WO2007129376A1 - Electronic lens - Google Patents

Electronic lens Download PDF

Info

Publication number
WO2007129376A1
WO2007129376A1 PCT/JP2006/308728 JP2006308728W WO2007129376A1 WO 2007129376 A1 WO2007129376 A1 WO 2007129376A1 JP 2006308728 W JP2006308728 W JP 2006308728W WO 2007129376 A1 WO2007129376 A1 WO 2007129376A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
electron
electrode
correction
lens according
Prior art date
Application number
PCT/JP2006/308728
Other languages
French (fr)
Japanese (ja)
Inventor
Keizo Yamada
Minoru Matsuzawa
Original Assignee
Topcon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corporation filed Critical Topcon Corporation
Priority to PCT/JP2006/308728 priority Critical patent/WO2007129376A1/en
Publication of WO2007129376A1 publication Critical patent/WO2007129376A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/143Permanent magnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/145Combinations of electrostatic and magnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/121Lenses electrostatic characterised by shape

Definitions

  • the present invention relates to an electron lens used in a microscope or an evaluation apparatus using an electron beam.
  • an electron beam has a wavelength shorter than that of visible light
  • an electron microscope using an electron beam can observe and measure a finer object than when an optical microscope is used.
  • the resolution of an actual electron microscope can only reach a very rough resolution compared to the wavelength of the electron beam used. For example, even if an electron beam with a wavelength of 0.1 A or less is used, a resolution of about 20 A can be obtained.
  • the electron lens for controlling the electron beam to converge to a desired spot diameter has various large aberrations. For this reason, even if the electron beam is converged, it has a wide force ⁇ corresponding to the magnitude of the aberration, and the resolution becomes rougher than the value that the diffraction limit force is calculated.
  • an electrostatic lens cannot converge an electron beam having a very large spherical aberration compared to an electromagnetic lens to a diameter of several nanometers
  • an electromagnetic lens is generally used as an objective lens of an electron microscope. Have been used.
  • the operation of the conventional electrostatic lens will be described with reference to the sectional view of the conventional electrostatic lens shown in FIG. 19A and the plan view shown in FIG. 19B.
  • the electron beam EB19 is incident on the objective lens 190 with a large diameter.
  • the electron beam EB19 incident on the objective lens 190 is subjected to a force by an electric field formed by the electrode 192 applied with the voltage 195a and the electrode 193 applied with the voltage 195b, and is perpendicular to the equipotential surface 196. It passes through the electrostatic lens while changing the traveling direction, converges to the electron beam diameter 199, and reaches the sample surface (not shown).
  • the equipotential surface 196 has a spherical shape, it acts as a spherical electron lens. As a result, the spherical aberration of the electron lens increases, and the converged electron beam diameter 199 is large. Diameter.
  • One of the methods is a method using a multipole, which is a technique for correcting aberrations of an electron lens using a correction device having 12 poles (see, for example, Patent Document 1).
  • Another method is a technique for reducing chromatic aberration, and a method using a spectroscope is known. This is a method of reducing the energy dispersion of the electron beam and eliminating the chromatic aberration by separating the electron beam separately from each other.
  • the substrate current generated when an electron beam is irradiated onto a sample is measured, the fine structure of the sample is evaluated, and the semiconductor device manufacturing process is performed.
  • a semiconductor device measuring apparatus (EBSCOPE) to be managed is used (for example, see Patent Document 2).
  • EBSCOPE semiconductor device measuring apparatus
  • this apparatus unlike a conventional electron microscope, it is necessary to irradiate a sample with an electron beam having various beam shapes in which the electron beam is converged to the extreme or is forced.
  • it is necessary to measure the acceleration voltage of the electron beam in various ways.
  • an electromagnetic lens is used as the objective lens.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-302359
  • Patent Document 2 JP 2006-19761
  • the semiconductor device measuring apparatus as described above has recently been used in the mass production process in a semiconductor device manufacturing factory, and is used for fine structure inspection of semiconductor devices. It is increasingly used to determine process conditions. When considering such an application, the problem that the operation of the correction device is complicated and expensive is a very large practical obstacle.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a small electron lens having a small aberration and capable of changing characteristics without using a complicated correction device in a short time.
  • an electron lens according to the present invention includes a correction mechanism that corrects the aberration of an electrostatic lens.
  • the electron lens according to the present invention is characterized in that the correction mechanism is a correction electrode disposed in the vicinity of the objective lens.
  • the electron lens according to the present invention is characterized in that the correction electrode has a circular hole.
  • the electron lens according to the present invention is characterized in that the correction electrode has a hole having a shape other than a circle.
  • the electron lens according to the present invention is characterized in that the shape of the hole of the correction electrode is different from the shape of the objective lens.
  • the electron lens according to the present invention is characterized in that the correction mechanism is an electrode through which an electron formed of a conductive material can pass.
  • the electrode deforms the shape of the conductive material. It is characterized by being formed.
  • the electron lens according to the present invention is characterized in that the electrode has a Fresnel lens shape.
  • the electron lens according to the present invention is characterized in that a plurality of the electrodes in the shape of a Fresnel lens are arranged in the incident direction of the electron beam.
  • the electron beam scanning apparatus is characterized in that the electron beam scanning range is expanded using an electron lens.
  • the correction mechanism includes a correction electrode having a set of electrode forces facing a direction substantially perpendicular to the incident direction of the electron beam in the incident direction of the electron beam. It is a multistage lens arranged in a plurality of sets, and is characterized by comprising voltage application means for applying independent voltages to the correction electrodes.
  • the electron lens according to the present invention is characterized in that the arrangement angles of the correction electrodes of each set constituting the multistage lens are different.
  • the correction mechanism includes a plurality of correction electrodes having a circular hole and having a concave portion or a convex portion on the circumference of the hole in the incident direction of the electron beam.
  • This is a multi-stage lens superposed on each other, characterized in that it comprises voltage application means for applying independent voltages to the correction electrodes, and the correction electrodes are rotatable.
  • the electron lens according to the present invention has a plurality of focal points.
  • the electron lens according to the present invention is characterized in that the plurality of focal points exist at different positions.
  • the electron lens according to the present invention is characterized in that the plurality of focal points have a long focal length and a short focal length, respectively.
  • the electronic lens according to the present invention includes a correction mechanism that corrects the aberration of the magnetic lens.
  • the electronic lens according to the present invention includes a plurality of ring-shaped fixed magnets having different sizes. It is characterized by being arranged concentrically.
  • the electron lens according to the present invention is characterized in that the correction mechanism has a plurality of small magnets arranged in a plane.
  • the electronic lens according to the present invention further includes an electrostatic lens, and the magnetic lens and the electrostatic lens are arranged so that the incident directions of the electron beams are the same.
  • the electron lens according to the present invention is characterized in that the correction mechanism includes a plurality of holes formed in a support substrate and magnets in one or more of the holes.
  • the electron lens according to the present invention is characterized in that the correction mechanism is constituted by a magnet that can rewrite polarity, strength, or both.
  • the electron lens according to the present invention is characterized in that the polarity and / or strength of the magnet is rewritten using a magnetic head.
  • the electron lens according to the present invention is characterized in that the magnetic lens is configured by discretely changing the strength of the magnet.
  • the electron lens according to the present invention is characterized in that the magnetic lens is configured by continuously changing the strength of the magnet.
  • the electron beam apparatus according to the present invention is characterized by using the electron lens.
  • FIG. 1 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view (A) and a plan view (B) of an electron lens according to a first modification of the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a second modification of the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a third modification of the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a fourth modification of the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view (A) and a plan view of an electron lens according to a fifth modification of the first embodiment of the present invention. It is a surface view (B).
  • FIG. 7 is a sectional view (A) and a plan view (B) of an electron lens according to a sixth modification of the first embodiment of the present invention.
  • FIG. 8 is a plan view (A) and a plan view separately displayed for each correction electrode in order to show the arrangement angle of each correction electrode of the electron lens according to the seventh modification of the first embodiment of the present invention. (B) and sectional view (C).
  • FIG. 9 is a cross-sectional view (A) and a plan view (B) of an electron lens according to an eighth modification of the first embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of an electron lens in which two electron Fresnel lenses of the present invention are stacked.
  • FIG. 11 is a cross-sectional view of an electron beam scanning device of an electron microscope using the electron lens shown in FIG.
  • FIG. 12 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a second embodiment of the present invention.
  • FIG. 13 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a first modification of the second embodiment of the present invention.
  • FIG. 14 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a second modification of the second embodiment of the present invention.
  • FIG. 15 is a plan view of an electron lens and a writing device according to a third modification of the second embodiment of the present invention.
  • FIG. 16 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a third embodiment of the present invention.
  • FIG. 17 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a first modification of the third embodiment of the present invention.
  • FIG. 18 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a second modification of the third embodiment of the present invention.
  • FIG. 19 is a cross-sectional view (A) and a plan view (B) of a conventional electrostatic lens.
  • FIG. 1A shows a cross-sectional view of the electron lens according to the first embodiment of the present invention
  • FIG. 1B shows a plan view.
  • this electron lens is composed of an objective lens (main lens) 10, a correction electrode 11, an electrode 12, an electrode 13, an insulator 14, and a hole 18. Operates as an electric lens.
  • the electrode 12 is formed with an objective lens (main lens) 10 formed of a circular cavity.
  • a correction electrode 11 having a hole 18 made of a circular cavity smaller than the size of the objective lens (main lens) 10 is provided at the center of the electrode 13 so as to be electrically insulated from the electrode 13.
  • the correction electrode 11 can locally apply a potential in the vicinity of the objective lens (main lens) 10.
  • the objective lens (main lens) 10 and the correction electrode 11 are arranged in this order from the incident direction of the electron beam EB1.
  • An insulator 14 is sandwiched between the electrode 12 and the electrode 13, and the distance between the electrode 12 and the electrode 13 can be changed by changing the thickness of the insulator 14.
  • a correction electrode 11 is installed at the center of the objective lens (main lens) 10 and a hole 18 is formed at the center of the correction electrode 11.
  • the correction electrode 11 has a voltage 15a force electrode 12 has a voltage 15b force electrode 13 has a voltage 15 c is applied to each.
  • Each voltage may be any voltage.
  • the voltage of the correction electrode 11 (voltage 15a) and the voltage of the electrode 13 (voltage 15c) may be the same voltage as the electrode 12, the ground potential, or a floating state. .
  • a correction electrode 11 having a predetermined potential is disposed in the vicinity of the objective lens (main lens) 10. Therefore, the shape of the equipotential surface 16 near the objective lens (main lens) 10 is different from the equipotential surface shape of the objective lens (main lens) 10 alone due to the influence of the potential of the correction electrode 11. It becomes. That is, the potential of the correction electrode 11 affects the conventional equipotential surface formed by the electrodes 12 and 13 to which a voltage is applied, and changes the shape of the equipotential surface.
  • the shape of the equipotential surface 16 can be freely changed by adjusting the size, shape, position or potential of the correction electrode 11.
  • the shape of the equipotential surface 16 in this electron lens is deformed by the presence of the correction electrode 11, and the curvature of each part becomes smaller. ing.
  • the spherical aberration is smaller than that of the conventional electrostatic lens.
  • an electron lens in which the shape of the electron lens (that is, the equipotential surface shape) is changed to an aspheric shape other than the spherical shape can be realized.
  • the degree of the aspherical surface of the electron lens shape (equipotential surface shape) can be changed.
  • the shape of the electron lens (equipotential surface shape) is the spherical shape that the objective lens (main lens) 10 has alone, but the electrode distance is reduced from there.
  • an electron lens is obtained in which the potential of the correction electrode 11 is changed from an equipotential surface shape near the objective lens (main lens) 10 to an aspherical shape.
  • the electron beam EB1 incident on the electron lens is affected by the electric field generated by the correction electrode 11, the electrode 12, and the electrode 13, and changes the traveling direction perpendicular to the equipotential surface 16. While converging the beam diameter, the beam heads toward the hole 18 provided in the correction electrode 11. Only the electron beam EB1 passing through the hole 18 passes through the electron lens and reaches the surface of the sample (not shown).
  • the electron beam EB1 has smaller spherical aberration than the conventional equipotential surface 17. Since it converges under the influence of the aspheric equipotential surface 16, it converges to a smaller spot diameter than before.
  • this electron lens does not require a large current to flow unlike conventional electromagnetic lenses, it does not generate heat, and the electron lens characteristics can be changed instantaneously simply by changing the voltage applied to each electrode.
  • the force using the correction electrode 11 having the hole 18 at the center part is not necessarily required to have a hole. What is necessary is just to be able to arrange the electrode which can do things.
  • the position where the correction electrode 11 is provided may be on the objective lens (main lens) 10 or on both the bottom and top and bottom as described in the present embodiment.
  • the electron beam EB1 first passes through the hole 18 provided at the center of the correction electrode 11, so that The beam diameter is equal to or smaller than the diameter of the hole 18 and enters the objective lens (main lens) 10. Therefore, the electron beam EB1 passes only through the central region where the spherical aberration is small, among the equipotential surfaces 16 where the spherical aberration is small due to the aspherical shape, and the diameter of the electron beam EB1 is small. Can be converged more effectively and smaller.
  • the correction electrode 11 is easily contaminated because it is irradiated with the electron beam EB1. Therefore, a heating means such as a heater may be built in to heat the correction electrode 11.
  • FIG. 2A shows a cross-sectional view of an electron lens according to a first modification of the first embodiment of the present invention
  • FIG. 2B shows a plan view.
  • EBSCOPE semiconductor device measurement system
  • SEM general scanning electron microscopes
  • the aberration component is different from that of the circular cross-sectional shape. Therefore, it is necessary to correct the aberration in accordance with the cross-sectional shape of the electron beam.
  • the required electron beam cross-sectional shape is a star shape as an example. I will explain.
  • the present electron lens is an electrostatic lens having a structure in which the correction electrode 21 and the hole 28 are changed from the first embodiment.
  • a correction electrode 21 having a star-shaped hole 28 smaller than the size of the objective lens (main lens) 10 is provided in the center of the electrode 13 so as to be electrically insulated from the electrode 13.
  • the correction electrode 21 can locally apply a potential in the vicinity of the objective lens (main lens) 10.
  • the objective lens (main lens) 10 and the correction electrode 21 are arranged in this order from the incident direction of the electron beam EB2.
  • a correction electrode 21 is installed at the center of the objective lens (main lens) 10, and a star-shaped hole 28 is formed at the center.
  • a voltage is applied to each electrode as in the first embodiment.
  • This modification is characterized in that the shape of the hole 28 formed in the correction electrode 21 is a star shape.
  • the equipotential surface 26 forming the electron lens is affected by the star shape and is different from the conventional equipotential surface 17.
  • the electron beam EB2 that passes through the star-shaped tip of the hole 28 and the electron beam EB2 that passes through the central part differ in the strength of the electric field received by the electrons, and receive an aspheric lens action.
  • the trajectory of the electron beam EB2 changes. Therefore, the aberration of the electron lens can be controlled by controlling the hole size of the correction electrode 21, the size of the correction electrode, the distance between the correction electrode and the objective lens, the potential of the correction electrode, and the like.
  • the characteristics of the electron lens can be corrected accordingly.
  • a correction electrode in which a star-shaped hole is formed is shown as an example, but a correction electrode in which a V-shaped non-circular hole is formed can be used.
  • FIG. 3A shows a cross-sectional view of an electron lens according to a second modification of the first embodiment of the present invention
  • FIG. 3B shows a plan view.
  • a conventional electron microscope uses an electron beam having a circular cross-sectional shape.
  • the child lens also had a circular shape.
  • the semiconductor device measuring apparatus (EBSCOPE) described above uses electron beams having various cross-sectional shapes, a circular electron lens is not always appropriate.
  • This modification is characterized in that the shape of the objective lens is changed to a non-circular shape.
  • the shape of the correction electrode is also changed to a star shape similar to the first modification described above.
  • the present electron lens includes an objective lens (main lens) 30, a correction electrode 31, an electrode 32, an electrode 33, and a hole 38 from the first embodiment. It is an electrostatic lens with a modified structure.
  • An objective lens (main lens) 30 consisting of a star-shaped cavity is formed on the electrode 32, and the center of the electrode 33 is provided with a star-shaped hole 38 that is smaller than the size of the objective lens (main lens) 30
  • the electrode 31 is provided so as to be electrically insulated from the electrode 33.
  • the correction electrode 31 can locally apply a potential in the vicinity of the objective lens (main lens) 30.
  • the objective lens (main lens) 30 and the correction electrode 31 are arranged in this order from the incident direction of the electron beam EB3. Looking at the surface force of this electron lens, as shown in Fig. 3B, a correction electrode 31 is installed at the center of the star-shaped objective lens (main lens) 30, and a star-shaped hole 38 is formed at the center. !
  • a voltage is applied to each electrode as in the first embodiment.
  • an objective lens having a star shape or other shapes By using an objective lens having a star shape or other shapes in this way, it becomes possible to obtain an electron lens shape (shape of equipotential surface 36) different from a conventional circular objective lens.
  • the aberration of the electron lens can be corrected.
  • Only the objective lens may have a non-circular shape such as a star shape.
  • FIG. 4A shows a cross-sectional view of an electron lens according to a third modification of the first embodiment of the present invention
  • FIG. 4B shows a plan view.
  • This modification uses isoelectric to determine the lens characteristics of an electrostatic lens by using mesh electrodes.
  • the feature is that the shape of potential plane (potential surface) can be designed freely.
  • this electron lens is composed of an objective lens (main lens) 40, a mesh electrode 41, an electrode 42, and an electrode 43, and operates as an electrostatic lens.
  • An objective lens (main lens) 40 having a rectangular cavity force is formed on the electrode 42, and a mesh electrode 41 is electrically insulated from the electrode 42 inside the objective lens (main lens) 40. It is prepared.
  • the electrode 43 is also provided with a rectangular cavity having the same size as the objective lens (main lens) 40.
  • the mesh electrode 41 is formed of a conductive metal or a material in which nickel, copper, silver, gold, or the like is attached or coated on a fiber, and an externally applied voltage is generated on the surface of the mesh electrode 41. It can be made.
  • the mesh electrode 41 has a mesh structure and is an electrode that allows electrons to pass through the gaps between the electrodes.
  • the mesh electrode 41, the objective lens (main lens) 40, and the electrode 43 are arranged in this order from the incident direction of the electron beam EB4.
  • a mesh electrode 41 is placed inside a rectangular objective lens (main lens) 40, and the mesh electrode 41 is connected to the pad electrode 47 by a lead wire 48. Electrically connected. By applying a voltage through the pad electrode 47 and changing the applied voltage, the surface potential of the mesh electrode 41 can be changed.
  • each voltage is applied to the mesh electrode 41, and the voltage 45b is applied to the electrode 42 and the voltage 45a is applied to the electrode 43.
  • Each voltage may be an arbitrary voltage.
  • a conventional electrostatic lens is made of a circular planar electrode or cylinder having a space for allowing an electron beam to pass therethrough, and an electrostatic lens is formed by applying a voltage thereto. For this reason, the equipotential surface that the electrostatic lens can produce is a function only of the distance from the circular electrode, which causes aberrations in the electrostatic lens.
  • the shape of the equipotential surface 46 that functions as an electrostatic lens can be freely controlled by changing the shape of the mesh electrode 41, so that an electronic lens having an arbitrary characteristic that does not cause various aberrations is manufactured. It is possible to do.
  • the electron beam incident on the electron lens passes through the hole of the mesh and is converged while being influenced by the equipotential surface formed by the mesh electrode 41.
  • a voltage is applied only to the force mesh electrode 41, which shows an example in which a voltage is also applied to the electrode 42 and the electrode 43, and it can be operated as an electrostatic lens with corrected aberration.
  • the shape of the mesh electrode 41 is optimally designed to have the required electrostatic lens characteristics using electron beam simulation or the like.
  • the kamaboko type electrostatic lens shown in this modification forms a curved lens surface in the uniaxial direction (long side direction of the electrode 42), and can be used when the electron beam shape is changed only in the uniaxial direction. .
  • this is effective when the cross-sectional shape of the incident electron beam is distorted into an ellipse and converted into a true circle.
  • FIG. 5A shows a cross-sectional view of an electron lens according to a fourth modification of the first embodiment of the present invention
  • FIG. 5B shows a plan view.
  • the same reference numerals are given to the same elements as those shown in FIGS. 1 to 4 and the description thereof is omitted.
  • the mesh electrode is curved with respect to two XY axes orthogonal to each other.
  • the present electron lens includes an objective lens (main lens) 50, a mesh electrode 51, an electrode 52, and an electrode from the third modification of the first embodiment.
  • This is an electrostatic lens having a structure modified from 53.
  • the electrode 52 is formed with an objective lens (main lens) 50 formed of a circular cavity. Inside the objective lens (main lens) 50, a mesh electrode 51 is electrically insulated from the electrode 52. Is provided.
  • the electrode 53 is also provided with a circular cavity having the same size as the objective lens (main lens) 50.
  • the mesh electrode 51 is formed of the same material as that of the third modification of the first embodiment.
  • the mesh electrode 51 has a mesh structure and is an electrode through which electrons can pass through the gaps between the electrodes.
  • a mesh electrode 51 is installed on the top of a circular objective lens (main lens) 50, and the mesh electrode 51 is filtered by a lead wire 58.
  • the lead electrode 47 is electrically connected.
  • the large and small circular electrodes constituting the mesh electrode 51 are supported by the lead wires 58 to form a three-dimensional shape.
  • the shape of the equipotential surface 56 can be changed.
  • the mesh electrode 51 is obtained by performing a simulation or the like to obtain a shape that minimizes aberrations such as spherical aberration, and is manufactured according to the shape.
  • one mesh electrode may be sufficient for correction, or several mesh electrodes for correction with other shapes are stacked in the vertical direction. In some cases, it can be corrected.
  • it is necessary to obtain the optimum values by simulation and use them in combination with respect to the spacing between mesh electrodes, the size of the mesh electrodes, the curvature, the applied voltage, etc.
  • FIG. 6A shows a sectional view of an electron lens according to a fifth modification of the first embodiment of the present invention
  • FIG. 6B shows a plan view.
  • elements common to the components shown in FIGS. 1, 4, and 5 are given the same reference numerals, and descriptions thereof are omitted.
  • This embodiment is characterized in that an electron Fresnel lens is formed by bending a lens surface and planarizing the lens surface as is generally known for optical lenses.
  • a Fresnel lens has a structure in which a normal lens is disassembled into minute parts, and only the curved surface part of the lens is taken out, and the position is shifted and flattened so that the lens height is almost constant.
  • the present electronic lens is an electrostatic lens having a structure in which the mesh electrode 61 is changed from the fourth modification of the first embodiment.
  • the objective lens (main lens) 50 is provided inside the mesh electrode 611S electrode 52 and is electrically insulated! /
  • the mesh electrode 61 is formed of the same material as that of the third modification of the first embodiment.
  • the mesh electrode 61 has a mesh structure, and is an electrode through which electrons can pass through the gaps between the electrodes.
  • a mesh electrode 61 is installed inside a circular objective lens (main lens) 50, and the mesh electrode 61 is filtered by a lead wire 68.
  • the lead electrode 47 is electrically connected.
  • the large and small electrodes constituting the mesh electrode 61 are supported by lead wires 68.
  • the shape of the equipotential surface 66 can be changed.
  • the surface of the electron lens can be planarized in the same manner as the optical Fresnel lens, and spherical aberration can be reduced by adjusting the angle of each electrode.
  • the recent electron beam exposure technology it is possible to add an order of several nanometers, so that it is possible to manufacture an electron Fresnel lens that has such a lens step size and can be regarded as almost flat.
  • FIG. 7A is a cross-sectional view of an electron lens according to a sixth modification of the first embodiment of the present invention
  • FIG. 7B is a plan view.
  • elements common to the components shown in FIGS. 1, 4, and 5 are given the same reference numerals, and descriptions thereof are omitted.
  • This modification is characterized in that an independent voltage is applied to each electrode forming the electron lens.
  • this electron lens is an electrostatic lens having a structure in which the electrodes 71a, 71b, 71c, and 7 Id are changed from the fourth modification of the first embodiment. is there.
  • the objective lens (main lens) 50 circular electrodes 71a, 71b, 71c, 71d 1S electrodes 52 of different sizes are formed so as to be electrically insulated.
  • the electrodes 71a, 71b, 71c, 71d are made of the same material as in the third modification, and a voltage applied from the outside can be generated on the surfaces of the electrodes 71a, 71b, 71c, 71d.
  • circular electrodes 71a, 71b, 71c, 71d with different diameters are installed on the upper part of a circular objective lens (main lens) 50 as shown in FIG. 7B.
  • the lead electrodes are electrically connected to the pad electrodes 77a, 77b, 77c, and 77d, respectively.
  • the electrodes 71a, 71b, 71c, 71d are supported by an insulating support member 79 to form a three-dimensional shape.
  • the electrodes 71a, 71b, 71c, and 71d are respectively subjected to voltages 78a, 78b, 78c, and 78d with a force S.
  • Each voltage may be an arbitrary voltage.
  • the shape of the equipotential surface 76 is obtained.
  • the desired equipotential surface shape can be obtained by freely changing the shape, and as a result, the aberration can be reduced.
  • the equipotential surface shape can be changed instantaneously by changing the applied voltage. For example, when the acceleration voltage of the electron beam is changed, the aberration component changes. By changing the equipotential surface shape, aberration correction can be optimized dynamically.
  • various shapes such as a lattice shape and a dot shape can be used as the shape of the force electrode, which shows concentric electrodes as an example.
  • FIG. 8A is a plan view that is displayed separately for each correction electrode in order to show the arrangement angle of each correction electrode of the electron lens according to the seventh modification of the first embodiment of the present invention.
  • 8B is a plan view
  • Fig. 8C is a cross-sectional view.
  • correction electrode has a multi-stage configuration, and the arrangement angle of each correction electrode is changed little by little at each stage so that the voltage applied to each correction electrode can be freely changed.
  • FIG. 8A is a plan view that is displayed separately for each correction electrode in order to show the arrangement angle of each correction electrode.
  • the correction electrode 80b is offset by an angle of 8 lb
  • the correction electrode 80c is offset by an angle of 81c
  • the correction electrode 80d is relative to the position of the correction electrode 80a consisting of a pair of opposing metal electrode forces. Is shifted by an angle of 8 Id
  • the correction electrode 80e is shifted by an angle of 81 e
  • these five correction electrodes are sandwiched by insulators 82 as shown in the sectional view of FIG. .
  • the shape shown in the plan view of FIG. 8B is obtained.
  • Voltages 83a, 83b, 83c, 83d, and 83e are applied to the correction electrodes 80a, 80b, 80c, 80d, and 80e, respectively, and these voltages can be changed arbitrarily.
  • the voltage applied to the correction electrode at each stage is changed according to the magnitude of the asymmetric component of the electron lens, and control is performed so as to cancel the asymmetric component.
  • the axis of the ellipse has various rotation axes, but if the correction electrode shown in this modification is used, correction is performed in the direction along the axis of the ellipse.
  • the oval shape is true It can be converted to a circular shape.
  • the aberration can be corrected by applying another independent voltage to each set of the two correction electrodes shown in FIG.
  • a voltage is applied to only one of the five correction electrodes (correction electrode 80b)
  • only electrons near the correction electrode are affected, and the electron beam EB8 is slightly bent.
  • the energy of a part of the electron beam component finally converged to one point can be changed and the electron beam trajectory can be changed, so that aberration can be corrected.
  • FIG. 9A shows a cross-sectional view of an electron lens according to an eighth modification of the first embodiment of the present invention
  • FIG. 9B shows a plan view.
  • This modification is characterized in that an asymmetric shape is preliminarily arranged on the multistage correction electrodes constituting the electron lens.
  • this electron lens is provided with a correction electrode 91, a correction electrode 92, and a correction electrode 93 in this order also in the incident direction force of the electron beam EB9.
  • Each is a multistage lens provided with an insulator 94.
  • Each correction electrode can rotate independently and can be fixed at a desired position.
  • Each correction electrode is provided with an objective lens 90 formed of a circular cavity at the center, and the electron beam EB9 is converged under the influence of an electric field when passing through the cavity. An independent voltage is applied to each correction electrode 91, 92, 93 (not shown).
  • the correction electrode 91 has an asymmetric shape 95 in the vicinity of the objective lens 90.
  • the other correction electrodes 92 and 93 have a similar asymmetric shape (not shown).
  • the asymmetric shape 95 has a structure in which a part of the correction electrode is concave. Alternatively, a part of the correction electrode may be convex.
  • the equipotential surface generated in the electron lens becomes an aspheric surface due to the asymmetric shape 95 in each correction electrode, and the shape of the equipotential surface can be changed by rotating each correction electrode.
  • each of the correction electrodes 91, 92, and 93 is independently rotated little by little, and while measuring the aberration of the electron lens, the aberration is measured. Find the position of the correction electrode that minimizes. Since each correction electrode has an asymmetric component, the aberration of the electron lens can be set to the minimum depending on its rotation angle and combination. After the position where the aberration is minimum is determined, each correction electrode is fixed at a fixed position by using a not-shown cuff mechanism (position stop) attached to the electron lens.
  • Fig. 10 shows a cross-sectional view of an electron lens in which two electron Fresnel lenses are stacked.
  • the electron lens includes a first electron Fresnel lens 100, a second electron Fresnel lens 101, an electrode 102, an electrode 103, and an insulator 104.
  • a voltage 105a is applied to the electrode 102 and a voltage 105b is applied to the electrode 103, and each voltage can be arbitrarily changed.
  • Electron beam source 106 force The emitted electron beam EB10 is first incident on the first electron Fresnel lens 100 and converged, and then incident on the second electron Fresnel lens 101 and converged to the required spot diameter.
  • the characteristics of the electron lens can be changed by changing the voltage applied to the electrodes 102 and 103.
  • the angle of each electrode of the electron Fresnel lens can be freely changed as necessary.
  • An electronic Fresnel lens can reduce spherical aberration, but a single electronic Fresnel lens may not be able to correct all aberrations.
  • aberration correction can be performed more accurately by using a plurality of electron Fresnel lenses like the present electron lens.
  • aberration correction along the X axis of the electron beam can be performed by the first electron Fresnel lens 100
  • aberration correction along the Y axis of the electron beam can be performed by the second electron Fresnel lens 101.
  • the cross-sectional shape of the electron beam is not necessarily circular, so it is necessary to correct different aberrations for the X and Y axes. It is effective in such a case.
  • FIG. 11 shows a cross-sectional view of an electron beam scanning device of an electron microscope using the electron lens shown in FIG.
  • elements common to the components shown in FIG. 10 described above are assigned the same reference numerals, and descriptions thereof are omitted.
  • This electron beam scanning apparatus also includes an electron beam source 116, an extraction electrode 117, an aperture 118, a deflection electrode 119a, a deflection electrode 119b, and the electron lens and force shown in FIG.
  • the electron beam EB11 emitted from the electron beam source 116 is accelerated by the high voltage applied to the extraction electrode 117, the electron beam width is limited by the aperture 118, and the parallel beam is applied to the deflecting electrode. Led.
  • the deflection electrode 119a deflects the electron beam E Bl1 so as to move back and forth, and the deflection electrode 119b deflects the electron beam so as to move left and right.
  • the deflected electron beam EB11 is incident on an electron lens composed of the first Fresnel lens 100 and the second Fresnel lens 101.
  • the incident electron beam EB11 is focused on the surface of a sample (not shown) or a necessary place by an electron lens.
  • the strength of the electron lens is determined by the voltage applied to the electrodes 102 and 103. Electron Fresnel lenses have very small spherical aberration, so the electron beam maintains a constant focal length even when the electron beam is scanned over a wide area and converged using all regions of the electron Fresnel lens. Then, it is converged to exactly one point and translated on the sample surface. Therefore, in the SEM using the conventional electromagnetic lens, if the position of the sample was fixed, high-resolution observation was possible only in the range of a few microns. It becomes possible to observe a wide range with high resolution.
  • FIG. 12A shows a sectional view of an electron lens according to the second embodiment of the present invention
  • FIG. 12B shows a plan view.
  • the same reference numerals are given to the same elements as those shown in FIGS. 1, 4, and 5, and the description thereof is omitted.
  • This embodiment includes a plurality of spatially arranged permanent magnets or rewritable magnets, Alternatively, the magnetic lens is formed of an electromagnet.
  • this electron lens is a magnetic lens having a structure in which local magnets 121 are arranged instead of the mesh electrodes 51 of the fourth modification of the first embodiment.
  • the magnet 121 can be made of a material that can be easily magnetized by an external magnetic field to become a permanent magnet, such as rare earth magnets such as ferrite and neodymium samarium, as well as cobalt and nickel.
  • rare earth magnets such as ferrite and neodymium samarium
  • cobalt and nickel cobalt and nickel.
  • several very small electromagnets with a size of several microns or less may be created instead of permanent magnets.
  • a concentric local magnet 121 is installed inside a circular objective lens (main lens) 50, and each local magnet is supported by a support line 12. Supported by 9.
  • the present embodiment is characterized in that the magnetic lens is composed of a plurality of concentric magnets to correct aberrations that occur in the conventional magnetic lens.
  • the interaction between the magnetic field generated from the coil and the electron beam is determined by the distance from the coil. For this reason, only an electron lens having a magnetic field strength distribution that is uniquely determined by the distance from the coil and the shape of the magnetic circuit can be formed, and this is the cause of various aberrations due to spherical aberration. .
  • an electron lens having a magnetic field distribution 126 that is the sum of magnetic fields created by a plurality of magnets can be obtained.
  • FIG. 13A is a sectional view of an electron lens according to a first modification of the second embodiment of the present invention
  • FIG. 13B is a plan view.
  • elements common to the constituent elements shown in FIGS. 1, 4, and 5 are given the same reference numerals, and descriptions thereof are omitted.
  • This modification is characterized in that the electron lens is configured by spatially arranging magnets concentrically.
  • the present electronic lens is a magnetic lens having a structure in which the local magnet 131 is changed from the second embodiment.
  • a plurality of local magnets 131 are installed inside a circular objective lens (main lens) 50, and each is supported by a support line 139. ing.
  • the local magnet 131 may be a small fixed magnet, or may be manufactured using a magnetic film formed on a plastic film such as a magnetic tape. If such a material is used, a magnet can be formed at an arbitrary location.
  • the magnetic force, size, arrangement position, and polarity of the local magnet 131 are determined so as to realize an ideal magnetic field distribution using simulation or the like. In this modification, a magnetic field distribution having an arbitrary intensity and polarity can be realized, so that other aberrations than just spherical aberration can be corrected.
  • Each local magnet 131 may have a different magnetic force depending on an arrangement position where the same magnetic force may be sufficient.
  • a voltage may be applied to the electrodes 52 and 53.
  • the electron beam is affected by both the magnetic field and the electric field, and more advanced correction can be performed.
  • FIG. 14A is a sectional view of an electron lens according to a second modification of the second embodiment of the present invention
  • FIG. 14B is a plan view.
  • a magnetic lens in which magnets are spatially arranged is shown.
  • the lens acts as a result of the generated magnetic field and converges or diverges.
  • the aberration can be corrected by changing the arrangement position, strength, and polarity of the magnet 142.
  • various materials such as metal, ceramic, or organic material can be used as the support substrate 140.
  • the shape of the hole 141 shown in FIG. 14 may be a circular force square, a polyhedron, or a mesh.
  • FIG. 15 shows a plan view of an electron lens and a writing device according to a third modification of the second embodiment of the present invention.
  • This modification shows a magnetic lens in which micro magnets are locally arranged.
  • this electron lens is composed of a circular magnet 151, and a cavity provided in the center serves as the objective lens 150.
  • the circular magnet 151 includes a plurality of micro magnets 152 that are locally magnetized to n poles and a plurality of micro magnets 153 that are magnetized to s poles.
  • a writing control device 156 and a magnetic head 157 used for writing the magnet are provided, and writing is performed based on the digital signal 155.
  • the signal 154 is used as an example of the digital signal 155
  • the n pole and the s pole are alternately written to the same magnitude with the same intensity, and the magnet 151 shown in the figure is obtained.
  • the micromagnet When the size is in millimeters, the micromagnet can be mechanically arranged using a robot such as a chip mounter. However, if the size is smaller than that, it is difficult to mechanically arrange the micromagnet. Therefore, in order to place a magnet with a size of a micron or smaller, prepare a material in which a magnetic material is formed in a thin film as described above, and use a magnetic head 157 for the material. Write the information.
  • the technology used for the magnetic disk can be applied to the magnetic head 157, and an electromagnetic magnetic head or a phase change magnetic writing method using a laser may be used.
  • a write current corresponding to magnet arrangement information that realizes a magnetic field distribution necessary to realize desired electron lens characteristics is magnetically generated. This is done by flowing through the head 157.
  • a magnetic material that can be used for writing a magnetic material generally used in a magnetic disk or a magnetic tape can be used, and a magnet having a size of a submicron unit is provided at an arbitrary interval. It becomes possible to arrange.
  • the direction of magnetizing can be selected from an in-plane direction or an arbitrary direction.
  • As a method of changing the strength of the magnetic force it can be performed discretely (digitally) by changing the ratio of magnets having a certain polarity or magnetic force arranged in a unit area.
  • the magnetic force of each magnet is made equal, and a magnetic lens that adjusts the strength of the magnetic field discretely (digitally) according to the number of magnets or the surface density Hope to do.
  • FIG. 15 only an example of forming a magnet on a circular material such as a magnetic disk is shown, but a magnet may be written on a two-dimensional plane.
  • an electron microscope device or a semiconductor measurement device (EBSCOPE)
  • FIG. 16A shows a cross-sectional view of an electron lens according to the third embodiment of the present invention
  • FIG. 16B shows a plan view.
  • the same reference numerals are given to the same elements as those shown in FIGS. 1, 4, and 5, and the description thereof is omitted.
  • an example is shown in which an equipotential surface is arbitrarily designed by devising the shape of the mesh electrode to constitute an electron lens having two focal points.
  • the conventional electron lens has only one focal point, but in this embodiment, two or more focal points can be freely obtained.
  • an electronic lens having a compound eye structure simulating the eyes of a dragonfly can be constructed.
  • the present electron lens is a fourth modification of the first embodiment.
  • the electrostatic lens has a structure in which the mesh electrode 161 is changed.
  • a mesh electrode 161 is formed in the objective lens (main lens) 50 so as to be electrically insulated from the electrode 52.
  • the mesh electrode 161 has two convex portions.
  • the mesh electrode 161 is formed of the same material as that of the third modification of the first embodiment, and a voltage to which an external force is applied can be generated on the surface of the mesh electrode 161.
  • a mesh electrode 161 is installed inside a circular objective lens (main lens) 50, and the mesh electrode 161 is padded by a lead wire 168.
  • the electrode 47 is electrically connected.
  • the large and small circular electrodes constituting the mesh electrode 161 are supported by the lead wires 168 to form a three-dimensional shape.
  • a measuring apparatus using an electron beam such as SEM has one electron beam source as shown in Fig. 8, and the generated electron beam is converged to a diameter of several nm. SEM images are obtained by irradiating the sample surface and scanning it two-dimensionally in the XY direction.
  • the electron beam measuring device since the electron beam source has a lifetime, and it is often necessary to replace the electron beam source, the electron beam measuring device must be brought down during the replacement, and measurement cannot be performed.
  • the electron beams EB16a and EB16b have the same Cf standing at the position where the force incident on the electron lens from different positions converges. Furthermore, by changing the shape of the convex portion of the mesh electrode 161, it is possible to change the shape of the equipotential surface and correct the aberration.
  • a separate electron beam source is installed at the focal point position, operated one by one, and when the operating electron beam source is broken, it is switched to the next electron beam source and used in order. This makes it possible to always use the measuring device regardless of the lifetime of the electron beam source.
  • FIG. 17A is a sectional view of an electron lens according to a first modification of the third embodiment of the present invention
  • FIG. 17B is a plan view.
  • elements common to the constituent elements shown in FIGS. 1, 4, and 5 are given the same reference numerals, and descriptions thereof are omitted.
  • This modification is characterized in that an electron lens having a plurality of focal lengths is realized in one electron lens.
  • this electron lens is an electrostatic lens having a structure in which the mesh electrode 171 is changed from the third embodiment.
  • a mesh electrode 171 is formed in the objective lens (main lens) 50 so as to be electrically insulated from the electrode 52.
  • the mesh electrode 171 has three convex portions.
  • the mesh electrode 171 is formed of the same material as that of the third modification of the first embodiment, and a voltage to which an external force is applied can be generated on the surface of the mesh electrode 171.
  • a mesh electrode 171 is installed inside a circular objective lens (main lens) 50, and the mesh electrode 171 is padded by a lead wire 178.
  • the electrode 47 is electrically connected.
  • the large and small circular electrodes constituting the mesh electrode 171 are supported by the lead wires 178 to form a three-dimensional shape.
  • the electron beam EB 17a incident on the center of the electron lens has a focal length that converges on the sample surface, not shown.
  • the electron beams EB17b and EB17c incident on the outer periphery of the electron lens have a longer focal length than the focal length of the electron beam EB17a.
  • the electron beam is controlled so as to be focused and converged at the central portion of the sample, and is controlled so as not to be converged by shifting the focus at the peripheral portion.
  • the shape of the convex portion at the center of the mesh electrode 171 the shape of the equipotential surface can be changed, and the aberration of the electron beam converged on the center of the sample can be corrected.
  • FIG. 18A is a cross-sectional view of an electron lens according to a second modification of the third embodiment of the present invention
  • FIG. 18B is a plan view.
  • this electron lens has the same structure as that of the first modification of the third embodiment shown in FIG. The difference is that the size of the outer shape is smaller than the size of the outer shape of the electrode 183.
  • a pad electrode 187a is provided above the electrode 182 and a pad electrode 187b is provided above the electrode 183 so as to be electrically connected to each electrode.
  • a pad electrode 187c electrically connected to the mesh electrode 181 is provided on the electrode 182 so as to be electrically insulated from the electrode 182.
  • an electron lens having characteristics required for an evaluation apparatus using an electron beam such as a semiconductor device measurement apparatus (EBSCOPE) can be obtained.
  • EBSCOPE semiconductor device measurement apparatus
  • the electrostatic lens is small, but the aberration is large! /. Therefore, the electrostatic lens according to the present invention has a small aberration because the electrostatic lens of the present invention has a small aberration. It can be used as an objective lens for such applications. Therefore, it is possible to produce SEMs and process evaluation devices that are smaller and have higher resolution observation than before.
  • the electron beam column can also be reduced in size, and it is a very strong electron beam column that is not affected by external noise (especially vibration, electromagnetic waves, geomagnetism). Can be obtained.
  • an electron lens with negative aberrations that not only yields an electron lens with no aberrations, or an electron lens that can change aberrations and lens characteristics with respect to the time axis. It is possible to get.
  • the method of the present invention can be applied to all electron lenses regardless of the power use described as an example of the objective lens that needs to consider the aberration most.
  • various electrode and magnet arrangement methods other than those described in the embodiment and changes in the polarity of the magnets also have the effect of controlling aberrations. It is also effective to use a combination of each electrostatic lens and magnetic lens described in the present embodiment. In manufacturing lenses, it is important to use the latest micromachining technology to further reduce aberrations.
  • the present invention is applied to an electron lens used in a microscope or an evaluation apparatus using an electron beam. It is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

Provided is a small-size electronic lens having a small aberration for use in a microscope and an evaluation device using an electronic beam. The electronic lens is characterized in that its characteristic can be modified in a short time without using a complicated correction device. In the electronic lens, a correction electrode (11) is arranged in the vicinity of objective lenses (12, 13) as electrostatic lenses for correcting the aberration. Alternatively, a correction mechanism formed by a magnet is arranged in the vicinity of the objective lenses as magnetic lenses for correcting the aberration.

Description

明 細 書  Specification
電子レンズ  Electronic lens
技術分野  Technical field
[0001] 本発明は、電子ビームを利用した顕微鏡や評価装置に使用される電子レンズに関 する。  [0001] The present invention relates to an electron lens used in a microscope or an evaluation apparatus using an electron beam.
背景技術  Background art
[0002] 電子ビームは可視光線よりも波長が短いため、電子ビームを利用した電子顕微鏡 を用いると、光学顕微鏡を用いた場合よりも微小な物体を観察し、測定することが出 来る。し力しながら、現実の電子顕微鏡の分解能は、利用している電子ビームの波長 と比較して非常に荒い分解能にまでしか到達出来ていない。例えば、 0. 1A以下の 波長の電子ビームを使用しても、 20 A程度の分解能し力得られて 、な 、。  [0002] Since an electron beam has a wavelength shorter than that of visible light, an electron microscope using an electron beam can observe and measure a finer object than when an optical microscope is used. However, the resolution of an actual electron microscope can only reach a very rough resolution compared to the wavelength of the electron beam used. For example, even if an electron beam with a wavelength of 0.1 A or less is used, a resolution of about 20 A can be obtained.
その理由は、電子ビームを制御して所望のスポット径に収束させるための電子レン ズカ 各種の大きな収差を持っているためである。そのため、電子ビームは収束され ても収差の大きさに応じた広力 ^を持ってしまい、分解能が回折限界力も計算される 値よりも荒くなつてしまう。  The reason is that the electron lens for controlling the electron beam to converge to a desired spot diameter has various large aberrations. For this reason, even if the electron beam is converged, it has a wide force ^ corresponding to the magnitude of the aberration, and the resolution becomes rougher than the value that the diffraction limit force is calculated.
[0003] ところで、代表的な電子レンズには、静電レンズと電磁レンズ(又は磁気レンズ)の 2 種類があり、両者共に上述の収差を持つ。しかし、静電レンズは、電磁レンズと比較 して球面収差が非常に大きぐ電子ビームを数ナノメートルの径に収束する事が出来 ないため、一般的に電子顕微鏡の対物レンズには電磁レンズが使用されてきた。 ここで、図 19Aに示した従来の静電レンズの断面図と図 19Bに示した平面図を用 いて、従来の静電レンズの動作を説明する。まず、電子ビーム EB19が、太い径を持 ち対物レンズ 190に入射する。そして、対物レンズ 190に入射した電子ビーム EB19 は、電圧 195a力印カロされた電極 192と、電圧 195bが印加された電極 193とで形成 される電界により力を受け、等電位面 196と垂直に進行方向を変化させながら静電レ ンズを通過し、電子ビーム径 199に収束されて図示しない試料表面に到達する。し 力しながら、等電位面 196は球面の形状を持っために球面電子レンズとして働き、そ の結果として電子レンズの球面収差が大きくなり、収束された電子ビーム径 199は大 きな径となる。 By the way, there are two types of typical electronic lenses, electrostatic lenses and electromagnetic lenses (or magnetic lenses), both of which have the above-mentioned aberrations. However, since an electrostatic lens cannot converge an electron beam having a very large spherical aberration compared to an electromagnetic lens to a diameter of several nanometers, an electromagnetic lens is generally used as an objective lens of an electron microscope. Have been used. Here, the operation of the conventional electrostatic lens will be described with reference to the sectional view of the conventional electrostatic lens shown in FIG. 19A and the plan view shown in FIG. 19B. First, the electron beam EB19 is incident on the objective lens 190 with a large diameter. The electron beam EB19 incident on the objective lens 190 is subjected to a force by an electric field formed by the electrode 192 applied with the voltage 195a and the electrode 193 applied with the voltage 195b, and is perpendicular to the equipotential surface 196. It passes through the electrostatic lens while changing the traveling direction, converges to the electron beam diameter 199, and reaches the sample surface (not shown). However, since the equipotential surface 196 has a spherical shape, it acts as a spherical electron lens. As a result, the spherical aberration of the electron lens increases, and the converged electron beam diameter 199 is large. Diameter.
[0004] 一方、電磁レンズに関しては、近年、収差を改善するための方法が導入され始めて いる。その 1つの方法は多極子を用いる方法であり、 12極からなる補正装置を用いて 電子レンズの収差を補正する技術である(例えば、特許文献 1参照)。もう 1つの方法 は色収差を小さくする技術で、分光器を用いる方法が知られている。これは、ェネル ギ一別に電子ビームを分離する事によって、電子ビームのエネルギー分散を小さくし 、色収差を無くす方法である。  On the other hand, with respect to electromagnetic lenses, in recent years, methods for improving aberrations have begun to be introduced. One of the methods is a method using a multipole, which is a technique for correcting aberrations of an electron lens using a correction device having 12 poles (see, for example, Patent Document 1). Another method is a technique for reducing chromatic aberration, and a method using a spectroscope is known. This is a method of reducing the energy dispersion of the electron beam and eliminating the chromatic aberration by separating the electron beam separately from each other.
[0005] また、電子顕微鏡を改良した技術として、近年、電子ビームを試料 (半導体基板)に 照射した際に生じる基板電流を測定して、試料の微細構造を評価し、半導体デバイ ス製造工程を管理する半導体デバイス測定装置 (EBSCOPE)が使用されて 、る ( 例えば、特許文献 2参照)。この装置では、従来の電子顕微鏡とは異なり、電子ビー ムを極限に収束させたり、ぼ力したりした種々のビーム形状を持つ電子ビームを試料 に対して照射する必要がある。さらに、電子ビームの加速電圧を様々に変化させて測 定を行う必要もある。この装置においても、対物レンズには電磁レンズが用いられて いる。  [0005] In addition, as a technique for improving the electron microscope, in recent years, the substrate current generated when an electron beam is irradiated onto a sample (semiconductor substrate) is measured, the fine structure of the sample is evaluated, and the semiconductor device manufacturing process is performed. A semiconductor device measuring apparatus (EBSCOPE) to be managed is used (for example, see Patent Document 2). In this apparatus, unlike a conventional electron microscope, it is necessary to irradiate a sample with an electron beam having various beam shapes in which the electron beam is converged to the extreme or is forced. In addition, it is necessary to measure the acceleration voltage of the electron beam in various ways. In this apparatus, an electromagnetic lens is used as the objective lens.
特許文献 1:特開 2005 - 302359号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-302359
特許文献 2:特開 2006— 19761号公報  Patent Document 2: JP 2006-19761
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 前述の様に、電磁レンズに補正装置を付加して収差を小さくする試みがなされてい るが、その場合、電子顕微鏡は複雑な構造となり、かつ、収差を完全に補正するため には、補正装置の熟練した操作技術が必要になるという問題がある。さらに、電子顕 微鏡のコストが高くなり、利便性も低下するという問題もある。 [0006] As described above, attempts have been made to reduce aberration by adding a correction device to an electromagnetic lens. In this case, however, the electron microscope has a complicated structure and in order to completely correct the aberration. There is a problem that a skillful operation technique of the correction device is required. In addition, there is a problem that the cost of the electron microscope increases and convenience decreases.
また、電磁レンズに補正装置を付加する事により電子ビーム鏡筒は非常に大きくな り、その結果として振動やノイズに弱ぐ電磁障害を起こしやすいという副次的な性能 劣化が起こる問題もある。  In addition, by adding a correction device to the electromagnetic lens, the electron beam column becomes very large. As a result, there is a problem in that secondary performance deterioration is likely to occur, which is likely to cause electromagnetic interference that is susceptible to vibration and noise.
[0007] 前述の様な半導体デバイス測定装置 (EBSCOPE)は、近年になって半導体デバ イス製造工場における量産工程内で使用され、半導体デバイスの微細構造検査や プロセス条件の決定に使用されるようになってきている。このような用途を考えた場合 、補正装置の操作が複雑でコストが高いという問題は、非常に大きな実用上の障害と なる。 [0007] The semiconductor device measuring apparatus (EBSCOPE) as described above has recently been used in the mass production process in a semiconductor device manufacturing factory, and is used for fine structure inspection of semiconductor devices. It is increasingly used to determine process conditions. When considering such an application, the problem that the operation of the correction device is complicated and expensive is a very large practical obstacle.
また、従来の電磁レンズでは、半導体デバイス測定装置 (EBSCOPE)に必要とさ れる多種多様な電子ビームを短時間に得る事が困難であった。その理由は、電磁レ ンズの動作には大電流を必要とするために大きな発熱が生じており、電磁レンズの 特性変更により流れる電流量が変化して発熱量も変化する力 電磁レンズの熱応答 特性が悪 、ために、その熱量が安定して電磁レンズの特性が定常状態になるまでに 1時間程度の時間が必要であるという問題があるためである。  Also, with conventional electromagnetic lenses, it has been difficult to obtain a wide variety of electron beams required for semiconductor device measurement equipment (EBSCOPE) in a short time. The reason is that a large amount of heat is generated due to the large current required for the operation of the electromagnetic lens, and the amount of current that flows changes due to changes in the characteristics of the electromagnetic lens. This is because the characteristics are bad, and it takes about one hour to stabilize the amount of heat and make the characteristics of the electromagnetic lens steady.
[0008] この問題を回避するために、対物レンズとして静電レンズを用いる方法が考えられ る力 前述の通り静電レンズは球面収差が非常に大きいという問題がある。 [0008] In order to avoid this problem, a force using a method using an electrostatic lens as the objective lens is considered. As described above, there is a problem that the electrostatic lens has a very large spherical aberration.
本発明は上記事情を考慮してなされたもので、その目的は、複雑な補正装置を用 いることなぐ特性変更が短時間に行え、収差の小さな小型の電子レンズを提供する ことである。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a small electron lens having a small aberration and capable of changing characteristics without using a complicated correction device in a short time.
課題を解決するための手段  Means for solving the problem
[0009] 上記の課題を解決するため、本発明に係る電子レンズは、静電レンズの収差を補 正する補正機構を備える。 [0009] In order to solve the above-described problems, an electron lens according to the present invention includes a correction mechanism that corrects the aberration of an electrostatic lens.
また、本発明に係る電子レンズは、前記補正機構が、対物レンズ近傍に配置した補 正電極である事を特徴とする。  The electron lens according to the present invention is characterized in that the correction mechanism is a correction electrode disposed in the vicinity of the objective lens.
また、本発明に係る電子レンズは、前記補正電極が、円形のホールを有する事を特 徴とする。  The electron lens according to the present invention is characterized in that the correction electrode has a circular hole.
[0010] また、本発明に係る電子レンズは、前記補正電極が、円形以外の形状のホールを 有する事を特徴とする。  [0010] Further, the electron lens according to the present invention is characterized in that the correction electrode has a hole having a shape other than a circle.
また、本発明に係る電子レンズは、前記補正電極が有するホールの形状が、前記 対物レンズの形状と相互に異なっている事を特徴とする。  The electron lens according to the present invention is characterized in that the shape of the hole of the correction electrode is different from the shape of the objective lens.
また、本発明に係る電子レンズは、前記補正機構が、導電性材料で形成された電 子の通過可能な電極である事を特徴とする。  The electron lens according to the present invention is characterized in that the correction mechanism is an electrode through which an electron formed of a conductive material can pass.
[0011] また、本発明に係る電子レンズは、前記電極が、前記導電性材料の形状を変形す ることによって形成された事を特徴とする。 [0011] In the electron lens according to the present invention, the electrode deforms the shape of the conductive material. It is characterized by being formed.
また、本発明に係る電子レンズは、前記電極が、フレネルレンズの形状である事を 特徴とする。  Moreover, the electron lens according to the present invention is characterized in that the electrode has a Fresnel lens shape.
また、本発明に係る電子レンズは、フレネルレンズの形状の前記電極を、電子ビー ムの入射方向に複数個配置した事を特徴とする。  The electron lens according to the present invention is characterized in that a plurality of the electrodes in the shape of a Fresnel lens are arranged in the incident direction of the electron beam.
また、本発明に係る電子ビーム走査装置は、電子レンズを用いて電子ビーム走査 範囲を拡大した事を特徴とする。  The electron beam scanning apparatus according to the present invention is characterized in that the electron beam scanning range is expanded using an electron lens.
[0012] また、本発明に係る電子レンズは、前記補正機構が、電子ビームの入射方向とほぼ 垂直の方向に向かい合った一組の電極力 構成される補正電極を、電子ビームの入 射方向に複数組配置した多段レンズであり、該補正電極にそれぞれ独立の電圧を印 加する電圧印加手段を備える事を特徴とする。  [0012] In the electron lens according to the present invention, the correction mechanism includes a correction electrode having a set of electrode forces facing a direction substantially perpendicular to the incident direction of the electron beam in the incident direction of the electron beam. It is a multistage lens arranged in a plurality of sets, and is characterized by comprising voltage application means for applying independent voltages to the correction electrodes.
また、本発明に係る電子レンズは、前記多段レンズを構成する各組の前記補正電 極の配置角度が、それぞれ異なる事を特徴とする。  In addition, the electron lens according to the present invention is characterized in that the arrangement angles of the correction electrodes of each set constituting the multistage lens are different.
[0013] また、本発明に係る電子レンズは、前記補正機構が、円形のホールを有し、該ホー ルの円周上に凹部または凸部を有する補正電極を、電子ビームの入射方向に複数 個重ね合わせた多段レンズであり、該補正電極にそれぞれ独立の電圧を印加する 電圧印加手段を備え、該補正電極がそれぞれ回転可能である事を特徴とする。  [0013] In the electron lens according to the present invention, the correction mechanism includes a plurality of correction electrodes having a circular hole and having a concave portion or a convex portion on the circumference of the hole in the incident direction of the electron beam. This is a multi-stage lens superposed on each other, characterized in that it comprises voltage application means for applying independent voltages to the correction electrodes, and the correction electrodes are rotatable.
[0014] また、本発明に係る電子レンズは、複数の焦点を持つ事を特徴とする。  [0014] Further, the electron lens according to the present invention has a plurality of focal points.
また、本発明に係る電子レンズは、前記複数の焦点が、それぞれ異なった位置に 存在する事を特徴とする。  The electron lens according to the present invention is characterized in that the plurality of focal points exist at different positions.
また、本発明に係る電子レンズは、前記複数の焦点が、それぞれ長い焦点距離と 短!ヽ焦点距離を有する事を特徴とする。  The electron lens according to the present invention is characterized in that the plurality of focal points have a long focal length and a short focal length, respectively.
[0015] また、本発明に係る電子レンズは、磁気レンズの収差を補正する補正機構を備える また、本発明に係る電子レンズは、前記補正機構が、大きさの異なる複数のリング 形状の固定磁石を同心円状に配置したものである事を特徴とする。  In addition, the electronic lens according to the present invention includes a correction mechanism that corrects the aberration of the magnetic lens. The electronic lens according to the present invention includes a plurality of ring-shaped fixed magnets having different sizes. It is characterized by being arranged concentrically.
また、本発明に係る電子レンズは、前記補正機構が、複数の小型の磁石を平面状 に配置したものである事を特徴とする。 [0016] また、本発明に係る電子レンズは、さらに静電レンズを備え、前記磁気レンズと静電 レンズを電子ビームの入射方向が同一となるように配置した事を特徴とする。 The electron lens according to the present invention is characterized in that the correction mechanism has a plurality of small magnets arranged in a plane. [0016] The electronic lens according to the present invention further includes an electrostatic lens, and the magnetic lens and the electrostatic lens are arranged so that the incident directions of the electron beams are the same.
また、本発明に係る電子レンズは、前記補正機構が、支持基板に複数のホールを 形成して 1つ以上の該ホールに磁石を備えたものである事を特徴とする。  The electron lens according to the present invention is characterized in that the correction mechanism includes a plurality of holes formed in a support substrate and magnets in one or more of the holes.
また、本発明に係る電子レンズは、前記補正機構が、極性、または強度、またはそ れら両方を書き換え可能な磁石によって構成されたものである事を特徴とする。  In addition, the electron lens according to the present invention is characterized in that the correction mechanism is constituted by a magnet that can rewrite polarity, strength, or both.
[0017] また、本発明に係る電子レンズは、磁気ヘッドを用いて、前記磁石の極性、または 強度、またはそれら両方を書き換える事を特徴とする。 [0017] Further, the electron lens according to the present invention is characterized in that the polarity and / or strength of the magnet is rewritten using a magnetic head.
また、本発明に係る電子レンズは、前記磁石の強度を離散的に変化させて前記磁 気レンズを構成する事を特徴とする。  The electron lens according to the present invention is characterized in that the magnetic lens is configured by discretely changing the strength of the magnet.
また、本発明に係る電子レンズは、前記磁石の強度を連続的に変化させて前記磁 気レンズを構成する事を特徴とする。  The electron lens according to the present invention is characterized in that the magnetic lens is configured by continuously changing the strength of the magnet.
また、本発明に係る電子ビーム装置は、前記電子レンズを使用した事を特徴とする  The electron beam apparatus according to the present invention is characterized by using the electron lens.
発明の効果 The invention's effect
[0018] 本発明によれば、複雑な補正装置を用いることなぐ特性変更が短時間に行え、収 差の非常に小さな小型の電子レンズを得ることが出来る。  [0018] According to the present invention, it is possible to change characteristics without using a complicated correction device in a short time, and it is possible to obtain a small electron lens having a very small convergence.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の第一の実施形態に係る電子レンズの断面図 (A)と平面図(B)である。  FIG. 1 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a first embodiment of the present invention.
[図 2]本発明の第一の実施形態の第一の変形例に係る電子レンズの断面図 (A)と平 面図(B)である。  FIG. 2 is a sectional view (A) and a plan view (B) of an electron lens according to a first modification of the first embodiment of the present invention.
[図 3]本発明の第一の実施形態の第二の変形例に係る電子レンズの断面図 (A)と平 面図(B)である。  FIG. 3 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a second modification of the first embodiment of the present invention.
[図 4]本発明の第一の実施形態の第三の変形例に係る電子レンズの断面図 (A)と平 面図(B)である。  FIG. 4 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a third modification of the first embodiment of the present invention.
[図 5]本発明の第一の実施形態の第四の変形例に係る電子レンズの断面図 (A)と平 面図(B)である。  FIG. 5 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a fourth modification of the first embodiment of the present invention.
[図 6]本発明の第一の実施形態の第五の変形例に係る電子レンズの断面図 (A)と平 面図(B)である。 FIG. 6 is a cross-sectional view (A) and a plan view of an electron lens according to a fifth modification of the first embodiment of the present invention. It is a surface view (B).
[図 7]本発明の第一の実施形態の第六の変形例に係る電子レンズの断面図 (A)と平 面図(B)である。  FIG. 7 is a sectional view (A) and a plan view (B) of an electron lens according to a sixth modification of the first embodiment of the present invention.
[図 8]本発明の第一の実施形態の第七の変形例に係る電子レンズの各補正電極の 配置角度を示すために補正電極毎に分離して表示した平面図 (A)と平面図 (B)と断 面図(C)である。  FIG. 8 is a plan view (A) and a plan view separately displayed for each correction electrode in order to show the arrangement angle of each correction electrode of the electron lens according to the seventh modification of the first embodiment of the present invention. (B) and sectional view (C).
[図 9]本発明の第一の実施形態の第八の変形例に係る電子レンズの断面図 (A)と平 面図(B)である。  FIG. 9 is a cross-sectional view (A) and a plan view (B) of an electron lens according to an eighth modification of the first embodiment of the present invention.
[図 10]本発明の電子フレネルレンズを 2つ重ねた電子レンズの断面図である。  FIG. 10 is a cross-sectional view of an electron lens in which two electron Fresnel lenses of the present invention are stacked.
[図 11]図 10に示した電子レンズを利用した電子顕微鏡の電子ビーム走査装置の断 面図である。  11 is a cross-sectional view of an electron beam scanning device of an electron microscope using the electron lens shown in FIG.
[図 12]本発明の第二の実施形態に係る電子レンズの断面図 (A)と平面図(B)である  FIG. 12 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a second embodiment of the present invention.
[図 13]本発明の第二の実施形態の第一の変形例に係る電子レンズの断面図 (A)と 平面図(B)である。 FIG. 13 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a first modification of the second embodiment of the present invention.
[図 14]本発明の第二の実施形態の第二の変形例に係る電子レンズの断面図 (A)と 平面図(B)である。  FIG. 14 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a second modification of the second embodiment of the present invention.
[図 15]本発明の第二の実施形態の第三の変形例に係る電子レンズと書き込み装置 の平面図である。  FIG. 15 is a plan view of an electron lens and a writing device according to a third modification of the second embodiment of the present invention.
[図 16]本発明の第三の実施形態に係る電子レンズの断面図 (A)と平面図(B)である  FIG. 16 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a third embodiment of the present invention.
[図 17]本発明の第三の実施形態の第一の変形例に係る電子レンズの断面図 (A)と 平面図(B)である。 FIG. 17 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a first modification of the third embodiment of the present invention.
[図 18]本発明の第三の実施形態の第二の変形例に係る電子レンズの断面図 (A)と 平面図(B)である。  FIG. 18 is a cross-sectional view (A) and a plan view (B) of an electron lens according to a second modification of the third embodiment of the present invention.
[図 19]従来の静電レンズの断面図 (A)と平面図(B)である。  FIG. 19 is a cross-sectional view (A) and a plan view (B) of a conventional electrostatic lens.
符号の説明 Explanation of symbols
10 対物レンズ(主レンズ) 11 補正電極 10 Objective lens (main lens) 11 Correction electrode
12 電極  12 electrodes
13 電極  13 electrodes
14 絶縁体  14 Insulator
15 電圧  15 voltage
16 等電位面  16 equipotential surface
17 従来の等電位面  17 Conventional equipotential surface
18 ホール  18 holes
EB1 電子ビーム  EB1 electron beam
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、図面を参照して本発明を実施するための最良の形態について説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
<第一の実施形態 >  <First embodiment>
図 1Aに、本発明の第一の実施形態に係る電子レンズの断面図を、図 1Bに平面図 を示す。  FIG. 1A shows a cross-sectional view of the electron lens according to the first embodiment of the present invention, and FIG. 1B shows a plan view.
図 1 Aに示す様に、本電子レンズは、対物レンズ(主レンズ) 10と、補正電極 11と、 電極 12と、電極 13と、絶縁体 14と、ホール 18とから構成されており、静電レンズとし て動作する。電極 12には円形の空洞カゝらなる対物レンズ (主レンズ) 10が形成されて いる。電極 13の中心部には対物レンズ(主レンズ) 10の大きさよりも小さい円形の空 洞からなるホール 18を有する補正電極 11が、電極 13とは電気的に絶縁されて備え られている。この補正電極 11は、対物レンズ(主レンズ) 10の近傍に局部的に電位を 与える事が出来る。  As shown in FIG. 1A, this electron lens is composed of an objective lens (main lens) 10, a correction electrode 11, an electrode 12, an electrode 13, an insulator 14, and a hole 18. Operates as an electric lens. The electrode 12 is formed with an objective lens (main lens) 10 formed of a circular cavity. A correction electrode 11 having a hole 18 made of a circular cavity smaller than the size of the objective lens (main lens) 10 is provided at the center of the electrode 13 so as to be electrically insulated from the electrode 13. The correction electrode 11 can locally apply a potential in the vicinity of the objective lens (main lens) 10.
[0022] そして、電子ビーム EB1の入射方向から、対物レンズ(主レンズ) 10と、補正電極 1 1とがこの順に配置されている。電極 12と電極 13の間には、絶縁体 14が挟まれてお り、絶縁体 14の厚さを変化させる事により電極 12と電極 13との距離を変化させる事 が出来る。本電子レンズを上面から見ると、図 1Bに示す様に、対物レンズ (主レンズ) 10の中心に補正電極 11が設置され、その補正電極 11の中心にホール 18が形成さ れている。  Then, the objective lens (main lens) 10 and the correction electrode 11 are arranged in this order from the incident direction of the electron beam EB1. An insulator 14 is sandwiched between the electrode 12 and the electrode 13, and the distance between the electrode 12 and the electrode 13 can be changed by changing the thickness of the insulator 14. When this electron lens is viewed from above, as shown in FIG. 1B, a correction electrode 11 is installed at the center of the objective lens (main lens) 10 and a hole 18 is formed at the center of the correction electrode 11.
[0023] また、補正電極 11には電圧 15a力 電極 12には電圧 15b力 電極 13には電圧 15 cがそれぞれ印加されている。なお、それぞれの電圧は任意の電圧で良ぐ例えば、 補正電極 11の電圧(電圧 15a)や電極 13の電圧(電圧 15c)は、電極 12と同じ電圧、 又はグランド電位、又はフローティング状態でも良 、。 In addition, the correction electrode 11 has a voltage 15a force electrode 12 has a voltage 15b force electrode 13 has a voltage 15 c is applied to each. Each voltage may be any voltage. For example, the voltage of the correction electrode 11 (voltage 15a) and the voltage of the electrode 13 (voltage 15c) may be the same voltage as the electrode 12, the ground potential, or a floating state. .
[0024] 次に、本電子レンズの動作を説明する。  Next, the operation of the present electron lens will be described.
本実施形態に係る電子レンズでは、対物レンズ (主レンズ) 10の近傍に所定の電位 を有する補正電極 11が配置されている。そのため、対物レンズ(主レンズ) 10の近傍 の等電位面 16の形状は、補正電極 11の電位の影響を受けて、対物レンズ(主レンズ ) 10が単独で持つ等電位面形状とは異なるものとなる。即ち、電圧の印加された電極 12と電極 13により形成される従来の等電位面に対して、補正電極 11の電位が影響 を及ぼし、その等電位面形状を変化させる。  In the electron lens according to the present embodiment, a correction electrode 11 having a predetermined potential is disposed in the vicinity of the objective lens (main lens) 10. Therefore, the shape of the equipotential surface 16 near the objective lens (main lens) 10 is different from the equipotential surface shape of the objective lens (main lens) 10 alone due to the influence of the potential of the correction electrode 11. It becomes. That is, the potential of the correction electrode 11 affects the conventional equipotential surface formed by the electrodes 12 and 13 to which a voltage is applied, and changes the shape of the equipotential surface.
その結果、補正電極 11のサイズや形状、位置または電位などを調節する事によつ て、等電位面 16の形状を自由に変更する事が可能となる。補正電極 11が存在しな い場合の従来の等電位面 17と比較すると、本電子レンズにおける等電位面 16の形 状は、補正電極 11の存在によって変形しており、各部の曲率が小さくなつている。そ の結果、従来の静電レンズよりも球面収差が小さくなつている。  As a result, the shape of the equipotential surface 16 can be freely changed by adjusting the size, shape, position or potential of the correction electrode 11. Compared to the conventional equipotential surface 17 in the absence of the correction electrode 11, the shape of the equipotential surface 16 in this electron lens is deformed by the presence of the correction electrode 11, and the curvature of each part becomes smaller. ing. As a result, the spherical aberration is smaller than that of the conventional electrostatic lens.
[0025] 即ち、図 1に示した構造とする事で、電子レンズの形状 (すなわち等電位面形状)を 球面形状以外の非球面形状に変化させた電子レンズを実現する事が出来る。例え ば、対物レンズ(主レンズ) 10と補正電極 11の間隔を変化させると、電子レンズの形 状 (等電位面形状)の非球面の程度を変化させる事が出来る。つまり、それらの間隔 が無限遠では、電子レンズの形状 (等電位面形状)は対物レンズ (主レンズ) 10が単 独で存在する場合に有する球面形状であるが、そこから電極間隔を近づけてくると、 補正電極 11の電位が対物レンズ (主レンズ) 10近傍の等電位面形状を非球面形状 に変化させた電子レンズが得られる。  That is, with the structure shown in FIG. 1, an electron lens in which the shape of the electron lens (that is, the equipotential surface shape) is changed to an aspheric shape other than the spherical shape can be realized. For example, if the distance between the objective lens (main lens) 10 and the correction electrode 11 is changed, the degree of the aspherical surface of the electron lens shape (equipotential surface shape) can be changed. In other words, when the distance between them is infinity, the shape of the electron lens (equipotential surface shape) is the spherical shape that the objective lens (main lens) 10 has alone, but the electrode distance is reduced from there. Then, an electron lens is obtained in which the potential of the correction electrode 11 is changed from an equipotential surface shape near the objective lens (main lens) 10 to an aspherical shape.
[0026] 本電子レンズに入射された電子ビーム EB1は、補正電極 11と電極 12と電極 13と により生じている電界の影響を受け、等電位面 16に対して垂直に進行方向を変化さ せビーム径を収束させながら、補正電極 11に設けられたホール 18に向かう。そして、 ホール 18を通過する電子ビーム EB1のみが本電子レンズを通過して図示しない試 料表面に到達する。電子ビーム EB1は、従来の等電位面 17よりも球面収差の小さい 非球面の等電位面 16の影響を受けて収束されるため、従来よりも小さいスポット径に 収束される。 [0026] The electron beam EB1 incident on the electron lens is affected by the electric field generated by the correction electrode 11, the electrode 12, and the electrode 13, and changes the traveling direction perpendicular to the equipotential surface 16. While converging the beam diameter, the beam heads toward the hole 18 provided in the correction electrode 11. Only the electron beam EB1 passing through the hole 18 passes through the electron lens and reaches the surface of the sample (not shown). The electron beam EB1 has smaller spherical aberration than the conventional equipotential surface 17. Since it converges under the influence of the aspheric equipotential surface 16, it converges to a smaller spot diameter than before.
また、本電子レンズでは、従来の電磁レンズの様に大電流を流す必要がないため 発熱が起こらず、各電極への印加電圧を変更するだけで電子レンズ特性が瞬間的 に変更出来る。  In addition, since this electron lens does not require a large current to flow unlike conventional electromagnetic lenses, it does not generate heat, and the electron lens characteristics can be changed instantaneously simply by changing the voltage applied to each electrode.
[0027] 上述の例では、中心部にホール 18を備えた補正電極 11を用いている力 必ずしも 穴が開いている必要はなぐ対物レンズ (主レンズ) 10の近傍の等電位面形状を変化 させる事の可能な電極を配置出来れば良い。  [0027] In the above-described example, the force using the correction electrode 11 having the hole 18 at the center part. The shape of the equipotential surface in the vicinity of the objective lens (main lens) 10 is not necessarily required to have a hole. What is necessary is just to be able to arrange the electrode which can do things.
また、補正電極 11を備える位置は、対物レンズ (主レンズ) 10の上、又は本実施形 態で説明した様に下、又は上下の両方でも良い。補正電極 11を対物レンズ (主レン ズ) 10の上、又は上下の両方に備えた場合には、電子ビーム EB1は、最初に補正電 極 11の中心に設けられたホール 18を通過するため、ホール 18の径以下のビーム径 となって対物レンズ(主レンズ) 10に入射する。よって、電子ビーム EB1は、非球面の 形状を持つことで球面収差が小さくなつている等電位面 16の中でも、特に球面収差 の小さな中心の領域のみを通過する事になり、電子ビーム EB1の径をより有効に小 さく収束する事が可能となる。  Further, the position where the correction electrode 11 is provided may be on the objective lens (main lens) 10 or on both the bottom and top and bottom as described in the present embodiment. When the correction electrode 11 is provided on the objective lens (main lens) 10 or both above and below, the electron beam EB1 first passes through the hole 18 provided at the center of the correction electrode 11, so that The beam diameter is equal to or smaller than the diameter of the hole 18 and enters the objective lens (main lens) 10. Therefore, the electron beam EB1 passes only through the central region where the spherical aberration is small, among the equipotential surfaces 16 where the spherical aberration is small due to the aspherical shape, and the diameter of the electron beam EB1 is small. Can be converged more effectively and smaller.
なお、補正電極 11は、電子ビーム EB1が照射されるために汚れやすい。そこで、 補正電極 11を加熱するためにヒーターなどの加熱手段を内蔵しても良 、。  The correction electrode 11 is easily contaminated because it is irradiated with the electron beam EB1. Therefore, a heating means such as a heater may be built in to heat the correction electrode 11.
[0028] <第一の実施形態の第一の変形例 > <First Modification of First Embodiment>
次に、図 2Aに本発明の第一の実施形態の第一の変形例に係る電子レンズの断面 図を、図 2Bに平面図を示す。同図において、上述の図 1に示した構成要素と共通す る要素には同一符号を付け、説明は省略する。  Next, FIG. 2A shows a cross-sectional view of an electron lens according to a first modification of the first embodiment of the present invention, and FIG. 2B shows a plan view. In the figure, elements common to the constituent elements shown in FIG.
前述した半導体デバイス測定装置 (EBSCOPE)では、一般的な SEM (Scanning E lectron Microscope)で利用されて 、る断面形状が円形の電子ビームのみではなく、 種々の特殊な断面形状を持った電子ビームを利用して試料の観察や測定を行う。し 力しながら、電子ビームの断面形状が異なると、収差の成分が円形の断面形状の場 合とは異なってくるので、その電子ビームの断面形状に合わせた収差の補正を行う 必要がある。本変形例では、必要な電子ビームの断面形状が星型の場合を一例とし て説明する。 In the above-mentioned semiconductor device measurement system (EBSCOPE), it is used in general scanning electron microscopes (SEM), and not only electron beams with a circular cross section but also various special cross section shapes are used. Use this to observe and measure the sample. However, if the cross-sectional shape of the electron beam is different, the aberration component is different from that of the circular cross-sectional shape. Therefore, it is necessary to correct the aberration in accordance with the cross-sectional shape of the electron beam. In this modification, the required electron beam cross-sectional shape is a star shape as an example. I will explain.
[0029] 図 2Aの断面図に示す様に、本電子レンズは、第一の実施形態から補正電極 21と 、ホール 28とを変更した構造を備える静電レンズである。電極 13の中心部には対物 レンズ(主レンズ) 10の大きさよりも小さい星形のホール 28を備える補正電極 21が、 電極 13とは電気的に絶縁されて備えられている。補正電極 21は、対物レンズ (主レ ンズ) 10の近傍に局部的に電位を与える事が出来る。  As shown in the cross-sectional view of FIG. 2A, the present electron lens is an electrostatic lens having a structure in which the correction electrode 21 and the hole 28 are changed from the first embodiment. A correction electrode 21 having a star-shaped hole 28 smaller than the size of the objective lens (main lens) 10 is provided in the center of the electrode 13 so as to be electrically insulated from the electrode 13. The correction electrode 21 can locally apply a potential in the vicinity of the objective lens (main lens) 10.
[0030] そして、電子ビーム EB2の入射方向から、対物レンズ(主レンズ) 10と、補正電極 2 1とがこの順に配置されている。本電子レンズを上面力も見ると、図 2Bに示す様に、 対物レンズ(主レンズ) 10の中心に補正電極 21が設置され、その中心に星型のホー ル 28が形成されている。 [0030] Then, the objective lens (main lens) 10 and the correction electrode 21 are arranged in this order from the incident direction of the electron beam EB2. When the top surface force of this electron lens is also seen, as shown in FIG. 2B, a correction electrode 21 is installed at the center of the objective lens (main lens) 10, and a star-shaped hole 28 is formed at the center.
各電極には、第一の実施形態と同様に電圧が印加されている。  A voltage is applied to each electrode as in the first embodiment.
[0031] 本変形例では、補正電極 21に形成されたホール 28の形状が星型である事が特徴 である。ホール 28の形状を星型にした場合、電子レンズを形成する等電位面 26は星 型の形状に影響され、従来の等電位面 17とは異なった形状となる。そして、ホール 2 8の星型形状の先端部分を通過する電子ビーム EB2と中心部分を通過する電子ビ ーム EB2とでは、電子の受ける電界の強度が異なり、非球面的なレンズ作用を受け、 電子ビーム EB2の軌跡が変化する。従って、補正電極 21のホールサイズ、補正電極 のサイズ、補正電極と対物レンズとの間隔、補正電極の電位などを制御する事により 、電子レンズの収差を制御する事が出来る。 [0031] This modification is characterized in that the shape of the hole 28 formed in the correction electrode 21 is a star shape. When the shape of the hole 28 is a star shape, the equipotential surface 26 forming the electron lens is affected by the star shape and is different from the conventional equipotential surface 17. The electron beam EB2 that passes through the star-shaped tip of the hole 28 and the electron beam EB2 that passes through the central part differ in the strength of the electric field received by the electrons, and receive an aspheric lens action. The trajectory of the electron beam EB2 changes. Therefore, the aberration of the electron lens can be controlled by controlling the hole size of the correction electrode 21, the size of the correction electrode, the distance between the correction electrode and the objective lens, the potential of the correction electrode, and the like.
電子ビームのエネルギーも補正電極に形成されたホール形状に依存して変化する ので、それによつて電子レンズの特性を補正する事が出来る。  Since the energy of the electron beam also changes depending on the shape of the hole formed in the correction electrode, the characteristics of the electron lens can be corrected accordingly.
なお、本変形例では一例として星型のホールが形成された補正電極を示したが、 Vヽかなる非円形の形状のホールが形成された補正電極を使用出来る。  In this modification, a correction electrode in which a star-shaped hole is formed is shown as an example, but a correction electrode in which a V-shaped non-circular hole is formed can be used.
[0032] <第一の実施形態の第二の変形例 > <Second Modification of First Embodiment>
次に、図 3Aに本発明の第一の実施形態の第二の変形例に係る電子レンズの断面 図を、図 3Bに平面図を示す。同図において、前述の図 1に示した構成要素と共通す る要素には同一符号を付け、説明は省略する。  Next, FIG. 3A shows a cross-sectional view of an electron lens according to a second modification of the first embodiment of the present invention, and FIG. 3B shows a plan view. In the figure, elements common to the constituent elements shown in FIG.
従来の電子顕微鏡では、円形の断面形状を有する電子ビームを使用するので、電 子レンズも円形の形状をしていた。しかしながら、前述した半導体デバイス測定装置 ( EBSCOPE)では、種々の断面形状を持つ電子ビームを利用するので、必ずしも円 形の電子レンズが適切とは限らない。本変形例では、対物レンズの形状を円形では ない形に変形した事が特徴である。また、補正電極の形状も、前述の第一の変形例 に類似した星型の形状に変形させて 、る。 A conventional electron microscope uses an electron beam having a circular cross-sectional shape. The child lens also had a circular shape. However, since the semiconductor device measuring apparatus (EBSCOPE) described above uses electron beams having various cross-sectional shapes, a circular electron lens is not always appropriate. This modification is characterized in that the shape of the objective lens is changed to a non-circular shape. The shape of the correction electrode is also changed to a star shape similar to the first modification described above.
[0033] 図 3Aの断面図に示す様に、本電子レンズは、第一の実施形態から対物レンズ (主 レンズ) 30と、補正電極 31と、電極 32と、電極 33と、ホール 38とを変更した構造を備 える静電レンズである。電極 32には星形の空洞からなる対物レンズ(主レンズ) 30が 形成されており、電極 33の中心部には対物レンズ(主レンズ) 30の大きさよりも小さい 星形のホール 38を備える補正電極 31が、電極 33とは電気的に絶縁されて備えられ ている。補正電極 31は、対物レンズ (主レンズ) 30の近傍に局部的に電位を与える 事が出来る。 As shown in the cross-sectional view of FIG. 3A, the present electron lens includes an objective lens (main lens) 30, a correction electrode 31, an electrode 32, an electrode 33, and a hole 38 from the first embodiment. It is an electrostatic lens with a modified structure. An objective lens (main lens) 30 consisting of a star-shaped cavity is formed on the electrode 32, and the center of the electrode 33 is provided with a star-shaped hole 38 that is smaller than the size of the objective lens (main lens) 30 The electrode 31 is provided so as to be electrically insulated from the electrode 33. The correction electrode 31 can locally apply a potential in the vicinity of the objective lens (main lens) 30.
[0034] そして、電子ビーム EB3の入射方向から、対物レンズ(主レンズ) 30と、補正電極 3 1とがこの順に配置されている。本電子レンズを上面力も見ると、図 3Bに示す様に、 星型の形状の対物レンズ(主レンズ) 30の中心に補正電極 31が設置され、その中心 に星型のホール 38が形成されて!、る。  [0034] Then, the objective lens (main lens) 30 and the correction electrode 31 are arranged in this order from the incident direction of the electron beam EB3. Looking at the surface force of this electron lens, as shown in Fig. 3B, a correction electrode 31 is installed at the center of the star-shaped objective lens (main lens) 30, and a star-shaped hole 38 is formed at the center. !
各電極には、第一の実施形態と同様に電圧が印加されている。  A voltage is applied to each electrode as in the first embodiment.
[0035] このように星型あるいは他の形状を持つ対物レンズを使うことによって、従来の円形 の対物レンズとは異なった電子レンズ形状 (等電位面 36の形状)を得る事が可能とな り、電子レンズの収差を補正することができる。対物レンズのみを星型などの非円形 形状にしても良い。対物レンズと補正電極の配置される角度を平面内で変化させる 事により、様々な断面形状を持つ電子ビームが得られ、又、電子レンズの収差の補 正も可能となる。  [0035] By using an objective lens having a star shape or other shapes in this way, it becomes possible to obtain an electron lens shape (shape of equipotential surface 36) different from a conventional circular objective lens. The aberration of the electron lens can be corrected. Only the objective lens may have a non-circular shape such as a star shape. By changing the angle at which the objective lens and the correction electrode are arranged in a plane, electron beams having various cross-sectional shapes can be obtained, and aberrations of the electron lens can be corrected.
[0036] <第一の実施形態の第三の変形例 >  <Third Modification of First Embodiment>
次に、図 4Aに本発明の第一の実施形態の第三の変形例に係る電子レンズの断面 図を、図 4Bに平面図を示す。同図において、前述の図 1に示した構成要素と共通す る要素には同一符号を付け、説明は省略する。  Next, FIG. 4A shows a cross-sectional view of an electron lens according to a third modification of the first embodiment of the present invention, and FIG. 4B shows a plan view. In the figure, elements common to the constituent elements shown in FIG.
本変形例は、メッシュ電極を用いる事により、静電レンズのレンズ特性を定める等電 位面 (ポテンシャル曲面)形状を自由にデザイン出来る事が特徴である。 This modification uses isoelectric to determine the lens characteristics of an electrostatic lens by using mesh electrodes. The feature is that the shape of potential plane (potential surface) can be designed freely.
[0037] 図 4Aの断面図に示す様に、本電子レンズは、対物レンズ(主レンズ) 40と、メッシュ 電極 41と、電極 42と、電極 43とから構成されており、静電レンズとして動作する。電 極 42には長方形の空洞力 なる対物レンズ (主レンズ) 40が形成されており、対物レ ンズ(主レンズ) 40の内部にはメッシュ電極 41が、電極 42とは電気的に絶縁されて備 えられている。また、電極 43にも対物レンズ(主レンズ) 40と同じ大きさの長方形の空 洞が設けられている。  [0037] As shown in the sectional view of FIG. 4A, this electron lens is composed of an objective lens (main lens) 40, a mesh electrode 41, an electrode 42, and an electrode 43, and operates as an electrostatic lens. To do. An objective lens (main lens) 40 having a rectangular cavity force is formed on the electrode 42, and a mesh electrode 41 is electrically insulated from the electrode 42 inside the objective lens (main lens) 40. It is prepared. The electrode 43 is also provided with a rectangular cavity having the same size as the objective lens (main lens) 40.
メッシュ電極 41は、導電性の金属、又は繊維にニッケル、銅、銀、金などをめつき又 はコーティングした材料等により形成されており、外部から印加した電圧をメッシュ電 極 41の表面に生じさせることが出来る。また、メッシュ電極 41は、メッシュ構造をなし ており、電子が電極の隙間を通過する事の可能な電極である。  The mesh electrode 41 is formed of a conductive metal or a material in which nickel, copper, silver, gold, or the like is attached or coated on a fiber, and an externally applied voltage is generated on the surface of the mesh electrode 41. It can be made. The mesh electrode 41 has a mesh structure and is an electrode that allows electrons to pass through the gaps between the electrodes.
[0038] そして、電子ビーム EB4の入射方向から、メッシュ電極 41と、対物レンズ(主レンズ) 40と、電極 43とがこの順に配置されている。本電子レンズを上面から見ると、図 4Bに 示す様に、長方形の形状の対物レンズ(主レンズ) 40の内部にメッシュ電極 41が設 置され、メッシュ電極 41はリード線 48によりパッド電極 47に電気的に接続されている 。そのパッド電極 47を介して電圧を印加し、印加電圧を変化させる事で、メッシュ電 極 41の表面電位を変化させる事が出来る。  [0038] The mesh electrode 41, the objective lens (main lens) 40, and the electrode 43 are arranged in this order from the incident direction of the electron beam EB4. When this electron lens is viewed from the top, as shown in FIG. 4B, a mesh electrode 41 is placed inside a rectangular objective lens (main lens) 40, and the mesh electrode 41 is connected to the pad electrode 47 by a lead wire 48. Electrically connected. By applying a voltage through the pad electrode 47 and changing the applied voltage, the surface potential of the mesh electrode 41 can be changed.
また、メッシュ電極 41には電圧 45cが、電極 42には電圧 45a力 電極 43には電圧 45bが印加されている。なお、それぞれの電圧は任意の電圧で良い。  Further, the voltage 45c is applied to the mesh electrode 41, and the voltage 45b is applied to the electrode 42 and the voltage 45a is applied to the electrode 43. Each voltage may be an arbitrary voltage.
[0039] 従来の静電レンズは電子ビームを通過させるための空間を有した円形平面電極あ るいは筒から出来ており、そこに電圧を加える事により静電レンズを形成していた。そ のため、静電レンズが作る事の出来る等電位面は、円形の電極からの距離のみの関 数であり、それが静電レンズに収差を生じさせる原因となっていた。  A conventional electrostatic lens is made of a circular planar electrode or cylinder having a space for allowing an electron beam to pass therethrough, and an electrostatic lens is formed by applying a voltage thereto. For this reason, the equipotential surface that the electrostatic lens can produce is a function only of the distance from the circular electrode, which causes aberrations in the electrostatic lens.
本変形例ではメッシュ電極 41の形状を変化させる事により、静電レンズとして働く等 電位面 46の形状を自由に制御可能なので、種々の収差を生じない様な任意の特性 を持つ電子レンズを作製する事が可能である。本電子レンズに入射した電子ビーム は、メッシュ電極 41が形成する等電位面により影響を受けながらメッシュの穴の部分 を通過して収束されていく。 図 4では、電極 42と電極 43にも電圧を印加している例を示している力 メッシュ電 極 41のみに電圧を印加し、収差を補正した静電レンズとして動作させる事も出来る。 In this modification, the shape of the equipotential surface 46 that functions as an electrostatic lens can be freely controlled by changing the shape of the mesh electrode 41, so that an electronic lens having an arbitrary characteristic that does not cause various aberrations is manufactured. It is possible to do. The electron beam incident on the electron lens passes through the hole of the mesh and is converged while being influenced by the equipotential surface formed by the mesh electrode 41. In FIG. 4, a voltage is applied only to the force mesh electrode 41, which shows an example in which a voltage is also applied to the electrode 42 and the electrode 43, and it can be operated as an electrostatic lens with corrected aberration.
[0040] メッシュ電極 41の形状は、電子ビームシミュレーションなどを利用して、必要とされ る静電レンズ特性を持つ様に最適に設計する。 [0040] The shape of the mesh electrode 41 is optimally designed to have the required electrostatic lens characteristics using electron beam simulation or the like.
本変形例に示したかまぼこ型の静電レンズは、一軸方向(電極 42の長辺方向)に 対してレンズ曲面を形成しており、一軸方向だけに電子ビーム形状を変化させる場 合に利用出来る。例えば、入射電子ビームの断面形状が楕円形に歪んでいる場合 に、それを真円形に変換する場合などに有効である。  The kamaboko type electrostatic lens shown in this modification forms a curved lens surface in the uniaxial direction (long side direction of the electrode 42), and can be used when the electron beam shape is changed only in the uniaxial direction. . For example, this is effective when the cross-sectional shape of the incident electron beam is distorted into an ellipse and converted into a true circle.
[0041] <第一の実施形態の第四の変形例 > [0041] <Fourth Modification of First Embodiment>
次に、図 5Aに本発明の第一の実施形態の第四の変形例に係る電子レンズの断面 図を、図 5Bに平面図を示す。同図において、前述の図 1ないしは図 4に示した構成 要素と共通する要素には同一符号を付け、説明は省略する。  Next, FIG. 5A shows a cross-sectional view of an electron lens according to a fourth modification of the first embodiment of the present invention, and FIG. 5B shows a plan view. In the figure, the same reference numerals are given to the same elements as those shown in FIGS. 1 to 4 and the description thereof is omitted.
本変形例では、互いに直交した XY2つの軸に関してメッシュ電極を曲面化している  In this modification, the mesh electrode is curved with respect to two XY axes orthogonal to each other.
[0042] 図 5Aの断面図に示す様に、本電子レンズは、第一の実施形態の第三の変形例か ら対物レンズ(主レンズ) 50と、メッシュ電極 51と、電極 52と、電極 53とを変更した構 造を備える静電レンズである。電極 52には円形の空洞カゝらなる対物レンズ (主レンズ ) 50が形成されており、対物レンズ(主レンズ) 50の内部にはメッシュ電極 51が、電極 52とは電気的に絶縁されて備えられている。電極 53にも対物レンズ (主レンズ) 50と 同じ大きさの円形の空洞が設けられている。 [0042] As shown in the sectional view of FIG. 5A, the present electron lens includes an objective lens (main lens) 50, a mesh electrode 51, an electrode 52, and an electrode from the third modification of the first embodiment. This is an electrostatic lens having a structure modified from 53. The electrode 52 is formed with an objective lens (main lens) 50 formed of a circular cavity. Inside the objective lens (main lens) 50, a mesh electrode 51 is electrically insulated from the electrode 52. Is provided. The electrode 53 is also provided with a circular cavity having the same size as the objective lens (main lens) 50.
メッシュ電極 51は、第一の実施形態の第三の変形例と同様な材料により形成され ている。また、メッシュ電極 51は、メッシュ構造をなしており、電子が電極の隙間を通 過する事の可能な電極である。  The mesh electrode 51 is formed of the same material as that of the third modification of the first embodiment. The mesh electrode 51 has a mesh structure and is an electrode through which electrons can pass through the gaps between the electrodes.
[0043] 本電子レンズを上面から見ると、図 5Bに示す様に、円形の形状の対物レンズ(主レ ンズ) 50の上部にメッシュ電極 51が設置され、メッシュ電極 51はリード線 58によりパ ッド電極 47に電気的に接続されている。また、メッシュ電極 51を構成する大小の円 形電極は、リード線 58によって支えられ、立体形状を構成している。  When this electron lens is viewed from the top, as shown in FIG. 5B, a mesh electrode 51 is installed on the top of a circular objective lens (main lens) 50, and the mesh electrode 51 is filtered by a lead wire 58. The lead electrode 47 is electrically connected. The large and small circular electrodes constituting the mesh electrode 51 are supported by the lead wires 58 to form a three-dimensional shape.
この様な構造を有する事で、等電位面 56の形状を変化させる事が出来る。 [0044] 前述した第三の変形例と同じように、メッシュ電極 51は、シミュレーション等を行って 球面収差などの収差が一番小さくなるような形状を求め、その形状に合わせて作製 する。収差補正を行うためには、メッシュ電極の設計値によってはメッシュ電極 1枚で 十分に補正出来る場合もあれば、他の形状を持つ補正用のメッシュ電極を何枚か縦 方向に重ね合わせて使用する事で補正出来る場合もある。メッシュ電極を重ね合わ せる場合は、メッシュ電極間の間隔やメッシュ電極の大きさ、曲率、印加電圧などに 関し、シミュレーションによって最適値を求め、それらを組み合わせて使う必要がある By having such a structure, the shape of the equipotential surface 56 can be changed. [0044] As in the third modification described above, the mesh electrode 51 is obtained by performing a simulation or the like to obtain a shape that minimizes aberrations such as spherical aberration, and is manufactured according to the shape. In order to correct aberrations, depending on the design value of the mesh electrode, one mesh electrode may be sufficient for correction, or several mesh electrodes for correction with other shapes are stacked in the vertical direction. In some cases, it can be corrected. When superimposing mesh electrodes, it is necessary to obtain the optimum values by simulation and use them in combination with respect to the spacing between mesh electrodes, the size of the mesh electrodes, the curvature, the applied voltage, etc.
[0045] <第一の実施形態の第五の変形例 > <Fifth Modification of First Embodiment>
次に、図 6Aに本発明の第一の実施形態の第五の変形例に係る電子レンズの断面 図を、図 6Bに平面図を示す。同図において、前述の図 1、 4、 5に示した構成要素と 共通する要素には同一符号を付け、説明は省略する。  Next, FIG. 6A shows a sectional view of an electron lens according to a fifth modification of the first embodiment of the present invention, and FIG. 6B shows a plan view. In the figure, elements common to the components shown in FIGS. 1, 4, and 5 are given the same reference numerals, and descriptions thereof are omitted.
本実施例では、一般的に光学レンズで知られて 、るフレネルレンズのようにレンズ 面を折り曲げ、レンズ面を平面化して電子フレネルレンズを形成している点に特徴が ある。フレネルレンズは、通常のレンズを微小部分に分解して、レンズの曲面部分だ けを取り出し、レンズの高さがほぼ一定に成るように、位置をずらして平面化した構造 を持っている。  This embodiment is characterized in that an electron Fresnel lens is formed by bending a lens surface and planarizing the lens surface as is generally known for optical lenses. A Fresnel lens has a structure in which a normal lens is disassembled into minute parts, and only the curved surface part of the lens is taken out, and the position is shifted and flattened so that the lens height is almost constant.
[0046] 図 6Aの断面図に示す様に、本電子レンズは、第一の実施形態の第四の変形例か らメッシュ電極 61を変更した構造を備える静電レンズである。対物レンズ (主レンズ) 5 0の内部にメッシュ電極 611S 電極 52とは電気的に絶縁されて備えられて!/、る。 メッシュ電極 61は、第一の実施形態の第三の変形例と同様な材料により形成され ている。また、メッシュ電極 61は、メッシュ構造をなしており、電子が電極の隙間を通 過する事の可能な電極である。  As shown in the cross-sectional view of FIG. 6A, the present electronic lens is an electrostatic lens having a structure in which the mesh electrode 61 is changed from the fourth modification of the first embodiment. The objective lens (main lens) 50 is provided inside the mesh electrode 611S electrode 52 and is electrically insulated! / The mesh electrode 61 is formed of the same material as that of the third modification of the first embodiment. The mesh electrode 61 has a mesh structure, and is an electrode through which electrons can pass through the gaps between the electrodes.
[0047] 本電子レンズを上面から見ると、図 6Bに示す様に、円形の形状の対物レンズ(主レ ンズ) 50の内部にメッシュ電極 61が設置され、メッシュ電極 61はリード線 68によりパ ッド電極 47に電気的に接続されている。また、メッシュ電極 61を構成する大小の電 極は、リード線 68によって支持されている。  When this electron lens is viewed from the top, as shown in FIG. 6B, a mesh electrode 61 is installed inside a circular objective lens (main lens) 50, and the mesh electrode 61 is filtered by a lead wire 68. The lead electrode 47 is electrically connected. The large and small electrodes constituting the mesh electrode 61 are supported by lead wires 68.
この様な構造を有する事で、等電位面 66の形状を変化させる事が出来る。 [0048] 本変形例では、光学フレネルレンズと同じように電子レンズ表面を平面化する事が 可能であり、各電極の角度を調整する事により球面収差を減らすことが出来る。元の レンズ形状をより細かく分解する事で、より平面に近 、電子フレネルレンズを作製す る事が可能と成る。例えば、最近の電子ビーム露光技術では数 nmのオーダーの加 ェが可能なので、レンズ段差がその様なサイズであり、ほぼ平面と見なせる電子フレ ネルレンズを作製する事が出来る。 By having such a structure, the shape of the equipotential surface 66 can be changed. In this modification, the surface of the electron lens can be planarized in the same manner as the optical Fresnel lens, and spherical aberration can be reduced by adjusting the angle of each electrode. By further disassembling the original lens shape, it becomes possible to produce an electronic Fresnel lens closer to a flat surface. For example, with the recent electron beam exposure technology, it is possible to add an order of several nanometers, so that it is possible to manufacture an electron Fresnel lens that has such a lens step size and can be regarded as almost flat.
[0049] <第一の実施形態の第六の変形例 >  [0049] <Sixth Modification of First Embodiment>
次に、図 7Aに本発明の第一の実施形態の第六の変形例に係る電子レンズの断面 図を、図 7Bに平面図を示す。同図において、前述の図 1、 4、 5に示した構成要素と 共通する要素には同一符号を付け、説明は省略する。  Next, FIG. 7A is a cross-sectional view of an electron lens according to a sixth modification of the first embodiment of the present invention, and FIG. 7B is a plan view. In the figure, elements common to the components shown in FIGS. 1, 4, and 5 are given the same reference numerals, and descriptions thereof are omitted.
本変形例では、電子レンズを形成するそれぞれの電極に独立した電圧を印加する 事が特徴である。  This modification is characterized in that an independent voltage is applied to each electrode forming the electron lens.
[0050] 図 7Aの断面図に示す様に、本電子レンズは、第一の実施形態の第四の変形例か ら電極 71a、 71b、 71c、 7 Idを変更した構造を備える静電レンズである。対物レンズ (主レンズ) 50の内部にはそれぞれ大きさの異なる円形の電極 71a、 71b、 71c、 71d 1S 電極 52とは電気的に絶縁されて形成されている。  [0050] As shown in the sectional view of FIG. 7A, this electron lens is an electrostatic lens having a structure in which the electrodes 71a, 71b, 71c, and 7 Id are changed from the fourth modification of the first embodiment. is there. In the objective lens (main lens) 50, circular electrodes 71a, 71b, 71c, 71d 1S electrodes 52 of different sizes are formed so as to be electrically insulated.
電極 71a、 71b、 71c、 71dは、第三の変形例と同様な材料により形成されており、 外部から与えた電圧を電極 71a、 71b、 71c、 71dの表面に生じさせることが出来る。  The electrodes 71a, 71b, 71c, 71d are made of the same material as in the third modification, and a voltage applied from the outside can be generated on the surfaces of the electrodes 71a, 71b, 71c, 71d.
[0051] 本電子レンズを上面から見ると、図 7Bに示す様に、円形の形状の対物レンズ(主レ ンズ) 50の上部にそれぞれ直径の異なる円形の電極 71a、 71b、 71c、 71dが設置さ れ、それぞれリード線によってパッド電極 77a、 77b、 77c、 77dに電気的に接続され ている。そのパッド電極 77a、 77b, 77c, 77dを介してそれぞれ異なる電圧を印加し 、印加電圧を変化させる事で、電極 71a、 71b、 71c、 71dの表面電位を独立に変化 させる事が出来る。また、電極 71a、 71b、 71c、 71dは、絶縁体の支持部材 79によつ て支えられ、立体形状を構成している。  [0051] When the electron lens is viewed from above, circular electrodes 71a, 71b, 71c, 71d with different diameters are installed on the upper part of a circular objective lens (main lens) 50 as shown in FIG. 7B. The lead electrodes are electrically connected to the pad electrodes 77a, 77b, 77c, and 77d, respectively. By applying different voltages through the pad electrodes 77a, 77b, 77c and 77d and changing the applied voltage, the surface potentials of the electrodes 71a, 71b, 71c and 71d can be changed independently. The electrodes 71a, 71b, 71c, 71d are supported by an insulating support member 79 to form a three-dimensional shape.
また、電極 71a、 71b、 71c、 71dにはそれぞれ電圧 78a、 78b、 78c、 78d力 S印カロさ れている。なお、それぞれの電圧は任意の電圧で良い。  The electrodes 71a, 71b, 71c, and 71d are respectively subjected to voltages 78a, 78b, 78c, and 78d with a force S. Each voltage may be an arbitrary voltage.
[0052] この様に、それぞれの電極に独立した電圧を印加する事により、等電位面 76の形 状を自由に変化させて所望の等電位面形状を得る事が出来、その結果として収差を 小さくする事が出来る。さらに、印加電圧を変更する事により瞬時に等電位面形状を 変更する事が出来るので、例えば、電子ビームの加速電圧を変更した際には収差の 成分が変化するが、それに対応して電子レンズの等電位面形状を変更し、収差の補 正を動的に最適化できる。 [0052] In this way, by applying an independent voltage to each electrode, the shape of the equipotential surface 76 is obtained. The desired equipotential surface shape can be obtained by freely changing the shape, and as a result, the aberration can be reduced. Furthermore, the equipotential surface shape can be changed instantaneously by changing the applied voltage. For example, when the acceleration voltage of the electron beam is changed, the aberration component changes. By changing the equipotential surface shape, aberration correction can be optimized dynamically.
なお、図 7では一例として同心円状の電極を示している力 電極の形状は格子状や ドット状等、種々の形状が利用できる。  In FIG. 7, various shapes such as a lattice shape and a dot shape can be used as the shape of the force electrode, which shows concentric electrodes as an example.
[0053] <第一の実施形態の第七の変形例 > <Seventh Modification of First Embodiment>
次に、図 8Aに本発明の第一の実施形態の第七の変形例に係る電子レンズの各補 正電極の配置角度を示すために補正電極毎に分離して表示した平面図を、図 8B〖こ 平面図を、図 8Cに断面図を示す。  Next, FIG. 8A is a plan view that is displayed separately for each correction electrode in order to show the arrangement angle of each correction electrode of the electron lens according to the seventh modification of the first embodiment of the present invention. 8B is a plan view, and Fig. 8C is a cross-sectional view.
本変形例では、補正電極を多段構成とし、各補正電極の配置角度をそれぞれの段 において少しずつ変化させ、各補正電極に加える電圧を自由に変化出来るようにし ていることが特徴である。  The feature of this modification is that the correction electrode has a multi-stage configuration, and the arrangement angle of each correction electrode is changed little by little at each stage so that the voltage applied to each correction electrode can be freely changed.
[0054] 図 8Aは、各補正電極の配置角度を示すために補正電極毎に分離して表示した平 面図である。同図に示す様に、一組の向かい合った金属電極力 構成される補正電 極 80aの位置を基準として、補正電極 80bは角度 8 lbだけずらし、補正電極 80cは 角度 81cだけずらし、補正電極 80dは角度 8 Idだけずらし、補正電極 80eは角度 81 eだけずらし、それらの 5枚の補正電極を、図 8Cの断面図に示す様に絶縁体 82で挟 み込んで重ね合わせ、多段レンズとする。その結果、図 8Bの平面図に示す様な形状 となる。 FIG. 8A is a plan view that is displayed separately for each correction electrode in order to show the arrangement angle of each correction electrode. As shown in the figure, the correction electrode 80b is offset by an angle of 8 lb, the correction electrode 80c is offset by an angle of 81c, and the correction electrode 80d is relative to the position of the correction electrode 80a consisting of a pair of opposing metal electrode forces. Is shifted by an angle of 8 Id, the correction electrode 80e is shifted by an angle of 81 e, and these five correction electrodes are sandwiched by insulators 82 as shown in the sectional view of FIG. . As a result, the shape shown in the plan view of FIG. 8B is obtained.
補正電極 80a、 80b、 80c、 80d、 80eには、それぞれ電圧 83a、 83b、 83c、 83d、 83eを印加して、それらの電圧は任意に変化させる事が出来る。  Voltages 83a, 83b, 83c, 83d, and 83e are applied to the correction electrodes 80a, 80b, 80c, 80d, and 80e, respectively, and these voltages can be changed arbitrarily.
[0055] そして、電子レンズの持つ非対称成分の大小に応じてそれぞれの段の補正電極に 印加する電圧を変化させ、非対称成分を打ち消すように制御する。これにより、通常 元のレンズが持つ非対称な収差を制御できるように成る。例えば、電子ビームの断面 形状が楕円形の場合、楕円の軸はいろいろな回転軸を持っているが、本変形例に示 した補正電極を用いれば、楕円の軸に沿った方向に補正を行う事で、楕円形状を真 円形状に補正して変換することができる。 Then, the voltage applied to the correction electrode at each stage is changed according to the magnitude of the asymmetric component of the electron lens, and control is performed so as to cancel the asymmetric component. As a result, it becomes possible to control the asymmetrical aberration of the original lens. For example, when the electron beam cross-sectional shape is an ellipse, the axis of the ellipse has various rotation axes, but if the correction electrode shown in this modification is used, correction is performed in the direction along the axis of the ellipse. The oval shape is true It can be converted to a circular shape.
[0056] また、図 8に示した 2枚一組の補正電極のそれぞれの組に独立した別の電圧を印 加する事によって、収差を補正することも出来る。例えば、 5組の補正電極の中から 1 組 (補正電極 80b)だけに電圧を印加すれば、その補正電極の近傍の電子だけが影 響を受け、電子ビーム EB8は僅かに曲がる。その事によって、最終的に一点に収束 される電子ビーム成分の一部のエネルギーが変化し電子ビーム軌道に変化を与える ことが出来るので、収差の補正が出来る。  In addition, the aberration can be corrected by applying another independent voltage to each set of the two correction electrodes shown in FIG. For example, if a voltage is applied to only one of the five correction electrodes (correction electrode 80b), only electrons near the correction electrode are affected, and the electron beam EB8 is slightly bent. As a result, the energy of a part of the electron beam component finally converged to one point can be changed and the electron beam trajectory can be changed, so that aberration can be corrected.
[0057] <第一の実施形態の第八の変形例 >  <Eighth Modification of First Embodiment>
次に、図 9Aに本発明の第一の実施形態の第八の変形例に係る電子レンズの断面 図を、図 9Bに平面図を示す。  Next, FIG. 9A shows a cross-sectional view of an electron lens according to an eighth modification of the first embodiment of the present invention, and FIG. 9B shows a plan view.
本変形例では、電子レンズを構成する多段の補正電極に予め非対称性形状をカロ えたことに特徴がある。  This modification is characterized in that an asymmetric shape is preliminarily arranged on the multistage correction electrodes constituting the electron lens.
[0058] 図 9Aの断面図に示す様に、本電子レンズは、補正電極 91と、補正電極 92と、補 正電極 93とを電子ビーム EB9の入射方向力もこの順に備え、各補正電極間にそれ ぞれ絶縁体 94を備える多段レンズである。各補正電極は、それぞれ独立に回転する 事が可能であり、希望する位置で固定する事が可能である。各補正電極は、中心部 に円形の空洞からなる対物レンズ 90を備えており、電子ビーム EB9は、この空洞を 通過する際に電界の影響を受けて収束される。各補正電極 91、 92、 93には、それ ぞれ独立した電圧を印加する(図示なし)。  As shown in the cross-sectional view of FIG. 9A, this electron lens is provided with a correction electrode 91, a correction electrode 92, and a correction electrode 93 in this order also in the incident direction force of the electron beam EB9. Each is a multistage lens provided with an insulator 94. Each correction electrode can rotate independently and can be fixed at a desired position. Each correction electrode is provided with an objective lens 90 formed of a circular cavity at the center, and the electron beam EB9 is converged under the influence of an electric field when passing through the cavity. An independent voltage is applied to each correction electrode 91, 92, 93 (not shown).
また、図 9Bの平面図に示す様に、補正電極 91は非対称形状 95を対物レンズ 90 の近傍に備えている。その他の補正電極 92、 93も図示しない同様な非対称形状を 備えている。非対称形状 95は、補正電極の一部を凹形状にした構造となっている。 又は、補正電極の一部を凸形状にしても良い。  Further, as shown in the plan view of FIG. 9B, the correction electrode 91 has an asymmetric shape 95 in the vicinity of the objective lens 90. The other correction electrodes 92 and 93 have a similar asymmetric shape (not shown). The asymmetric shape 95 has a structure in which a part of the correction electrode is concave. Alternatively, a part of the correction electrode may be convex.
[0059] 電子レンズに生じる等電位面は、各補正電極における非対称形状 95によって非球 面となり、各補正電極を回転させることにより等電位面の形状を変化させることが出来 る。  The equipotential surface generated in the electron lens becomes an aspheric surface due to the asymmetric shape 95 in each correction electrode, and the shape of the equipotential surface can be changed by rotating each correction electrode.
本電子レンズの使用方法を以下に説明する。まず、補正電極 91、 92、 93をそれぞ れ独立に少しずつ回転させ、その際の電子レンズの収差を測定しながら、その収差 が最少になる様な補正電極の位置を見つける。各補正電極は非対称成分を持つの で、その回転角度や組み合わせにより電子レンズの収差を最小に設定することが出 来る。収差が最小である位置が定まった後には、電子レンズに付属する図示しない口 ック機構 (位置止め)を用いて、各補正電極を一定の位置に固定する。 A method of using this electronic lens will be described below. First, each of the correction electrodes 91, 92, and 93 is independently rotated little by little, and while measuring the aberration of the electron lens, the aberration is measured. Find the position of the correction electrode that minimizes. Since each correction electrode has an asymmetric component, the aberration of the electron lens can be set to the minimum depending on its rotation angle and combination. After the position where the aberration is minimum is determined, each correction electrode is fixed at a fixed position by using a not-shown cuff mechanism (position stop) attached to the electron lens.
[0060] これまでに述べてきた第一の実施形態に係る電子レンズを用いて電子顕微鏡や半 導体測定装置 (EBSCOPE)の電子レンズを構成することにより、瞬時に電子レンズ の特性変更が可能であり、かつ収差が小さい電子顕微鏡装置や半導体測定装置 (E BSCOPE)を作製する事が出来る。  [0060] By using the electron lens according to the first embodiment described so far to construct an electron lens of an electron microscope or a semiconductor measurement device (EBSCOPE), the characteristics of the electron lens can be changed instantaneously. It is possible to manufacture electron microscope equipment and semiconductor measuring equipment (E BSCOPE) with small aberration.
ここで、そのような電子顕微鏡装置に用いられる電子ビーム走査装置の例について 、図 6に示した電子フレネルレンズを使用した一例にっ 、て説明する。  Here, an example of an electron beam scanning apparatus used in such an electron microscope apparatus will be described with reference to an example using the electron Fresnel lens shown in FIG.
まず、電子フレネルレンズを 2つ重ねた電子レンズの断面図を図 10に示す。  First, Fig. 10 shows a cross-sectional view of an electron lens in which two electron Fresnel lenses are stacked.
本電子レンズは、第一電子フレネルレンズ 100と、第二電子フレネルレンズ 101と、 電極 102と、電極 103と、絶縁体 104とから構成される。  The electron lens includes a first electron Fresnel lens 100, a second electron Fresnel lens 101, an electrode 102, an electrode 103, and an insulator 104.
また、電極 102には電圧 105aが、電極 103には電圧 105bが印加されており、それ ぞれの電圧は任意に変化させる事が出来る。  Further, a voltage 105a is applied to the electrode 102 and a voltage 105b is applied to the electrode 103, and each voltage can be arbitrarily changed.
[0061] 電子ビーム源 106力 放射された電子ビーム EB10は、まず、第一電子フレネルレ ンズ 100に入射して収束され、その後、第二電子フレネルレンズ 101に入射して必要 なスポット径に収束される。 [0061] Electron beam source 106 force The emitted electron beam EB10 is first incident on the first electron Fresnel lens 100 and converged, and then incident on the second electron Fresnel lens 101 and converged to the required spot diameter. The
本電子レンズにおいては、電極 102と電極 103に加える電圧を変化させることによ り電子レンズ特性を変更する事が出来る。また、電子フレネルレンズの各電極の角度 は、必要に応じて自由に変化させることが可能である。電子フレネルレンズは球面収 差を小さく出来るが、 1枚の電子フレネルレンズでは全ての収差を補正する事が出来 ない場合もある。そのような場合は、本電子レンズの様に複数の電子フレネルレンズ を利用する事により、より正確に収差補正を行うことが出来るようになる。例えば、電 子ビームの X軸に沿った収差補正を第一電子フレネルレンズ 100で行 、、電子ビー ムの Y軸に沿った収差補正を第二電子フレネルレンズ 101で行うことが出来る。特に 、前述した半導体デバイス測定装置 (EBSCOPE)では電子ビームの断面形状が必 ずしも円形ではな ヽので、 X軸と Y軸のそれぞれ異なった収差を補正する必要があり 、その様な場合に有効である。 In this electron lens, the characteristics of the electron lens can be changed by changing the voltage applied to the electrodes 102 and 103. In addition, the angle of each electrode of the electron Fresnel lens can be freely changed as necessary. An electronic Fresnel lens can reduce spherical aberration, but a single electronic Fresnel lens may not be able to correct all aberrations. In such a case, aberration correction can be performed more accurately by using a plurality of electron Fresnel lenses like the present electron lens. For example, aberration correction along the X axis of the electron beam can be performed by the first electron Fresnel lens 100, and aberration correction along the Y axis of the electron beam can be performed by the second electron Fresnel lens 101. In particular, in the semiconductor device measurement apparatus (EBSCOPE) described above, the cross-sectional shape of the electron beam is not necessarily circular, so it is necessary to correct different aberrations for the X and Y axes. It is effective in such a case.
[0062] 次に、図 10に示した電子レンズを利用した電子顕微鏡の電子ビーム走査装置の断 面図を図 11に示す。同図において、上述の図 10に示した構成要素と共通する要素 には同一符号を付け、説明は省略する。  Next, FIG. 11 shows a cross-sectional view of an electron beam scanning device of an electron microscope using the electron lens shown in FIG. In the figure, elements common to the components shown in FIG. 10 described above are assigned the same reference numerals, and descriptions thereof are omitted.
本電子ビーム走査装置は、電子ビーム源 116と、引き出し電極 117と、ァパチヤ一 118と、偏向電極 119aと、偏向電極 119bと、図 10に示した電子レンズと力も構成さ れる。  This electron beam scanning apparatus also includes an electron beam source 116, an extraction electrode 117, an aperture 118, a deflection electrode 119a, a deflection electrode 119b, and the electron lens and force shown in FIG.
[0063] 以下に、本電子ビーム走査装置の動作を説明する。  [0063] The operation of the present electron beam scanning apparatus will be described below.
電子ビーム源 116から放出された電子ビーム EB11は、引き出し電極 117に印加さ れた高電圧により加速され、ァパチヤ一 118により電子ビーム幅が制限されて、ほぼ 並行ビームになった状態で偏向電極に導かれる。偏向電極 119aでは電子ビーム E Bl 1が前後に移動するように偏向され、偏向電極 119bでは電子ビームが左右に移 動するように偏向される。偏向された電子ビーム EB11は、第一フレネルレンズ 100と 第二フレネルレンズ 101とから構成される電子レンズに入射される。入射された電子 ビーム EB11は、電子レンズによって図示しない試料表面、あるいは必要な場所に焦 点を結ぶ。  The electron beam EB11 emitted from the electron beam source 116 is accelerated by the high voltage applied to the extraction electrode 117, the electron beam width is limited by the aperture 118, and the parallel beam is applied to the deflecting electrode. Led. The deflection electrode 119a deflects the electron beam E Bl1 so as to move back and forth, and the deflection electrode 119b deflects the electron beam so as to move left and right. The deflected electron beam EB11 is incident on an electron lens composed of the first Fresnel lens 100 and the second Fresnel lens 101. The incident electron beam EB11 is focused on the surface of a sample (not shown) or a necessary place by an electron lens.
[0064] 電子レンズの強さは電極 102、電極 103に加えられる電圧によって決定される。電 子フレネルレンズは球面収差が非常に小さいので、電子ビームを広範囲に走査して 電子フレネルレンズのすべての領域を用いて収束させた場合であっても、電子ビー ムは焦点距離が一定に維持され正確に一点に収束されて試料表面を平行移動され る。従って、従来の電磁レンズを用いた SEMでは、試料の位置を固定していた場合 には数ミクロンの範囲のみで高分解能観察が可能であった力 本電子フレネルレン ズを用いると数ミリメートルと言う非常に広い範囲を高分解能観察出来るようになる。  [0064] The strength of the electron lens is determined by the voltage applied to the electrodes 102 and 103. Electron Fresnel lenses have very small spherical aberration, so the electron beam maintains a constant focal length even when the electron beam is scanned over a wide area and converged using all regions of the electron Fresnel lens. Then, it is converged to exactly one point and translated on the sample surface. Therefore, in the SEM using the conventional electromagnetic lens, if the position of the sample was fixed, high-resolution observation was possible only in the range of a few microns. It becomes possible to observe a wide range with high resolution.
[0065] <第二の実施形態 > <Second Embodiment>
次に、図 12Aに本発明の第二の実施形態に係る電子レンズの断面図を、図 12Bに 平面図を示す。同図において、前述の図 1、 4、 5に示した構成要素と共通する要素 には同一符号を付け、説明は省略する。  Next, FIG. 12A shows a sectional view of an electron lens according to the second embodiment of the present invention, and FIG. 12B shows a plan view. In the figure, the same reference numerals are given to the same elements as those shown in FIGS. 1, 4, and 5, and the description thereof is omitted.
本実施形態は、空間的に配置された複数の永久磁石、又は書き換え可能な磁石、 又は電磁石で磁気レンズを構成したことに特徴がある。 This embodiment includes a plurality of spatially arranged permanent magnets or rewritable magnets, Alternatively, the magnetic lens is formed of an electromagnet.
[0066] 図 12Aの断面図に示す様に、本電子レンズは、第一の実施形態の第四の変形例 のメッシュ電極 51の代わりに局部磁石 121を配置した構造を備える磁気レンズである 局部磁石 121には、フェライトやネオジゥムサマソリゥムなど希土類磁石をはじめ、 コバルト、ニッケルなど、外部磁場により容易に磁化されて永久磁石となる様な材料 を使うことも出来る。また、マイクロマシユング技術などを用いて、永久磁石のかわりに 数ミクロン以下のサイズの非常に小型の電磁石を複数作りこんでも良い。  As shown in the cross-sectional view of FIG. 12A, this electron lens is a magnetic lens having a structure in which local magnets 121 are arranged instead of the mesh electrodes 51 of the fourth modification of the first embodiment. The magnet 121 can be made of a material that can be easily magnetized by an external magnetic field to become a permanent magnet, such as rare earth magnets such as ferrite and neodymium samarium, as well as cobalt and nickel. In addition, by using micromachining technology, several very small electromagnets with a size of several microns or less may be created instead of permanent magnets.
[0067] 本電子レンズを上面から見ると、図 12Bに示す様に、円形の形状の対物レンズ(主 レンズ) 50の内部に同心円状の局部磁石 121が設置され、各局部磁石は支持線 12 9によって支えられている。  When this electron lens is viewed from the top, as shown in FIG. 12B, a concentric local magnet 121 is installed inside a circular objective lens (main lens) 50, and each local magnet is supported by a support line 12. Supported by 9.
[0068] 従来のコイル又は 1つの磁石を用いた電子レンズ(電磁レンズ又は磁気レンズ)で は、種々の収差が生じる。そこで、本実施形態では、磁気レンズを複数の同心円状 の磁石カゝら構成し、従来の磁気レンズで生じる収差を補正することに特徴がある。コ ィルを 1つだけ使用した従来の電磁レンズの場合、コイルから発生する磁場と電子ビ ームの相互作用はコイルからの距離で決まってしまう。そのため、コイルからの距離 や磁気回路の形状で一義的に決定される磁場の強さの分布を持つ電子レンズしか 形成できず、これが球面収差ゃ ヽろ ヽろな収差の原因と成って ヽた。  [0068] Various aberrations occur in an electron lens (electromagnetic lens or magnetic lens) using a conventional coil or one magnet. In view of this, the present embodiment is characterized in that the magnetic lens is composed of a plurality of concentric magnets to correct aberrations that occur in the conventional magnetic lens. In the case of a conventional electromagnetic lens using only one coil, the interaction between the magnetic field generated from the coil and the electron beam is determined by the distance from the coil. For this reason, only an electron lens having a magnetic field strength distribution that is uniquely determined by the distance from the coil and the shape of the magnetic circuit can be formed, and this is the cause of various aberrations due to spherical aberration. .
[0069] 本実施形態では、複数の磁石がそれぞれ作る磁場の総和である磁場分布 126を 有する電子レンズを得る事が出来る。このよう〖こすると、任意の強度や極性を有する 磁場分布を電子ビームが通過する空間に作成する事が可能なので、磁場分布をシミ ユレーシヨンなどにより最適化する事によって非常に小さな収差を有する電子レンズ を構成することができる。  [0069] In this embodiment, an electron lens having a magnetic field distribution 126 that is the sum of magnetic fields created by a plurality of magnets can be obtained. In this way, it is possible to create a magnetic field distribution with an arbitrary intensity and polarity in the space through which the electron beam passes, so by optimizing the magnetic field distribution by simulation etc., an electron lens with very small aberrations Can be configured.
特に、従来の電磁石を用いた電磁レンズでは収束レンズ系は作れても発散レンズ 系を作る事は出来な力つたが、本実施形態に係る電子レンズでは、収束レンズや発 散レンズを自由に実現できる。従って、従来よりも自由にレンズ系を設計可能である。 また、電極 52、 53に電圧を印加しても良い。その場合には、電子ビームは磁界と電 界の両者により影響を受け、より高度な補正を行う事が出来る。 [0070] <第二の実施形態の第一の変形例 > In particular, electromagnetic lenses using conventional electromagnets could not make a diverging lens system even if a converging lens system could be made, but the electronic lens according to this embodiment can freely realize a converging lens and a diverging lens. it can. Therefore, the lens system can be designed more freely than in the past. Further, a voltage may be applied to the electrodes 52 and 53. In that case, the electron beam is affected by both the magnetic field and the electric field, and more advanced correction can be performed. <First Modification of Second Embodiment>
次に、図 13Aに本発明の第二の実施形態の第一の変形例に係る電子レンズの断 面図を、図 13Bに平面図を示す。同図において、前述の図 1、 4、 5に示した構成要 素と共通する要素には同一符号を付け、説明は省略する。  Next, FIG. 13A is a sectional view of an electron lens according to a first modification of the second embodiment of the present invention, and FIG. 13B is a plan view. In the figure, elements common to the constituent elements shown in FIGS. 1, 4, and 5 are given the same reference numerals, and descriptions thereof are omitted.
本変形例では磁石を同心円状ではなぐ空間的に配置して電子レンズを構成する 事に特徴がある。  This modification is characterized in that the electron lens is configured by spatially arranging magnets concentrically.
[0071] 図 13Aの断面図に示す様に、本電子レンズは、第二の実施形態から局部磁石 13 1を変更した構造を備える磁気レンズである。  As shown in the sectional view of FIG. 13A, the present electronic lens is a magnetic lens having a structure in which the local magnet 131 is changed from the second embodiment.
本電子レンズを上面から見ると、図 13Bに示す様に、円形の形状の対物レンズ(主 レンズ) 50の内部に複数の局部磁石 131が設置され、それぞれは支持線 139によつ て支えられている。  When the electronic lens is viewed from the top, as shown in FIG. 13B, a plurality of local magnets 131 are installed inside a circular objective lens (main lens) 50, and each is supported by a support line 139. ing.
[0072] 局部磁石 131は、小型の固定磁石でも良ぐまたは磁気テープのようなプラスチック フィルムの上に磁性体の膜を形成した物を利用して作製することも出来る。このような 材料を利用すれば、任意の場所に磁石を形成する事が可能である。  [0072] The local magnet 131 may be a small fixed magnet, or may be manufactured using a magnetic film formed on a plastic film such as a magnetic tape. If such a material is used, a magnet can be formed at an arbitrary location.
局部磁石 131の磁力や大きさや配置位置や極性は、シミュレーション等を利用して 理想の磁場分布が実現されるように決定する。本変形例では、任意の強度や極性の 磁場分布を実現できるので、球面収差だけではなぐ他の収差も補正可能である。そ れぞれの局部磁石 131は、同じ磁力でも良ぐ配置位置によって異なる磁力を有して も良い。  The magnetic force, size, arrangement position, and polarity of the local magnet 131 are determined so as to realize an ideal magnetic field distribution using simulation or the like. In this modification, a magnetic field distribution having an arbitrary intensity and polarity can be realized, so that other aberrations than just spherical aberration can be corrected. Each local magnet 131 may have a different magnetic force depending on an arrangement position where the same magnetic force may be sufficient.
また、電極 52、 53に電圧を印加しても良い。その場合には、電子ビームは磁界と電 界の両者により影響を受け、より高度な補正を行う事が出来る。  Further, a voltage may be applied to the electrodes 52 and 53. In that case, the electron beam is affected by both the magnetic field and the electric field, and more advanced correction can be performed.
[0073] <第二の実施形態の第二の変形例 > <Second Modification of Second Embodiment>
次に、図 14Aに本発明の第二の実施形態の第二の変形例に係る電子レンズの断 面図を、図 14Bに平面図を示す。  Next, FIG. 14A is a sectional view of an electron lens according to a second modification of the second embodiment of the present invention, and FIG. 14B is a plan view.
本変形例では、空間的に磁石配置を行った磁気レンズを示している。支持基板 14 0上に複数の穴 141を開け、その複数の穴 141から数個を選択して磁性体を注入す ることにより、注入された場所のみが磁石 142となる。支持基板 140の上方力も入射 された電子ビームは穴 141を通過する際に、穴 141の周囲に存在する磁石 142から 生じる磁界によりレンズ作用を受け、収束あるいは発散される。磁石 142の配置位置 や強度や極性を変化させることにより、収差を補正することが出来る。支持基板 140 としては、金属、又はセラミック、又は有機材料等、様々な材料が利用できる。図 14に 示した穴 141の形状は円形としている力 四角形、又は多面体、又はメッシュ状でも よい。 In this modification, a magnetic lens in which magnets are spatially arranged is shown. By opening a plurality of holes 141 on the support substrate 140, and selecting several of the plurality of holes 141 and injecting a magnetic material, only the injected location becomes the magnet 142. When the electron beam that has also entered the upward force of the support substrate 140 passes through the hole 141, the electron beam from the magnet 142 that exists around the hole 141. The lens acts as a result of the generated magnetic field and converges or diverges. The aberration can be corrected by changing the arrangement position, strength, and polarity of the magnet 142. As the support substrate 140, various materials such as metal, ceramic, or organic material can be used. The shape of the hole 141 shown in FIG. 14 may be a circular force square, a polyhedron, or a mesh.
[0074] <第二の実施形態の第三の変形例 >  <Third Modification of Second Embodiment>
次に、図 15に本発明の第二の実施形態の第三の変形例に係る電子レンズと書き 込み装置の平面図を示す。  Next, FIG. 15 shows a plan view of an electron lens and a writing device according to a third modification of the second embodiment of the present invention.
本変形例は、局所的に微小磁石を配置した磁気レンズを示して 、る。  This modification shows a magnetic lens in which micro magnets are locally arranged.
[0075] 図 15に示す様に、本電子レンズは、円形の形状の磁石 151からなり、中心部に備 える空洞が対物レンズ 150として働く。円形の形状の磁石 151は、局所的に n極に磁 化された微小磁石 152や s極に磁ィ匕された微小磁石 153を複数備えている。各微小 磁石 153の配置位置、極性、強度を変化させることによって、それら力も作り出される 磁場分布を変化させ、収差を小さく補正することが出来る。 As shown in FIG. 15, this electron lens is composed of a circular magnet 151, and a cavity provided in the center serves as the objective lens 150. The circular magnet 151 includes a plurality of micro magnets 152 that are locally magnetized to n poles and a plurality of micro magnets 153 that are magnetized to s poles. By changing the arrangement position, polarity, and strength of each micro magnet 153, the magnetic field distribution in which these forces are also generated can be changed, and the aberration can be corrected to be small.
また、磁石の書き込みの際に利用する書き込み制御装置 156と磁気ヘッド 157を 備え、デジタル信号 155に基づいて書き込みを行う。例えば、デジタル信号 155の例 として、信号 154を用いた場合は n極、 s極を交互に同じ強度で同じ大きさに書き込み 、同図に示した磁石 151が得られる。  In addition, a writing control device 156 and a magnetic head 157 used for writing the magnet are provided, and writing is performed based on the digital signal 155. For example, when the signal 154 is used as an example of the digital signal 155, the n pole and the s pole are alternately written to the same magnitude with the same intensity, and the magnet 151 shown in the figure is obtained.
[0076] 微小磁石は、大きさがミリメートル単位の場合は、チップマウンターなどのロボットを 利用して機械的に配置出来るが、それより小さくなると機械的に配置する事が困難で ある。そこで、ミクロン単位あるいはそれ以下の大きさの磁石を配置するためには、上 述の様に磁性体を薄膜状に形成した材料を用意し、その材料に対して磁気ヘッド 15 7を用いて磁石の情報を書きこむ。 [0076] When the size is in millimeters, the micromagnet can be mechanically arranged using a robot such as a chip mounter. However, if the size is smaller than that, it is difficult to mechanically arrange the micromagnet. Therefore, in order to place a magnet with a size of a micron or smaller, prepare a material in which a magnetic material is formed in a thin film as described above, and use a magnetic head 157 for the material. Write the information.
磁気ヘッド 157には、磁気ディスクに使用されている技術を適用することが可能で あり、電磁気型の磁気ヘッドやレーザーを用いた相変化型の磁気書き込み方式を用 いても良い。  The technology used for the magnetic disk can be applied to the magnetic head 157, and an electromagnetic magnetic head or a phase change magnetic writing method using a laser may be used.
例えば、磁気ヘッドを用いた書き込みは、所望の電子レンズ特性を実現するために 必要な磁場分布が実現されるような磁石の配置情報に対応した書き込み電流を磁気 ヘッド 157に流すことによって行われる。 For example, in writing using a magnetic head, a write current corresponding to magnet arrangement information that realizes a magnetic field distribution necessary to realize desired electron lens characteristics is magnetically generated. This is done by flowing through the head 157.
[0077] 書き込みに利用できる磁性体には、一般的に磁気ディスクや磁気テープで利用さ れて 、るような磁性体を利用可能であり、サブミクロン単位の大きさの磁石を任意の 間隔で配置することが可能と成る。 [0077] As a magnetic material that can be used for writing, a magnetic material generally used in a magnetic disk or a magnetic tape can be used, and a magnet having a size of a submicron unit is provided at an arbitrary interval. It becomes possible to arrange.
磁ィ匕する方向は、面内方向又は垂直方向の任意の方向を選択可能である。また、 磁力の強度を変化させる方法としては、ある一定の極性あるいは磁力を持つ磁石を 単位面積に並べる割合を変化させる事で離散的 (デジタル的)に行う事が出来る。ま たは、磁気ヘッド 157に加える記録電流を変化させることで各磁石の極性や強度を 連続的(アナログ的)に変化させる方法を用いても良 、。  The direction of magnetizing can be selected from an in-plane direction or an arbitrary direction. As a method of changing the strength of the magnetic force, it can be performed discretely (digitally) by changing the ratio of magnets having a certain polarity or magnetic force arranged in a unit area. Alternatively, it is possible to use a method of changing the polarity and strength of each magnet continuously (analog) by changing the recording current applied to the magnetic head 157.
[0078] 十分に小さな大きさの磁石が形成可能な場合は、それぞれの磁石の磁力は等しく し、磁石の個数あるいは面密度によって磁界の強度を離散的(デジタル的)に調節す る磁気レンズとすることが望まし 、。 [0078] When sufficiently small magnets can be formed, the magnetic force of each magnet is made equal, and a magnetic lens that adjusts the strength of the magnetic field discretely (digitally) according to the number of magnets or the surface density Hope to do.
図 15では、磁気ディスクのように円形の材料に磁石を形成する例のみを示したが、 二次元平面上に磁石を書き込んでも良 、。  In FIG. 15, only an example of forming a magnet on a circular material such as a magnetic disk is shown, but a magnet may be written on a two-dimensional plane.
これまでに述べてきた第二の実施形態に係る電子レンズを用いて電子顕微鏡や半 導体測定装置 (EBSCOPE)の電子レンズを構成することにより、収差力 S小さい電子 顕微鏡装置や半導体測定装置 (EBSCOPE)を作製する事が出来る。  By using the electron lens according to the second embodiment described so far to construct an electron lens for an electron microscope or a semiconductor measurement device (EBSCOPE), an electron microscope device or a semiconductor measurement device (EBSCOPE ) Can be made.
[0079] <第三の実施形態 > [0079] <Third embodiment>
次に、図 16Aに本発明の第三の実施形態に係る電子レンズの断面図を、図 16Bに 平面図を示す。同図において、前述の図 1、 4、 5に示した構成要素と共通する要素 には同一符号を付け、説明は省略する。  Next, FIG. 16A shows a cross-sectional view of an electron lens according to the third embodiment of the present invention, and FIG. 16B shows a plan view. In the figure, the same reference numerals are given to the same elements as those shown in FIGS. 1, 4, and 5, and the description thereof is omitted.
本実施形態ではメッシュ電極の形状を工夫する事で、等電位面を任意にデザイン して、 2つの焦点を持つ電子レンズを構成した例を示している。従来の電子レンズで は 1つの焦点のみを有していたが、本実施形態では 2つ以上の焦点を自由に得る事 が出来る。例えば、トンボの目を模した複眼構造の電子レンズを構成する事も出来る 。また、同じ位置に焦点を持つ電子レンズを複数設けることも可能であり、異なった位 置に焦点を持つ電子レンズを複数設けることも可能である。  In the present embodiment, an example is shown in which an equipotential surface is arbitrarily designed by devising the shape of the mesh electrode to constitute an electron lens having two focal points. The conventional electron lens has only one focal point, but in this embodiment, two or more focal points can be freely obtained. For example, an electronic lens having a compound eye structure simulating the eyes of a dragonfly can be constructed. In addition, it is possible to provide a plurality of electron lenses having a focal point at the same position, and it is also possible to provide a plurality of electron lenses having a focal point at different positions.
[0080] 図 16Aの断面図に示す様に、本電子レンズは、第一の実施形態の第四の変形例 からメッシュ電極 161を変更した構造を備える静電レンズである。対物レンズ(主レン ズ) 50の内部にはメッシュ電極 161が、電極 52とは電気的に絶縁されて形成されて いる。メッシュ電極 161は、 2つの凸部を備えている。 As shown in the cross-sectional view of FIG. 16A, the present electron lens is a fourth modification of the first embodiment. The electrostatic lens has a structure in which the mesh electrode 161 is changed. A mesh electrode 161 is formed in the objective lens (main lens) 50 so as to be electrically insulated from the electrode 52. The mesh electrode 161 has two convex portions.
メッシュ電極 161は、第一の実施形態の第三の変形例と同様な材料により形成され ており、外部力も与えた電圧をメッシュ電極 161の表面に生じさせることが出来る。  The mesh electrode 161 is formed of the same material as that of the third modification of the first embodiment, and a voltage to which an external force is applied can be generated on the surface of the mesh electrode 161.
[0081] 本電子レンズを上面から見ると、図 16Bに示す様に、円形の形状の対物レンズ(主 レンズ) 50の内部にメッシュ電極 161が設置され、メッシュ電極 161はリード線 168に よりパッド電極 47に電気的に接続されている。また、メッシュ電極 161を構成する大 小の円形電極は、リード線 168によって支持され、立体形状を構成している。  When the electron lens is viewed from the top, as shown in FIG. 16B, a mesh electrode 161 is installed inside a circular objective lens (main lens) 50, and the mesh electrode 161 is padded by a lead wire 168. The electrode 47 is electrically connected. The large and small circular electrodes constituting the mesh electrode 161 are supported by the lead wires 168 to form a three-dimensional shape.
[0082] 通常、 SEM等の電子ビームを利用した測定装置は、図 8に示したように 1台の電子 ビーム源を備え、そこカゝら発生した電子ビームを数 nmの径に収束して試料表面に照 射し、それを XY方向に二次元走査する事で SEM画像を得て 、る。  [0082] Usually, a measuring apparatus using an electron beam such as SEM has one electron beam source as shown in Fig. 8, and the generated electron beam is converged to a diameter of several nm. SEM images are obtained by irradiating the sample surface and scanning it two-dimensionally in the XY direction.
しかし、電子ビーム源には寿命があり、しばしば電子ビーム源を交換する必要があ るため、交換の間は電子ビーム測定装置をダウン状態にする必要があり、測定を行う ことが出来なくなる。  However, since the electron beam source has a lifetime, and it is often necessary to replace the electron beam source, the electron beam measuring device must be brought down during the replacement, and measurement cannot be performed.
[0083] そこで、本実施形態のように複数の焦点を持つ電子レンズを電子顕微鏡に利用す ると、複数の焦点に別々の電子ビーム源を設置して、 1点に収束する電子ビームを得 る事が出来る。図 16に示す様に、電子ビーム EB16a、 EB16bは、別々の位置から 電子レンズに入射される力 収束する位置は両者共に同 Cf立置である。さらに、メッシ ュ電極 161の凸部の形状を変化させることで、等電位面形状を変化させ、収差の補 正を行うことも出来る。  Therefore, when an electron lens having a plurality of focal points is used in an electron microscope as in this embodiment, separate electron beam sources are installed at the plurality of focal points to obtain an electron beam that converges to one point. You can As shown in Fig. 16, the electron beams EB16a and EB16b have the same Cf standing at the position where the force incident on the electron lens from different positions converges. Furthermore, by changing the shape of the convex portion of the mesh electrode 161, it is possible to change the shape of the equipotential surface and correct the aberration.
[0084] つまり、焦点の位置に別々の電子ビーム源を設置し、それを一台ずつ動作させて、 動作中の電子ビーム源が壊れると次の電子ビーム源に切り替えて順番に利用する事 で、電子ビーム源の寿命に関係なく常に測定装置を使い続けることが出来るようにな る。  [0084] In other words, a separate electron beam source is installed at the focal point position, operated one by one, and when the operating electron beam source is broken, it is switched to the next electron beam source and used in order. This makes it possible to always use the measuring device regardless of the lifetime of the electron beam source.
また、上述の複数台の電子ビーム源を同時に動作させれば、従来よりも高い輝度を 有する光源を得た事と等価に成るので、明る ヽ画像あるいは大きな測定信号を得る 事が出来る用に成る。 [0085] <第三の実施形態の第一の変形例 > Also, if the above-mentioned plurality of electron beam sources are operated simultaneously, it is equivalent to obtaining a light source having higher brightness than before, so that a bright image or a large measurement signal can be obtained. . <First modification of third embodiment>
次に、図 17Aに本発明の第三の実施形態の第一の変形例に係る電子レンズの断 面図を、図 17Bに平面図を示す。同図において、前述の図 1、 4、 5に示した構成要 素と共通する要素には同一符号を付け、説明は省略する。  Next, FIG. 17A is a sectional view of an electron lens according to a first modification of the third embodiment of the present invention, and FIG. 17B is a plan view. In the figure, elements common to the constituent elements shown in FIGS. 1, 4, and 5 are given the same reference numerals, and descriptions thereof are omitted.
本変形例では、複数の焦点距離を持つ電子レンズを 1つの電子レンズ中に実現し ていることに特徴がある。  This modification is characterized in that an electron lens having a plurality of focal lengths is realized in one electron lens.
[0086] 図 17Aの断面図に示す様に、本電子レンズは、第三の実施形態からメッシュ電極 1 71を変更した構造を備える静電レンズである。対物レンズ (主レンズ) 50の内部には メッシュ電極 171が、電極 52とは電気的に絶縁されて形成されている。メッシュ電極 1 71は、 3つの凸部を備えている。  As shown in the cross-sectional view of FIG. 17A, this electron lens is an electrostatic lens having a structure in which the mesh electrode 171 is changed from the third embodiment. A mesh electrode 171 is formed in the objective lens (main lens) 50 so as to be electrically insulated from the electrode 52. The mesh electrode 171 has three convex portions.
メッシュ電極 171は、第一の実施形態の第三の変形例と同様な材料により形成され ており、外部力も与えた電圧をメッシュ電極 171の表面に生じさせることが出来る。  The mesh electrode 171 is formed of the same material as that of the third modification of the first embodiment, and a voltage to which an external force is applied can be generated on the surface of the mesh electrode 171.
[0087] 本電子レンズを上面から見ると、図 17Bに示す様に、円形の形状の対物レンズ(主 レンズ) 50の内部にメッシュ電極 171が設置され、メッシュ電極 171はリード線 178に よりパッド電極 47に電気的に接続されている。また、メッシュ電極 171を構成する大 小の円形電極は、リード線 178によって支えられ、立体形状を構成している。  When this electron lens is viewed from above, as shown in FIG. 17B, a mesh electrode 171 is installed inside a circular objective lens (main lens) 50, and the mesh electrode 171 is padded by a lead wire 178. The electrode 47 is electrically connected. The large and small circular electrodes constituting the mesh electrode 171 are supported by the lead wires 178 to form a three-dimensional shape.
[0088] 本電子レンズの動作を以下に示す。  [0088] The operation of the present electron lens will be described below.
電子レンズの中心部に入射した電子ビーム EB 17aは、図示しな!、試料表面で収 束する焦点距離を持つ。一方、電子レンズの外周部に入射した電子ビーム EB17bと EB17cは、電子ビーム EB17aの有する焦点距離よりも長い焦点距離を持つ。その 結果、電子ビームは、試料の中心部分では焦点をしつかりと結び収束するように制御 され、その周辺部では焦点をずらして収束されない状態に制御される。さらに、メッシ ュ電極 171の中心部分の凸部の形状を変化させることで、等電位面形状を変化させ 、試料の中心に収束される電子ビームの収差の補正を行うことも出来る。  The electron beam EB 17a incident on the center of the electron lens has a focal length that converges on the sample surface, not shown. On the other hand, the electron beams EB17b and EB17c incident on the outer periphery of the electron lens have a longer focal length than the focal length of the electron beam EB17a. As a result, the electron beam is controlled so as to be focused and converged at the central portion of the sample, and is controlled so as not to be converged by shifting the focus at the peripheral portion. Furthermore, by changing the shape of the convex portion at the center of the mesh electrode 171, the shape of the equipotential surface can be changed, and the aberration of the electron beam converged on the center of the sample can be corrected.
[0089] 前述の半導体デバイス測定装置 (EBSCOPE)にお 、ては、測定対象の周辺部分 と測定対象には異なった密度の電子ビームを照射したい場合がある。例えば、電子 ビームを収束して測定対象に照射すると、測定対象の電子ビーム照射部分力 発生 した二次電子の一部分は検出器によって回収されるが、回収されなかった二次電子 は測定対象の周辺部に不規則に蓄積される。この蓄積された電子は、随時同様に電 子ビームが照射されて測定対象力 発生する二次電子の軌道に対して不規則な影 響を与えるため、検出器により検出される二次電子の量に影響を与え測定が不安定 になる。 In the above-described semiconductor device measurement apparatus (EBSCOPE), there are cases where it is desired to irradiate the electron beam having different densities to the peripheral portion of the measurement target and the measurement target. For example, when the electron beam is focused and irradiated onto the measurement target, a portion of the secondary electrons generated by the partial force of the target electron beam irradiation is recovered by the detector, but the secondary electrons that were not recovered are recovered. Are irregularly accumulated in the periphery of the object to be measured. Since the accumulated electrons have an irregular effect on the trajectory of the secondary electrons generated by the irradiation of the electron beam as needed, the amount of secondary electrons detected by the detector The measurement will become unstable.
[0090] その様な場合に、本変形例の 2種類の焦点距離を持つ電子レンズを半導体デバイ ス測定装置 (EBSCOPE)に適用して測定対象周辺部に弱く電子ビームを照射する と、その部分には強制的に電荷が一定量蓄積される。その蓄積された電荷によって、 周辺に存在する電子は一定の影響を受けるようになる。そこで、測定対象場所で発 生した二次電子は周辺に存在する一定量の電荷の影響を安定して受けるため、検 出器によって検出される二次電子量が安定ィ匕し、測定を安定ィ匕する事が出来る。  [0090] In such a case, when the electron lens having two types of focal lengths of this modification is applied to the semiconductor device measurement device (EBSCOPE) and the electron beam is weakly irradiated to the periphery of the measurement target, A certain amount of electric charge is forcibly accumulated in. Due to the accumulated electric charge, the electrons existing in the vicinity are affected to a certain extent. Therefore, the secondary electrons generated at the measurement site are stably affected by a certain amount of charge in the vicinity, so the amount of secondary electrons detected by the detector stabilizes and the measurement is stabilized. You can do it.
[0091] <第三の実施形態の第二の変形例 >  [0091] <Second Modification of Third Embodiment>
次に、図 18Aに本発明の第三の実施形態の第二の変形例に係る電子レンズの断 面図を、図 18Bに平面図を示す。  Next, FIG. 18A is a cross-sectional view of an electron lens according to a second modification of the third embodiment of the present invention, and FIG. 18B is a plan view.
本変形例では、電子レンズの上部カゝら電子レンズを構成するそれぞれの電極に電 圧を印加しやすくするために、電極に段差を作製してそれぞれの電極の上部にパッ ド電極を設けたことに特徴がある。  In this modification, in order to make it easier to apply a voltage to each electrode constituting the electron lens in addition to the upper part of the electron lens, a step is formed in the electrode and a pad electrode is provided above each electrode. There is a special feature.
[0092] 図 18Aの断面図と図 18Bの平面図に示す様に、本電子レンズは、図 17に示した第 三の実施形態の第一の変形例と同様な構造を持ち、電極 182の外形の大きさが電 極 183の外形の大きさよりも小さい点が異なっている。電極 182の上部にはパッド電 極 187aが、電極 183の上部にはパッド電極 187bがそれぞれの電極と電気的に接 続されて設けられている。また、電極 182の上部には、メッシュ電極 181と電気的に 接続されたパッド電極 187cが電極 182とは電気的に絶縁されて設けられている。こ の様な構造を有する事で、電圧 185a、 185b, 185cは、それぞれ電子レンズの上部 から各パッド電極に印加され、電子レンズを用いて電子顕微鏡を作製する際に設計 の自由度が増す。  As shown in the sectional view of FIG. 18A and the plan view of FIG. 18B, this electron lens has the same structure as that of the first modification of the third embodiment shown in FIG. The difference is that the size of the outer shape is smaller than the size of the outer shape of the electrode 183. A pad electrode 187a is provided above the electrode 182 and a pad electrode 187b is provided above the electrode 183 so as to be electrically connected to each electrode. A pad electrode 187c electrically connected to the mesh electrode 181 is provided on the electrode 182 so as to be electrically insulated from the electrode 182. With such a structure, the voltages 185a, 185b, and 185c are applied to each pad electrode from the upper part of the electron lens, respectively, and the degree of freedom in design increases when an electron microscope is manufactured using the electron lens.
なお、前述したすべての電子レンズにおいて、本変形例で示した電極配置を採用 する事が可能である。  It should be noted that the electrode arrangement shown in this modification can be adopted in all the above-described electron lenses.
[0093] 以下に、上述した実施形態による効果をまとめる。 本発明では、半導体デバイス測定装置 (EBSCOPE)等の電子ビームを用いた評 価装置に必要とされる特性を備える電子レンズを得る事が出来る。 [0093] The effects of the above-described embodiments are summarized below. In the present invention, an electron lens having characteristics required for an evaluation apparatus using an electron beam such as a semiconductor device measurement apparatus (EBSCOPE) can be obtained.
つまり、電子レンズの特性を変更した場合であっても特性が安定するまでに時間が 掛カ ないので、電子ビームの加速電圧を頻繁に変更する測定方法が実現できる。 また、複雑な補正装置や補正方法を用いることなぐ球面収差の非常に小さな電子 レンズを得る事が出来る。  In other words, even if the characteristics of the electron lens are changed, it does not take time for the characteristics to stabilize, so a measurement method that frequently changes the acceleration voltage of the electron beam can be realized. In addition, it is possible to obtain an electron lens with extremely small spherical aberration without using a complicated correction device or correction method.
[0094] 従来、静電レンズは小型である反面、収差が大き!/、ために高分解能 SEMの対物レ ンズとしては利用出来な力つたが、本発明の静電レンズは収差が小さいため、その様 な用途の対物レンズとして十分に使用可能である。そのため、従来よりも小型で高分 解能観察が可能な SEMやプロセス評価装置を作製可能である。 [0094] Conventionally, the electrostatic lens is small, but the aberration is large! /. Therefore, the electrostatic lens according to the present invention has a small aberration because the electrostatic lens of the present invention has a small aberration. It can be used as an objective lens for such applications. Therefore, it is possible to produce SEMs and process evaluation devices that are smaller and have higher resolution observation than before.
また、電子レンズの大きさを小型化出来るため電子ビーム鏡筒も小型化が可能であ り、外来ノイズ (特に振動、電磁波、地磁気)に対して影響を受けない非常に丈夫な 電子ビーム鏡筒を得る事が出来る。  In addition, since the size of the electron lens can be reduced, the electron beam column can also be reduced in size, and it is a very strong electron beam column that is not affected by external noise (especially vibration, electromagnetic waves, geomagnetism). Can be obtained.
また、電子レンズの収差特性を自由に変更出来るので、収差のない電子レンズを 得るばかりでなぐ負の収差を持った電子レンズや、時間軸に対して収差やレンズ特 性を変更出来る電子レンズを得る事が可能である。  In addition, since the aberration characteristics of the electron lens can be changed freely, an electron lens with negative aberrations that not only yields an electron lens with no aberrations, or an electron lens that can change aberrations and lens characteristics with respect to the time axis. It is possible to get.
[0095] 以上、本発明の実施形態を詳述してきたが、具体的な構成は本実施形態に限られ るものではなぐ本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 The embodiment of the present invention has been described in detail above, but the specific configuration is not limited to this embodiment, and includes design changes and the like within a scope that does not depart from the gist of the present invention.
本実施形態では、最も収差を考慮する必要のある対物レンズを一例として説明した 力 用途に関わり無くすベての電子レンズに対して本発明の手法を適用可能である 事は言うまでも無い。  In the present embodiment, it is needless to say that the method of the present invention can be applied to all electron lenses regardless of the power use described as an example of the objective lens that needs to consider the aberration most.
また、実施形態で述べた以外の種々の電極や磁石の配置方法、磁石の極性の変 更なども同様に収差を制御する効果がある。本実施形態で説明したそれぞれの静電 レンズと磁気レンズを組み合わせて用いても効果的である。また、レンズの製造にあ たっては最新のマイクロマシユング技術を使うなどする事が収差をさらに小さくする上 で重要ある。  In addition, various electrode and magnet arrangement methods other than those described in the embodiment and changes in the polarity of the magnets also have the effect of controlling aberrations. It is also effective to use a combination of each electrostatic lens and magnetic lens described in the present embodiment. In manufacturing lenses, it is important to use the latest micromachining technology to further reduce aberrations.
産業上の利用可能性  Industrial applicability
[0096] 本発明は、電子ビームを利用した顕微鏡や評価装置に使用される電子レンズに用 いて好適である。 The present invention is applied to an electron lens used in a microscope or an evaluation apparatus using an electron beam. It is preferable.

Claims

請求の範囲 The scope of the claims
[I] 静電レンズの収差を補正する補正機構を備えた電子レンズ。  [I] An electronic lens equipped with a correction mechanism that corrects the aberration of an electrostatic lens.
[2] 請求項 1に記載の電子レンズにおいて、 [2] In the electron lens according to claim 1,
前記補正機構は、対物レンズ近傍に配置した補正電極である事を特徴とする電子 レンズ。  The electron lens, wherein the correction mechanism is a correction electrode disposed in the vicinity of the objective lens.
[3] 請求項 2に記載の電子レンズにおいて、  [3] The electron lens according to claim 2,
前記補正電極は、円形のホールを有する事を特徴とする電子レンズ。  The correction lens has a circular hole, and is an electron lens.
[4] 請求項 2に記載の電子レンズにおいて、 [4] The electron lens according to claim 2,
前記補正電極は、円形以外の形状のホールを有する事を特徴とする電子レンズ。  The correction lens includes an electron lens having a shape other than a circular shape.
[5] 請求項 2に記載の電子レンズにおいて、 [5] The electron lens according to claim 2,
前記補正電極が有するホールの形状は、前記対物レンズの形状と相互に異なって Vヽる事を特徴とする電子レンズ。  An electron lens characterized in that the shape of the hole of the correction electrode is different from the shape of the objective lens.
[6] 請求項 1に記載の電子レンズにおいて、 [6] The electron lens according to claim 1,
前記補正機構は、導電性材料で形成された電子の通過可能な電極である事を特 徴とする電子レンズ。  An electron lens characterized in that the correction mechanism is an electrode formed of a conductive material and capable of passing electrons.
[7] 請求項 6に記載の電子レンズにおいて、 [7] The electron lens according to claim 6,
前記電極は、前記導電性材料の形状を変形することによって形成された事を特徴 とする電子レンズ。  2. The electron lens according to claim 1, wherein the electrode is formed by changing a shape of the conductive material.
[8] 請求項 6に記載の電子レンズにおいて、 [8] The electron lens according to claim 6,
前記電極は、フレネルレンズの形状である事を特徴とする電子レンズ。  The electrode is in the shape of a Fresnel lens.
[9] 請求項 8に記載の電子レンズにおいて、 [9] The electron lens according to claim 8,
フレネルレンズの形状の前記電極を、電子ビームの入射方向に複数個配置した事 を特徴とする電子レンズ。  An electron lens characterized in that a plurality of the electrodes in the shape of a Fresnel lens are arranged in the incident direction of the electron beam.
[10] 請求項 8または 9の何れか 1項に記載の電子レンズを用いて電子ビーム走査範囲を 拡大した事を特徴とする電子ビーム走査装置。 [10] An electron beam scanning device, wherein the electron beam scanning range is expanded using the electron lens according to any one of [8] and [9].
[II] 請求項 1に記載の電子レンズにおいて、  [II] In the electron lens according to claim 1,
前記補正機構は、電子ビームの入射方向とほぼ垂直の方向に向かい合った一組 の電極から構成される補正電極を、電子ビームの入射方向に複数組配置した多段レ ンズであり、 The correction mechanism is a multistage laser in which a plurality of correction electrodes each including a pair of electrodes facing in a direction substantially perpendicular to the incident direction of the electron beam are arranged in the incident direction of the electron beam. And
該補正電極にそれぞれ独立の電圧を印加する電圧印加手段を備える事を特徴と する電子レンズ。  An electron lens comprising voltage application means for applying independent voltages to the correction electrodes.
[12] 請求項 11に記載の電子レンズにおいて、  [12] The electron lens according to claim 11,
前記多段レンズを構成する各組の前記補正電極の配置角度が、それぞれ異なる 事を特徴とする電子レンズ。  An electronic lens, wherein the arrangement angle of each of the correction electrodes constituting the multistage lens is different.
[13] 請求項 1に記載の電子レンズにおいて、 [13] The electron lens according to claim 1,
前記補正機構は、円形のホールを有し、該ホールの円周上に凹部または凸部を有 する補正電極を、電子ビームの入射方向に複数個重ね合わせた多段レンズであり、 該補正電極にそれぞれ独立の電圧を印加する電圧印加手段を備え、該補正電極 がそれぞれ回転可能である事を特徴とする電子レンズ。  The correction mechanism is a multistage lens having a circular hole, and a plurality of correction electrodes each having a concave portion or a convex portion on the circumference of the hole, which are superimposed in the incident direction of the electron beam. An electron lens comprising voltage application means for applying independent voltages to each other, wherein each of the correction electrodes is rotatable.
[14] 請求項 1に記載の電子レンズにおいて、 [14] The electron lens according to claim 1,
複数の焦点を持つ事を特徴とする電子レンズ。  An electronic lens characterized by having multiple focal points.
[15] 請求項 14に記載の電子レンズにおいて、 [15] The electron lens according to claim 14,
前記複数の焦点が、それぞれ異なった位置に存在する事を特徴とする電子レンズ  The electron lens characterized in that the plurality of focal points exist at different positions, respectively.
[16] 請求項 14に記載の電子レンズにおいて、 [16] The electron lens according to claim 14,
前記複数の焦点が、それぞれ長!ヽ焦点距離と短!ヽ焦点距離を有する事を特徴とす る電子レンズ。  An electron lens characterized in that each of the plurality of focal points has a long focal length and a short focal length.
[17] 磁気レンズの収差を補正する補正機構を備えた電子レンズ。  [17] An electronic lens equipped with a correction mechanism for correcting aberration of the magnetic lens.
[18] 請求項 17に記載の電子レンズにおいて、 [18] The electron lens according to claim 17,
前記補正機構は、大きさの異なる複数のリング形状の固定磁石を同心円状に配置 したものである事を特徴とする電子レンズ。  The electronic lens according to claim 1, wherein the correction mechanism is a concentric arrangement of a plurality of ring-shaped fixed magnets having different sizes.
[19] 請求項 17に記載の電子レンズにおいて、 [19] The electron lens according to claim 17,
前記補正機構は、複数の小型の磁石を平面状に配置したものである事を特徴とす る電子レンズ。  The electronic lens according to claim 1, wherein the correction mechanism includes a plurality of small magnets arranged in a plane.
[20] 請求項 17から 19までの何れか一項に記載の電子レンズにおいて、  [20] In the electron lens according to any one of claims 17 to 19,
さらに静電レンズを備え、前記磁気レンズと静電レンズを電子ビームの入射方向が 同一となるように配置した事を特徴とする電子レンズ。 In addition, an electrostatic lens is provided, and the magnetic lens and the electrostatic lens have an incident direction of an electron beam. An electronic lens characterized by being arranged to be the same.
[21] 請求項 17に記載の電子レンズにおいて、  [21] The electron lens according to claim 17,
前記補正機構は、支持基板に複数のホールを形成して 1つ以上の該ホールに磁 石を備えたものである事を特徴とする電子レンズ。  The electron lens according to claim 1, wherein the correction mechanism includes a plurality of holes formed in a support substrate and magnets are provided in one or more of the holes.
[22] 請求項 17に記載の電子レンズにおいて、 [22] The electron lens according to claim 17,
前記補正機構は、極性、または強度、またはそれら両方を書き換え可能な磁石によ つて構成されたものである事を特徴とする電子レンズ。  The electronic lens according to claim 1, wherein the correction mechanism is composed of a magnet capable of rewriting polarity and / or strength.
[23] 請求項 22に記載の電子レンズにおいて、 [23] The electron lens according to claim 22,
磁気ヘッドを用いて、前記磁石の極性、または強度、またはそれら両方を書き換え る事を特徴とする電子レンズ。  An electronic lens characterized by rewriting the polarity and / or strength of the magnet using a magnetic head.
[24] 請求項 23に記載の電子レンズにおいて、  [24] The electron lens according to claim 23,
前記磁石の強度を離散的に変化させて前記磁気レンズを構成する事を特徴とする 電子レンズ。  An electronic lens, wherein the magnetic lens is configured by discretely changing the strength of the magnet.
[25] 請求項 23に記載の電子レンズにおいて、  [25] The electron lens according to claim 23,
前記磁石の強度を連続的に変化させて前記磁気レンズを構成する事を特徴とする 電子レンズ。  An electronic lens, wherein the magnetic lens is configured by continuously changing the strength of the magnet.
[26] 請求項 1または請求項 17の何れか一項に記載の電子レンズを使用した事を特徴と する電子ビーム装置。  [26] An electron beam apparatus using the electron lens according to any one of [1] or [17].
PCT/JP2006/308728 2006-04-26 2006-04-26 Electronic lens WO2007129376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/308728 WO2007129376A1 (en) 2006-04-26 2006-04-26 Electronic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/308728 WO2007129376A1 (en) 2006-04-26 2006-04-26 Electronic lens

Publications (1)

Publication Number Publication Date
WO2007129376A1 true WO2007129376A1 (en) 2007-11-15

Family

ID=38667498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308728 WO2007129376A1 (en) 2006-04-26 2006-04-26 Electronic lens

Country Status (1)

Country Link
WO (1) WO2007129376A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020208A1 (en) * 2007-08-09 2009-02-12 Kyoto University Radial multipolar type layout lens, and charged particle optical system device using the lens
EP2124243A2 (en) 2008-05-20 2009-11-25 Samsung Electronics Co., Ltd. Electron beam focusing electrode and electron gun using the same
WO2014191370A1 (en) * 2013-05-31 2014-12-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrostatic lens having a dielectric semiconducting membrane
US20160189916A1 (en) * 2014-12-17 2016-06-30 Applied Materials Israel Ltd. Scanning charged particle beam device having an aberration correction aperture and method of operating thereof
EP3267464A4 (en) * 2015-04-27 2018-12-26 National University Corporation Nagoya University Spherical aberration correction device for charged particle beam electromagnetic lens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052998A (en) * 1999-06-03 2001-02-23 Advantest Corp Method and device for imaging charged particle beam, and exposure device therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052998A (en) * 1999-06-03 2001-02-23 Advantest Corp Method and device for imaging charged particle beam, and exposure device therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020208A1 (en) * 2007-08-09 2009-02-12 Kyoto University Radial multipolar type layout lens, and charged particle optical system device using the lens
EP2124243A2 (en) 2008-05-20 2009-11-25 Samsung Electronics Co., Ltd. Electron beam focusing electrode and electron gun using the same
JP2009283434A (en) * 2008-05-20 2009-12-03 Samsung Electronics Co Ltd Electron beam focusing electrode, electron gun using the same, and method for reducing diffusion phenomenon of electron beam having square section
EP2124243A3 (en) * 2008-05-20 2012-09-26 Samsung Electronics Co., Ltd. Electron beam focusing electrode and electron gun using the same
KR101420244B1 (en) * 2008-05-20 2014-07-21 재단법인서울대학교산학협력재단 Beam forming electrode and electron gun using the same
US8912505B2 (en) 2008-05-20 2014-12-16 Samsung Electronics Co., Ltd. Electron beam focusing electrode and electron gun using the same
WO2014191370A1 (en) * 2013-05-31 2014-12-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrostatic lens having a dielectric semiconducting membrane
FR3006499A1 (en) * 2013-05-31 2014-12-05 Commissariat Energie Atomique ELECTROSTATIC LENS WITH INSULATING OR SEMICONDUCTOR MEMBRANE
US9934934B2 (en) 2013-05-31 2018-04-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrostatic lens having a dielectric semiconducting membrane
US20160189916A1 (en) * 2014-12-17 2016-06-30 Applied Materials Israel Ltd. Scanning charged particle beam device having an aberration correction aperture and method of operating thereof
EP3267464A4 (en) * 2015-04-27 2018-12-26 National University Corporation Nagoya University Spherical aberration correction device for charged particle beam electromagnetic lens

Similar Documents

Publication Publication Date Title
TWI747301B (en) Particle beam system for azimuthal deflection of individual particle beams and method for azimuth correction in a particle beam system
JP5097512B2 (en) Orbit corrector for charged particle beam and charged particle beam apparatus
JP4647820B2 (en) Charged particle beam drawing apparatus and device manufacturing method
CN113192815A (en) Arrangement of a plurality of charged particle beams
JP2009054581A (en) Corrector for charged particle beam aberration, and charged particle beam device
EP2485239A1 (en) Method for centering an optical element in a TEM comprising a contrast enhancing element
US8242457B2 (en) Charged particle optics with azimuthally-varying third-order aberrations for generation of shaped beams
WO2007129376A1 (en) Electronic lens
WO2005071708A2 (en) Focussing lens for charged particle beams
JP2010506374A (en) Electron column using magnetic lens layer with permanent magnet
CN102668013B (en) Scanning electron microscope
JP2001185066A (en) Electron beam device
JP2007534121A (en) Correction lens system for particle beam injector
US8071955B2 (en) Magnetic deflector for an electron column
JP3985033B2 (en) Method and apparatus for storing data using spin-polarized electrons
KR101694239B1 (en) Charged particle beam apparatus
JP4642966B2 (en) Particle beam equipment
EP1648018A1 (en) Focussing lens and charged particle beam device for non zero landing angle operation
US11079411B2 (en) Electromechanical component, electromechanical component arrangement, method of detecting a potential difference by using an electromechanical component, and method for performing a functional test on the electromechanical component
WO1995020814A1 (en) Ultra thin film magnetic recording medium and related method and apparatus for recording and reproducing using spin-polarized electrons
JP2008066359A (en) Charged particle beam lens array, exposure apparatus and method of manufacturing device
JP2007035386A (en) Electron beam apparatus and device manufacturing method using same
US9666407B2 (en) Electrostatic quadrupole deflector for microcolumn
US11201033B2 (en) Charged particle beam device and electrostatic lens
KR20230079266A (en) Multiple Particle Beam Microscopy with High-Speed Autofocus Around Adjustable Working Distance and Related Methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06745706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06745706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP