形態では、第1荷電粒子通過部、第2荷電粒子通過部
の一例として開口を用いていたが、本発明はこれに限ら
れず、例えば、シリコン窒化膜としてもよく、要は、荷
電粒子を通過させることができればよい。The present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, the opening is used as an example of the first charged particle passing portion and the second charged particle passing portion. However, the present invention is not limited to this. For example, a silicon nitride film may be used. It is only required that charged particles can pass through.
【0035】また、上記第3実施例においては、アパー
チャ板50に備えるようにしていたが、本発明はこれに
限られず、例えば、アパーチャ板57を通過した子ビー
ムを遮蔽しない基板に備えるようにしてもよい。In the third embodiment, the aperture plate 50 is provided. However, the present invention is not limited to this. For example, the child beam passing through the aperture plate 57 may be provided on an unshielded substrate. You may.
【0036】以上、本発明を実施の形態を用いて説明し
たが、本発明の技術的範囲は上記実施の形態に記載の範
囲には限定されない。上記実施の形態に、多様な変更又
は改良を加えることができることが当業者に明らかであ
る。その様な変更又は改良を加えた形態も本発明の技術
的範囲に含まれ得ることが、特許請求の範囲の記載から
明らかである。Although the present invention has been described with reference to the embodiment, the technical scope of the present invention is not limited to the scope described in the above embodiment. It is apparent to those skilled in the art that various changes or improvements can be added to the above embodiment. It is apparent from the description of the appended claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.
【0037】[0037]
【発明の効果】以上発明したように、本発明によれば、
一定の電流量を仮定すればクーロン相互作用によるボケ
が小さく且つ光学系の収差が小さい結像特性を得ること
ができ、また、一定のボケを仮定したときにはより多く
の電流量を有する光学系を設計することができ、電子ビ
ーム露光装置のスループットが改善できる。また、本発
明によれば、コンタミネーションを適切に排除すること
により、電子ビームのドリフトを適切に防止でき、光学
系の収差の補正を効果的に行うことができる。As described above, according to the present invention,
Assuming a constant current amount, it is possible to obtain an imaging characteristic in which blur due to Coulomb interaction is small and aberration of the optical system is small, and when a constant blur is assumed, an optical system having a larger current amount is required. It can be designed and the throughput of the electron beam exposure apparatus can be improved. Further, according to the present invention, by appropriately eliminating contamination, drift of an electron beam can be appropriately prevented, and aberration of an optical system can be effectively corrected.
【図1】電子ビーム露光装置のビーム照射系の構成例を
示す図であるFIG. 1 is a diagram illustrating a configuration example of a beam irradiation system of an electron beam exposure apparatus.
【図2】電磁レンズによる電子ビーム結像の球面収差を
示す図である。FIG. 2 is a diagram illustrating spherical aberration of electron beam imaging by an electromagnetic lens.
【図3】収束半角とビームのボケの関係を示す図であ
る。FIG. 3 is a diagram illustrating a relationship between a half angle of convergence and a beam blur.
【図4】本発明の原理を説明する図である。FIG. 4 is a diagram illustrating the principle of the present invention.
【図5】本発明の原理を説明及び第1実施例の結像装置
を示す図である。FIG. 5 is a view for explaining the principle of the present invention and showing the image forming apparatus of the first embodiment.
【図6】第1実施例で使用するアパーチャ板を示す図で
ある。FIG. 6 is a diagram showing an aperture plate used in the first embodiment.
【図7】本発明の第2実施例の結像装置の構成を示す図
である。FIG. 7 is a diagram illustrating a configuration of an imaging apparatus according to a second embodiment of the present invention.
【図8】第2実施例で使用するアパーチャ板を示す図で
ある。FIG. 8 is a diagram showing an aperture plate used in the second embodiment.
【図9】本発明の第3実施例の結像装置の構成を示す図
である。FIG. 9 is a diagram illustrating a configuration of an image forming apparatus according to a third embodiment of the present invention.
【図10】本発明の第4実施例で使用するアパーチャ板
を示す図である。FIG. 10 is a view showing an aperture plate used in a fourth embodiment of the present invention.
【図11】本発明の結像装置を使用した電子ビーム露光
装置の構成を示す図である。FIG. 11 is a diagram showing a configuration of an electron beam exposure apparatus using the image forming apparatus of the present invention.
【図12】本発明の結像装置を使用したべつの電子ビー
ム露光装置の構成を示す図である。FIG. 12 is a diagram showing a configuration of another electron beam exposure apparatus using the image forming apparatus of the present invention.
1…試料(ウエハ) 2…ステージ 11…電子銃 12、14、20、22、26、 28…電磁レンズ 30、42…結像レンズ(電磁レンズ) 50…アパーチャ板 51〜56…補正偏向電極 60〜62…開口 DESCRIPTION OF SYMBOLS 1 ... Sample (wafer) 2 ... Stage 11 ... Electron gun 12, 14, 20, 22, 26, 28 ... Electromagnetic lens 30, 42 ... Imaging lens (electromagnetic lens) 50 ... Aperture plate 51-56 ... Correction deflection electrode 60 ~ 62 ... Opening
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/30 541B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/30 541B
Claims (25)
ンズの少なくとも一方を有する結像レンズで結像する荷
電粒子ビーム結像方法であって、 前記荷電粒子ビームを複数の荷電粒子通過部を有するア
パーチャ板で子ビームに分割し、前記複数の子ビームの
少なくとも一部を、前記結像レンズの収差を補正して結
像するように、偏向することを特徴とする荷電粒子ビー
ム結像方法。1. A charged particle beam imaging method for forming an image of a charged particle beam by an imaging lens having at least one of an electromagnetic lens and an electrostatic lens, wherein the charged particle beam passes through a plurality of charged particle passing portions. A charged particle beam imaging method, wherein the beam is split into sub-beams by an aperture plate, and at least a part of the plurality of sub-beams is deflected so as to form an image by correcting aberration of the imaging lens. .
を特徴とする請求項1に記載の荷電粒子ビーム結像方
法。2. The charged particle beam imaging method according to claim 1, wherein the charged particle passage is an opening.
の子ビームの少なくとも一部を偏向することを特徴とす
る請求項1又は2に記載の荷電粒子ビーム結像方法。3. The charged particle beam imaging method according to claim 1, wherein at least a part of the plurality of sub-beams is deflected near a pupil plane of the imaging lens.
ム結像装置であって、 電磁レンズと静電レンズの少なくとも一方を有し、前記
荷電粒子ビームを結像する結像レンズと、 前記荷電粒子ビームを複数の子ビームに分割する複数の
荷電粒子通過部を有するアパーチャ板と、 前記複数の子ビームの少なくとも一部を、前記結像レン
ズの収差を補正して結像するように、偏向する補正偏向
器とを備えることを特徴とする荷電粒子ビーム結像装
置。4. A charged particle beam imaging apparatus for imaging a charged particle beam, comprising: an imaging lens having at least one of an electromagnetic lens and an electrostatic lens for imaging the charged particle beam; An aperture plate having a plurality of charged particle passage portions for dividing the particle beam into a plurality of sub-beams; and deflecting at least a part of the plurality of sub-beams so as to form an image by correcting aberration of the imaging lens. A charged particle beam imaging apparatus, comprising:
を特徴とする請求項4に記載の荷電粒子ビーム結像方
法。5. The charged particle beam imaging method according to claim 4, wherein the charged particle passage is an opening.
傍に配置されることを特徴とする請求項4又は5に記載
の荷電粒子ビーム結像装置。6. The charged particle beam imaging apparatus according to claim 4, wherein the correction deflector is disposed near a pupil plane of the imaging lens.
近傍に配置されることを特徴とする請求項4乃至6のい
ずれかに記載の荷電粒子ビーム結像装置。7. The charged particle beam imaging apparatus according to claim 4, wherein the aperture plate is disposed near a pupil plane of the imaging lens.
軸に向かう方向又は光軸から離れる方向に前記子ビーム
を偏向し、その偏向の強さは、子ビームの前記光軸から
の距離に依存することを特徴とする請求項4乃至7のい
ずれかに記載の荷電粒子ビーム結像装置。8. The correction deflector deflects the child beam in a direction toward or away from the optical axis of the imaging lens, and the degree of deflection of the child beam from the optical axis is The charged particle beam imaging apparatus according to any one of claims 4 to 7, wherein the apparatus is dependent on a distance.
更に備え、 前記補正偏向器は、前記結像レンズの光軸に向かう方向
又は光軸から離れる方向に前記子ビームを偏向し、その
偏向の強さは、前記偏向器の偏向量の変化に対応して変
化することを特徴とする請求項4乃至8のいずれかに記
載の荷電粒子ビーム結像装置。9. A deflector for deflecting the charged particle beam, wherein the correction deflector deflects the child beam in a direction toward or away from an optical axis of the imaging lens, and deflects the child beam. The charged particle beam imaging apparatus according to any one of claims 4 to 8, wherein the intensity of the charged particle beam changes in accordance with a change in the amount of deflection of the deflector.
の光軸を含む第1荷電粒子通過部と、前記第1荷電粒子
通過部の周囲に少なくとも一つの第2荷電粒子通過部と
を有し、 前記補正偏向器は、前記第1荷電粒子通過部を通過した
子ビームは偏向せず、前記少なくとも1つの第2荷電粒
子通過部を通過した子ビームを、前記光軸に向かう方向
又は光軸から離れる方向に偏向することを特徴とする請
求項4乃至9のいずれかに記載の荷電粒子ビーム結像装
置。10. The aperture plate has a first charged particle passing portion including an optical axis of the imaging lens, and at least one second charged particle passing portion around the first charged particle passing portion. The correction deflector does not deflect the sub-beam that has passed through the first charged particle passing portion, and converts the sub-beam that has passed through the at least one second charged particle passing portion toward the optical axis or the optical axis. The charged particle beam imaging apparatus according to any one of claims 4 to 9, wherein the beam is deflected in a direction away from the charged particle beam.
レンズの光軸を中心とする略円形であることを特徴とす
る請求項10に記載の荷電粒子ビーム結像装置。11. The charged particle beam imaging apparatus according to claim 10, wherein the first charged particle passing portion has a substantially circular shape centered on an optical axis of the imaging lens.
レンズによる収差が所定の許容範囲に収まる全ての荷電
粒子ビームを通過させる形状であることを特徴とする請
求項11に記載の荷電粒子ビーム結像装置。12. The charged member according to claim 11, wherein the first charged particle passing portion has a shape that allows passage of all charged particle beams whose aberration caused by the imaging lens falls within a predetermined allowable range. Particle beam imaging device.
地された電極を有することを特徴とする請求項11又は
12に記載の荷電粒子ビーム結像装置。13. The charged particle beam imaging apparatus according to claim 11, further comprising a grounded electrode around the first charged particle passage.
レンズの光軸を中心とした2つの同心円に囲まれた略環
状であることを特徴とする請求項10乃至13のいずれ
かに記載の荷電粒子ビーム結像装置。14. The apparatus according to claim 10, wherein the second charged particle passing portion is substantially annular surrounded by two concentric circles centered on an optical axis of the imaging lens. A charged particle beam imaging apparatus according to claim 1.
レンズの光軸を中心とした2つの同心円に囲まれた略環
状であり、 前記少なくとも1つの第2荷電粒子通過部を囲む前記2
つの同心円の半径の差は、前記第1荷電粒子通過部の直
径より小さいことを特徴とする請求項11に記載の荷電
粒子ビーム結像装置。15. The second charged particle passage section is substantially annular and surrounded by two concentric circles around the optical axis of the imaging lens, and surrounds the at least one second charged particle passage section. 2
The charged particle beam imaging apparatus according to claim 11, wherein a difference between radii of the two concentric circles is smaller than a diameter of the first charged particle passage portion.
つの第2荷電粒子通過部の前記結像レンズの光軸中心側
と、光軸中心反対側とに略円形の補正偏向電極を備え、
当該補正偏向電極により、前記少なくとも1つの第2荷
電粒子通過部を通過した子ビームを偏向することを特徴
とする請求項14又は15に記載の荷電粒子ビーム結像
装置。16. The at least one correction deflector comprises:
A substantially circular correction deflection electrode on the optical axis center side of the imaging lens of the two second charged particle passing portions and on the opposite side of the optical axis center;
16. The charged particle beam imaging apparatus according to claim 14, wherein the correction deflection electrode deflects the sub-beam that has passed through the at least one second charged particle passage.
過部を複数有し、 前記結像レンズの光軸中心から遠い第2荷電粒子通過部
ほど当該第2荷電粒子通過部を囲む前記2つの同心円の
半径の差は小さいことを特徴とする請求項10乃至16
のいずれかに記載の荷電粒子ビーム結像装置。17. The aperture plate has a plurality of second charged particle passages, and the two charged particle passages that are more distant from the optical axis center of the imaging lens surround the second charged particle passages. 17. The difference in radius between concentric circles is small.
A charged particle beam imaging apparatus according to any one of the above.
記第2荷電粒子通過部の面積より大きいことを特徴とす
る請求項10に記載の荷電粒子ビーム結像装置。18. The charged particle beam imaging apparatus according to claim 10, wherein an area of the first charged particle passage is larger than an area of the second charged particle passage.
電粒子通過部を複数有し、 前記第2荷電粒子通過部の面積は、前記光軸から離れる
ほど小さいことを特徴とする請求項10に記載の荷電粒
子ビーム結像装置。19. The apparatus according to claim 10, wherein the aperture plate has a plurality of the second charged particle passages, and an area of the second charged particle passage is smaller as the distance from the optical axis increases. A charged particle beam imaging apparatus according to claim 1.
光軸中心から遠い第2荷電粒子通過部ほど偏向量を大き
くすることを特徴とする請求項17又は19に記載の荷
電粒子ビーム結像装置。20. The charged particle beam forming apparatus according to claim 17, wherein the correction deflector increases the deflection amount as the second charged particle passage portion is farther from the optical axis center of the imaging lens. Imaging device.
に設けられていることを特徴とする請求項4乃至20の
いずれかに記載の荷電粒子ビーム結像装置。21. The charged particle beam imaging apparatus according to claim 4, wherein the correction deflector is provided on the aperture plate.
により分割された子ビームを遮蔽しない基板に設けられ
ていることを特徴とする請求項4乃至20のいずれかに
記載の荷電粒子ビーム結像装置。22. The charged particle beam imaging according to claim 4, wherein the correction deflector is provided on a substrate that does not block the sub-beam split by the aperture plate. apparatus.
備えることを特徴とする請求項4乃至22のいずれかに
記載の荷電粒子ビーム結像装置。23. The charged particle beam imaging apparatus according to claim 4, further comprising an ozone supply unit for supplying ozone.
置であって、 荷電粒子ビームを発生する荷電粒子ビーム発生器と、 前記荷電粒子ビームを整形する整形器と、 前記荷電粒子ビームを偏向する偏向器と、 前記試料を保持する試料ステージと、 電磁レンズと静電レンズの少なくとも一方を有し、前記
荷電粒子ビームを前記試料上に結像する結像レンズと、 前記複数の子ビームの少なくとも一部を、前記結像レン
ズの収差を補正して結像するように、偏向する補正偏向
器とを備えることを特徴とする荷電粒子ビーム露光装
置。24. A charged particle beam exposure apparatus for exposing a sample, comprising: a charged particle beam generator for generating a charged particle beam; a shaper for shaping the charged particle beam; and a deflection unit for deflecting the charged particle beam. A sample stage for holding the sample, an imaging lens having at least one of an electromagnetic lens and an electrostatic lens, and forming an image of the charged particle beam on the sample; and at least one of the plurality of sub-beams. A charged particle beam exposure apparatus, comprising: a correction deflector that deflects the unit so as to form an image by correcting aberration of the imaging lens.
ビームを観測する荷電粒子ビーム観測器を更に備え、 前記補正偏向器の偏向量は、前記荷電粒子ビーム観測器
で観測した前記荷電粒子ビームの解像性が最高になるよ
うに決定されることを特徴とする請求項24に記載の荷
電粒子ビーム露光装置。25. A charged particle beam observer for observing the charged particle beam imaged on the sample, wherein a deflection amount of the correction deflector is the charged particle observed by the charged particle beam observer. 25. The charged particle beam exposure apparatus according to claim 24, wherein the resolution of the beam is determined to be the highest.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000148417A JP2001052998A (en) | 1999-06-03 | 2000-05-19 | Method and device for imaging charged particle beam, and exposure device therefor |
TW89110676A TW445489B (en) | 1999-06-03 | 2000-06-01 | Method and device to form image formation charged particle beam and the exposing device of charged particle beam |
GB0013551A GB2352323B (en) | 1999-06-03 | 2000-06-02 | Apparatus and method for image-forming charged particle beams and charged particle beam exposure apparatus |
GB0202656A GB2369241A (en) | 1999-06-03 | 2000-06-02 | Charged particle beam exposure device with aberration correction |
KR1020000030416A KR20010007211A (en) | 1999-06-03 | 2000-06-02 | Apparatus and method for image-forming charged particle beams and charged particle beam exposure apparatus |
DE2000128327 DE10028327A1 (en) | 1999-06-03 | 2000-06-05 | Apparatus and method for charged particle image-forming rays and charged particle beam irradiation device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-156940 | 1999-06-03 | ||
JP15694099 | 1999-06-03 | ||
JP2000148417A JP2001052998A (en) | 1999-06-03 | 2000-05-19 | Method and device for imaging charged particle beam, and exposure device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001052998A true JP2001052998A (en) | 2001-02-23 |
Family
ID=26484553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000148417A Withdrawn JP2001052998A (en) | 1999-06-03 | 2000-05-19 | Method and device for imaging charged particle beam, and exposure device therefor |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2001052998A (en) |
KR (1) | KR20010007211A (en) |
DE (1) | DE10028327A1 (en) |
GB (1) | GB2352323B (en) |
TW (1) | TW445489B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006518109A (en) * | 2003-02-14 | 2006-08-03 | マッパー・リソグラフィー・アイピー・ビー.ブイ. | Dispenser cathode |
WO2007129376A1 (en) * | 2006-04-26 | 2007-11-15 | Topcon Corporation | Electronic lens |
JP2008218422A (en) * | 2003-09-05 | 2008-09-18 | Carl Zeiss Smt Ag | Particle optical device and charged particle beam operating method |
WO2009020208A1 (en) * | 2007-08-09 | 2009-02-12 | Kyoto University | Radial multipolar type layout lens, and charged particle optical system device using the lens |
JP2010067530A (en) * | 2008-09-12 | 2010-03-25 | Hitachi High-Technologies Corp | Charged particle beam apparatus |
JP4856073B2 (en) * | 2004-05-17 | 2012-01-18 | マッパー・リソグラフィー・アイピー・ビー.ブイ. | Charged particle beam exposure system |
JP2013138037A (en) * | 2013-04-12 | 2013-07-11 | Hitachi High-Technologies Corp | Charged particle beam application device |
WO2016174891A1 (en) * | 2015-04-27 | 2016-11-03 | 国立大学法人名古屋大学 | Spherical aberration correction device for charged particle beam electromagnetic lens |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4947841B2 (en) * | 2000-03-31 | 2012-06-06 | キヤノン株式会社 | Charged particle beam exposure system |
US6940080B2 (en) | 2002-03-28 | 2005-09-06 | Kabushiki Kaisha Toshiba | Charged particle beam lithography system, lithography method using charged particle beam, method of controlling charged particle beam, and method of manufacturing semiconductor device |
EP1602121B1 (en) * | 2003-03-10 | 2012-06-27 | Mapper Lithography Ip B.V. | Apparatus for generating a plurality of beamlets |
JP4476975B2 (en) * | 2005-10-25 | 2010-06-09 | 株式会社ニューフレアテクノロジー | Charged particle beam irradiation amount calculation method, charged particle beam drawing method, program, and charged particle beam drawing apparatus |
US8013300B2 (en) | 2008-06-20 | 2011-09-06 | Carl Zeiss Nts, Llc | Sample decontamination |
US8581190B2 (en) * | 2008-09-25 | 2013-11-12 | Hitachi High-Technologies Corporation | Charged particle beam apparatus and geometrical aberration measurement method therefor |
US11164716B2 (en) * | 2018-03-29 | 2021-11-02 | Hitachi High-Tech Corporation | Charged particle beam device |
JP7022815B2 (en) * | 2018-03-29 | 2022-02-18 | 株式会社日立ハイテク | Charged particle beam device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5423476A (en) * | 1977-07-25 | 1979-02-22 | Akashi Seisakusho Kk | Composite electron lens |
NL8200559A (en) * | 1982-02-15 | 1983-09-01 | Ir Jan Bart Le Poole Prof Dr | IRRADIATION DEVICE WITH BUNDLE SPLIT. |
DE3504705A1 (en) * | 1985-02-12 | 1986-08-14 | Siemens AG, 1000 Berlin und 8000 München | APERTURE DISPLAY WITH CELL-SHAPED MULTIPLE HOLE STRUCTURE AND PUSHING ELECTRODES FOR THE GENERATION OF A MULTIPLE OF INDIVIDUALLY TESTABLE BODY BEAM PROBE FOR A LITHOGRAPH DEVICE |
US5012105A (en) * | 1989-02-02 | 1991-04-30 | Nippon Seiko Kabushiki Kaisha | Multiple-imaging charged particle-beam exposure system |
JPH03119717A (en) * | 1989-09-30 | 1991-05-22 | Fujitsu Ltd | Charged particle exposure device and exposure |
US5369282A (en) * | 1992-08-03 | 1994-11-29 | Fujitsu Limited | Electron beam exposure method and system for exposing a pattern on a substrate with an improved accuracy and throughput |
JP3827359B2 (en) * | 1996-03-19 | 2006-09-27 | 富士通株式会社 | Charged particle beam exposure method and apparatus |
US6989546B2 (en) * | 1998-08-19 | 2006-01-24 | Ims-Innenmikrofabrikations Systeme Gmbh | Particle multibeam lithography |
-
2000
- 2000-05-19 JP JP2000148417A patent/JP2001052998A/en not_active Withdrawn
- 2000-06-01 TW TW89110676A patent/TW445489B/en not_active IP Right Cessation
- 2000-06-02 KR KR1020000030416A patent/KR20010007211A/en not_active Application Discontinuation
- 2000-06-02 GB GB0013551A patent/GB2352323B/en not_active Expired - Fee Related
- 2000-06-05 DE DE2000128327 patent/DE10028327A1/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006518109A (en) * | 2003-02-14 | 2006-08-03 | マッパー・リソグラフィー・アイピー・ビー.ブイ. | Dispenser cathode |
US9673024B2 (en) | 2003-09-05 | 2017-06-06 | Applied Materials Israel, Ltd. | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
JP2008218422A (en) * | 2003-09-05 | 2008-09-18 | Carl Zeiss Smt Ag | Particle optical device and charged particle beam operating method |
US8637834B2 (en) | 2003-09-05 | 2014-01-28 | Carl Zeiss Microscopy Gmbh | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
US9224576B2 (en) | 2003-09-05 | 2015-12-29 | Carl Zeiss Microscopy Gmbh | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
US10504681B2 (en) | 2003-09-05 | 2019-12-10 | Carl Zeiss Microscopy Gmbh | Particle-optical systems and arrangements and particle-optical components for such systems and arrangements |
JP4856073B2 (en) * | 2004-05-17 | 2012-01-18 | マッパー・リソグラフィー・アイピー・ビー.ブイ. | Charged particle beam exposure system |
WO2007129376A1 (en) * | 2006-04-26 | 2007-11-15 | Topcon Corporation | Electronic lens |
WO2009020208A1 (en) * | 2007-08-09 | 2009-02-12 | Kyoto University | Radial multipolar type layout lens, and charged particle optical system device using the lens |
JP2010067530A (en) * | 2008-09-12 | 2010-03-25 | Hitachi High-Technologies Corp | Charged particle beam apparatus |
JP2013138037A (en) * | 2013-04-12 | 2013-07-11 | Hitachi High-Technologies Corp | Charged particle beam application device |
JPWO2016174891A1 (en) * | 2015-04-27 | 2017-10-26 | 国立大学法人名古屋大学 | Apparatus for correcting spherical aberration of electromagnetic lens for charged particle beam |
US10096448B2 (en) | 2015-04-27 | 2018-10-09 | National University Corporation Nagoya University | Spherical aberration corrector for electromagnetic lens for charged particle beam |
WO2016174891A1 (en) * | 2015-04-27 | 2016-11-03 | 国立大学法人名古屋大学 | Spherical aberration correction device for charged particle beam electromagnetic lens |
Also Published As
Publication number | Publication date |
---|---|
KR20010007211A (en) | 2001-01-26 |
GB2352323B (en) | 2003-05-14 |
GB0013551D0 (en) | 2000-07-26 |
TW445489B (en) | 2001-07-11 |
DE10028327A1 (en) | 2001-02-01 |
GB2352323A (en) | 2001-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI751556B (en) | Charged particle beam device for inspection of a specimen with an array of primary charged particle beamlets | |
TWI713883B (en) | Charged particle beam device, aperture arrangement for a charged particle beam device, and method for operating a charged particle beam device | |
JP6684586B2 (en) | Multi charged particle beam device | |
TWI732305B (en) | Charged particle beam device, field curvature corrector, and methods of operating a charged particle beam device | |
US8089056B2 (en) | Projection lens arrangement | |
US8502176B2 (en) | Imaging system | |
KR101481950B1 (en) | Projection lens arrangement | |
EP2402979B1 (en) | Projection lens arrangement | |
US8445869B2 (en) | Projection lens arrangement | |
US8890094B2 (en) | Projection lens arrangement | |
KR20210016064A (en) | Apparatus of Plural Charged-Particle Beams | |
JP2001052998A (en) | Method and device for imaging charged particle beam, and exposure device therefor | |
TWI412053B (en) | A multiple beam charged particle optical system and lens structure with at lwast two electrodes | |
KR20050102688A (en) | Apparatus for generating a plurality of beamlets | |
JPH09245708A (en) | Electron beam exposure device and exposure method thereof | |
US6593686B1 (en) | Electron gun and electron beam drawing apparatus using the same | |
CN117099183B (en) | High throughput multiple electron beam system | |
JP2020047589A (en) | Multi-electron beam imaging device with improved performance | |
JPH09288991A (en) | Electron beam exposing device | |
JP4156862B2 (en) | Electron beam exposure apparatus and electron beam processing apparatus | |
JP3728315B2 (en) | Electron beam exposure apparatus, electron beam exposure method, and device manufacturing method | |
GB2369241A (en) | Charged particle beam exposure device with aberration correction | |
JP2024530855A (en) | High resolution, multi-electron beam device | |
TW202405855A (en) | Method and system of image-forming multi-electron beams | |
TW202242938A (en) | Flood column and charged particle apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070807 |