JPS5851384B2 - Deflection method of charged particle beam - Google Patents

Deflection method of charged particle beam

Info

Publication number
JPS5851384B2
JPS5851384B2 JP4172676A JP4172676A JPS5851384B2 JP S5851384 B2 JPS5851384 B2 JP S5851384B2 JP 4172676 A JP4172676 A JP 4172676A JP 4172676 A JP4172676 A JP 4172676A JP S5851384 B2 JPS5851384 B2 JP S5851384B2
Authority
JP
Japan
Prior art keywords
deflection
charged particle
particle beam
lens
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4172676A
Other languages
Japanese (ja)
Other versions
JPS52124873A (en
Inventor
英一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP4172676A priority Critical patent/JPS5851384B2/en
Publication of JPS52124873A publication Critical patent/JPS52124873A/en
Publication of JPS5851384B2 publication Critical patent/JPS5851384B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は荷電粒子ビームの偏向方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for deflecting a charged particle beam.

一般に荷電粒子ビーム偏向走査系は、ブラウン管、テレ
ビ撮像管をはじめ、電子ビーム加工機、電子ビーム露光
機、走査型電子顕微鏡、イオン注入装置などに広く利用
されている。
In general, charged particle beam deflection and scanning systems are widely used in cathode ray tubes, television image pickup tubes, electron beam processing machines, electron beam exposure machines, scanning electron microscopes, ion implantation devices, and the like.

本発明はこれらの分野に用いられている従来の荷電粒子
ビーム偏向系の欠点である、荷電粒子ビームの斜入斜と
色収差を除去すると共に、像の歪曲、コマ収差などの収
差の少ない偏向方法を提供するものである。
The present invention eliminates the oblique incidence and chromatic aberration of charged particle beams, which are drawbacks of conventional charged particle beam deflection systems used in these fields, and also provides a deflection method that reduces aberrations such as image distortion and coma. It provides:

第1図と第2図は従来の偏向系の説明図である。FIGS. 1 and 2 are explanatory diagrams of a conventional deflection system.

第3図は本発明の原理説明図である。FIG. 3 is a diagram explaining the principle of the present invention.

第1,2゜3図に3いて、Gは荷電粒子ビーム源、LG
はビーム源に付属した集束用電子レンズ、LMとMOL
は主集束電子レンズ、Sは被照射面、DMとDSは荷電
粒子ビームの偏向手段である。
In Figures 1, 2 and 3, G is a charged particle beam source, LG
are the focusing electron lenses attached to the beam source, LM and MOL.
is a main focusing electron lens, S is an irradiated surface, and DM and DS are charged particle beam deflection means.

なお電子レンズLG、LM及びビーム偏向手段DM、D
Sとしては、静電型、電磁型のいずれを用いてもよい。
Note that the electronic lenses LG, LM and beam deflection means DM, D
As S, either an electrostatic type or an electromagnetic type may be used.

BO,B、B’、B“は荷電粒子ビームであり、ビーム
BOは説明の便宜上平行ビームとする。
BO, B, B', and B'' are charged particle beams, and the beam BO is assumed to be a parallel beam for convenience of explanation.

ビームBOは無偏向の場合にはいずれも主集束電子レン
ズLM又はMOL を通過してビームBとなり、焦点P
に結像する。
In the case of no deflection, the beam BO passes through the main focusing electron lens LM or MOL to become the beam B, and the focus P
image is formed.

第1図の場合には、偏向手段DMを作動させると荷電粒
子ビームはビームB′のように偏向され点P′に結像す
る。
In the case of FIG. 1, when the deflection means DM is activated, the charged particle beam is deflected into a beam B' and focused on a point P'.

しかしこの場合には次の3点に問題がある。However, in this case, there are three problems:

(1) ビームが点P′では被照射面に斜入射するの
で、多くの応用に不都合である(例えば電子ビーム露光
機などで照射面に凹凸があると斜入射によって位置に誤
差を生じる)。
(1) The beam obliquely enters the irradiated surface at point P', which is inconvenient for many applications (for example, if the irradiated surface of an electron beam exposure machine has unevenness, the oblique incidence causes positional errors).

(2)荷電粒子ビームの粒子速度に偏差がある場合には
色収差を生ずる。
(2) If there is a deviation in particle velocity of the charged particle beam, chromatic aberration occurs.

すなわち速度の遅い粒子ビーム成分はビームB“のよう
に大角度に偏向され、P′とは異なる位置P“に結像す
る。
That is, the particle beam component having a low velocity is deflected by a large angle like beam B" and is imaged at a position P" different from P'.

(3)偏向に伴いレンズLMと被照射面S間のビーム走
行長が増加するので、無偏向の場合には一点Pに集束し
ていたビームも、偏向するとP′では一点に結像しない
現象、すなわちコマ収差(一点に収束していたものが羞
星状に尾を引く収差)が現われる。
(3) As the beam travel length between the lens LM and the irradiated surface S increases with deflection, the beam that was focused at one point P in the case of no deflection does not become focused at one point P' when deflected. In other words, coma aberration (an aberration in which an aberration that was converged at one point leaves a star-like tail) appears.

(4)偏向信号の強度と偏向距離(PとP′の間の距離
)が比例しない像の歪曲収差(四角が樽型又は糸巻状に
変化する収差)が現われる。
(4) An image distortion aberration (aberration in which a square changes into a barrel shape or a pincushion shape) appears in which the intensity of the deflection signal and the deflection distance (distance between P and P') are not proportional.

上記斜入射の問題は、第2図に示すように偏向手段DM
とは逆方向への偏向手段DSを設けることにより解決さ
れ、ビームは被照射面Sに垂直入射するようにできるが
、上記(2)の色収差と(4)の像の歪曲収差の問題は
解決されない。
The above problem of oblique incidence can be solved by using the deflection means DM as shown in FIG.
This can be solved by providing a deflection means DS in the opposite direction, and the beam can be made perpendicular to the irradiated surface S, but the above problems of chromatic aberration (2) and image distortion (4) are solved. Not done.

本発明は上記四つの問題点を全て解決するものであり、
以下第3図によりその原理を説明する。
The present invention solves all of the above four problems,
The principle will be explained below with reference to FIG.

第3図の主集束レンズMOLは、後述する方法により、
第1図と第2図における主集束レンズ凄を電気的手段に
よって被照射面Sに平行に移動させるようにした電子レ
ンズである。
The main focusing lens MOL in FIG. 3 is created by the method described later.
This is an electronic lens in which the main focusing lens shown in FIGS. 1 and 2 is moved parallel to the irradiated surface S by electrical means.

二組の偏向手段DM、!:DSによりビームをBO’の
ように平行移動させ、偏向位置P′の直上に移動した電
子レンズMOL’の中心に垂直入射するようにする。
Two sets of deflection means DM! :The beam is translated in parallel like BO' by DS, and made to be perpendicularly incident on the center of the electron lens MOL' which has been moved directly above the deflection position P'.

その結果、ビームB′は被照射面S上の偏向位置P′に
垂直入射する。
As a result, the beam B' is perpendicularly incident on the deflection position P' on the irradiated surface S.

粒子速度の相異によって生ずる色収差成分であるビーム
BO“は、移動したレンズMOLの中心には入射しない
が、レンズMOL’の光軸に平行に入射するので、被照
射面S上では偏向位置P′と同じ位置に結像し、結像位
置に関する色収差は除去される。
The beam BO", which is a chromatic aberration component caused by the difference in particle velocity, does not enter the center of the moved lens MOL, but enters parallel to the optical axis of the lens MOL', so on the irradiated surface S it is deflected at a deflection position P. The image is formed at the same position as ', and chromatic aberration related to the image formation position is removed.

なお色収差成分であるビームB O//は、被照射面に
垂直入射しないが、色収差は通常微小「(ビーム・エネ
ルギーで数ev程度の偏動であるので、入射方向の色収
差は実際には問題にならない程度に小さい。
Note that the beam B O //, which is a chromatic aberration component, is not incident perpendicularly to the irradiated surface, but the chromatic aberration is usually minute (beam energy deviation of about several ev), so chromatic aberration in the direction of incidence is not actually a problem. small enough not to become

曾たビームが移動したMOLの光軸に平行に入射するの
で、像の歪曲も除去される。
Since the returned beam is incident parallel to the optical axis of the moved MOL, image distortion is also eliminated.

さらに第3図において、正方向偏向手段DMと逆方向偏
向手段DSは、平行ビーム(BO,BO’、BO“はい
ずれも平行ビームである)の部位に設けられているので
、偏向によるビーム走行路長差はその平行性に影響しな
い。
Furthermore, in FIG. 3, since the forward direction deflection means DM and the reverse direction deflection means DS are provided at the portions of the parallel beams (BO, BO', BO" are all parallel beams), the beam travels due to deflection. The path length difference does not affect its parallelism.

したがって走行路長差による焦点でのコマ収差は除去さ
れる。
Therefore, comatic aberration at the focal point due to the difference in travel path length is eliminated.

次に主集束レンズMOLの位置を移動させる方法につい
て説明する。
Next, a method of moving the position of the main focusing lens MOL will be explained.

以下主集束レンズは説明の便宜上電磁レンズとし、無偏
向時のレンズMOLを形成する磁界ベクトル場を%とす
る。
Hereinafter, the main focusing lens will be assumed to be an electromagnetic lens for convenience of explanation, and the magnetic field vector field forming the lens MOL when not deflected will be expressed as %.

レンズの中心軸がX方向、Y方向にそれぞれXd、yd
だけ移動したときの磁界Hは、数学的に次式で記述でき
る。
The central axis of the lens is Xd and yd in the X and Y directions, respectively.
The magnetic field H when moving by .

H−HO(a%/c9x)xd(θ曳/ay)yd+V
2(θ2Ho/aX2)X2d+1/2(θ2Ho/a
y2)y2d+・・・・・・・・・ こSで、移動量Xd、ydが小さいときには、このティ
ラー級数の第4項以降は小さいのでこれらを無視すると
、 H−也+HX−Xd+Hy−yd たマしHX =−δHo/θX)、Hyコニ−θHる/
θy) となる。
H-HO (a%/c9x) xd (θ pull/ay) yd+V
2(θ2Ho/aX2)X2d+1/2(θ2Ho/a
y2) y2d+・・・・・・・・・ In S, when the amount of movement Xd, yd is small, the fourth and subsequent terms of this Tiller series are small, so if these are ignored, H−ya+HX−Xd+Hy−yd MashiHX = -δHo/θX), Hyconi-θHru/
θy).

一方、XとY方向の偏向電流を■工、■アとすると、偏
向距離はこれらに比例し、kを偏向感度とすれば、それ
ぞれKIX、KIyであるから、レンズを偏向距離だけ
移動させるには、 H二馬+HX−KIX+Hy、KIy となり、上式の第2、第3項による磁界ベクトル場を偏
向電流■え、エアによって形成すればよい。
On the other hand, if the deflection currents in the X and Y directions are xd and xa, the deflection distance is proportional to these, and if k is the deflection sensitivity, they are KIX and KIy, respectively, so to move the lens by the deflection distance is H2+HX-KIX+Hy, KIy, and the magnetic field vector field based on the second and third terms of the above equation can be formed by a deflection current and air.

以上のことが、物理的に実現できることは、△H=O(
△はラプラス演算子)、故に△Hx=△H=Oであり、
HXもHy もラプラスの方程式を満足する磁界ベクト
ル場であることから明らかである。
The above can be physically realized because △H=O(
△ is Laplace operator), therefore △Hx=△H=O,
It is clear that both HX and Hy are magnetic vector fields that satisfy Laplace's equation.

な釦静電型レンズMOLの場合には、磁界Hの代りに電
界Eを用いて上記と全く同様にして実現することができ
る。
In the case of a button electrostatic lens MOL, it can be realized in exactly the same manner as above, using an electric field E instead of the magnetic field H.

次に移動集束レンズ系MOLの一例を第4図と第5図に
示す。
Next, an example of a moving focusing lens system MOL is shown in FIGS. 4 and 5.

第4図の%は集束用電極レンズとして、しばしば使用さ
れるソレノイドコイルCによって形成される磁界を示す
The percentage in FIG. 4 indicates the magnetic field generated by a solenoid coil C, which is often used as a focusing electrode lens.

図中、Xは中心軸で、X軸は紙面上に、y軸は紙面に垂
直とする(右手系)。
In the figure, X is the central axis, the X axis is on the paper, and the y axis is perpendicular to the paper (right-handed system).

これを斜めから見ると第5図のコイルCのようになり、
このコイルCには直流工。
If you look at this from an angle, it will look like coil C in Figure 5,
This coil C has a DC construction.

を流すことにより磁界側が発生する。A magnetic field is generated by flowing .

この磁界ものXに関する微分Hx=aH,ヮ10Xは磁
界のX方向成分を示し、第4図に示すようにソレノイド
コイルCの両端で+X方向(又は−X方向)と−X方向
(又は+X方向)に向う磁界となり、この磁界は第5図
のようにコイルC1xとC2xに偏向電流Ixを流すこ
とによって発生させることができる。
The differential Hx=aH,ヮ10X with respect to X of this magnetic field indicates the X-direction component of the magnetic field, and as shown in FIG. ), and this magnetic field can be generated by passing a deflection current Ix through the coils C1x and C2x as shown in FIG.

コイルC1xとC2xは、それぞれ通常の電磁偏向用磁
界を発生させるコイルと同形である。
The coils C1x and C2x each have the same shape as a coil that generates a normal electromagnetic deflection magnetic field.

ただし、通常の電磁偏向では、X方向にビームを偏向さ
せるのに、それと直角のY方向の磁界を用いるが、本発
明では、集束レンズMOLの移動用の磁界は、移動方向
Xと平行(+x方向上端)又は逆平行(−x方向下端)
方向の磁界を印加する点が異っている。
However, in normal electromagnetic deflection, a magnetic field in the Y direction perpendicular to the X direction is used to deflect the beam in the X direction, but in the present invention, the magnetic field for moving the focusing lens MOL is parallel to the moving direction X (+x upper end of the direction) or antiparallel (lower end of the -x direction)
The difference is that a directional magnetic field is applied.

第6図は、第4図と第5図の移動集束レンズMOL を
第3図の本発明に釦ける偏向系に適用した場合のX方向
偏向コイルの配置を示すものである。
FIG. 6 shows the arrangement of the X-direction deflection coil when the movable focusing lens MOL of FIGS. 4 and 5 is applied to the deflection system of the present invention shown in FIG.

y方向偏向コイルの配置も同様である。中心軸に沿って
入射する平行ビームBOを+X方向に偏向するには、1
ず偏向手段DMの+y力方向磁界によって+X方向に偏
向し、次いで偏向手段DSの−y方向磁界でビームの方
向を中心軸に平行に戻すが、ここでビームは+X方向に
平行移動している。
The arrangement of the y-direction deflection coils is also similar. To deflect the parallel beam BO incident along the central axis in the +X direction, 1
First, the beam is deflected in the +X direction by the +y force direction magnetic field of the deflection means DM, and then the direction of the beam is returned to parallel to the central axis by the -y direction magnetic field of the deflection means DS, but here the beam is translated in the +X direction. .

移動焦点レンズMOLの中心は偏向手段DM、DSに流
れる電流Ixによって、上記と同一量だけ+X方向に移
動しており、これによって垂直入射でかつ色収差と像の
歪曲やコマ収差がなく、所要の偏向位置P′にビームが
収束する。
The center of the moving focal lens MOL is moved in the +X direction by the same amount as above by the current Ix flowing through the deflection means DM and DS. The beam converges at the deflection position P'.

第6図にち゛けるDSとC1xのコイルは重ね合わせて
一個のコイルにしてもよい。
The coils DS and C1x shown in FIG. 6 may be superimposed to form one coil.

その場合の複合コイルの磁界方向は第4象限の方向(+
X、−yの方向)にある。
In that case, the magnetic field direction of the composite coil is the direction of the fourth quadrant (+
X, -y direction).

なお実際の磁界の方向の角度は各磁界の方向成分の強度
比によって定する。
Note that the actual angle of the direction of the magnetic field is determined by the intensity ratio of the directional components of each magnetic field.

以上説明したように本発明は、偏向した荷電粒子ビーム
を、偏向位置に移動した電子光学的レンズにその光学的
中心軸に平行に入射せしめ、そのレンズの焦点位置に荷
電粒子ビームを収束せしめるものであり、ビームの斜入
射と色収差ならびにコマ収差と像の歪曲収差が解消する
顕著な効果を有する。
As explained above, the present invention allows a deflected charged particle beam to be incident on an electro-optical lens that has been moved to a deflection position parallel to its optical central axis, and to converge the charged particle beam at the focal point of the lens. This has a remarkable effect of eliminating oblique incidence of the beam, chromatic aberration, coma aberration, and image distortion.

なお、偏向に伴う非点収差と像面の曲り(焦点面が平面
ではなく球面となる収差)は、本発明単独では除去され
ないが、これを除去するには周知の動的焦点補正(Dy
namic Focusing )と動的非点収差補正
(Dynamic Stigmation)を併用すれ
ば、偏向に伴う3次(5eidel )収差が全くな
い偏向系が得られる。
Note that astigmatism and curvature of the image plane (aberration in which the focal plane becomes spherical rather than flat) due to deflection cannot be removed by the present invention alone, but in order to remove them, the well-known dynamic focus correction (Dy
By using both namic focusing and dynamic astigmatism correction, a deflection system completely free of third-order (5eidel) aberrations associated with deflection can be obtained.

また、LSI 、超LSI など高密度集積回路の製
造に適した荷電粒子ビーム投射方法(特願昭50−12
7833号)が提案されているが、この方法に本発明の
偏向方法を適用する場合には、極めて多くの効用をもた
らす。
In addition, we have developed a charged particle beam projection method suitable for manufacturing high-density integrated circuits such as LSI and VLSI (Japanese Patent Application No. 50-12).
No. 7833) has been proposed, but if the deflection method of the present invention is applied to this method, it will bring many benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は従来の荷電粒子ビーム偏向系の説明図
である。 第3図は本発明の原理説明図である。 第4図と第5図は本発明に用いる移動集束レンズ系の一
例を示す説明図である。 第6図は第4図と第5図に示す移動集束レンズを第3図
の本発明の偏向系に適用した場合の偏向コイルの配置を
示す図である。 図中の記号 G・・・荷電粒子ビーム源、DM。 DS・・・ビーム偏向手段、MOL・・・主集束電子レ
ンズ、BO,BO’、BO“・・・平行荷電粒子ビーム
、S・・・被照射面、P、P’、P“・・・結像点。
FIGS. 1 and 2 are explanatory diagrams of a conventional charged particle beam deflection system. FIG. 3 is a diagram explaining the principle of the present invention. FIGS. 4 and 5 are explanatory diagrams showing an example of a moving focusing lens system used in the present invention. FIG. 6 is a diagram showing the arrangement of deflection coils when the movable focusing lens shown in FIGS. 4 and 5 is applied to the deflection system of the present invention shown in FIG. 3. Symbols in the figure G: Charged particle beam source, DM. DS... Beam deflection means, MOL... Main focusing electron lens, BO, BO', BO"... Parallel charged particle beam, S... Irradiated surface, P, P', P"... Image point.

Claims (1)

【特許請求の範囲】 1 偏向位置に移動した電子光学的レンズの光学的中心
軸に平行に入射するよう荷電粒子ビームを偏向させ、そ
のレンズの焦点位置に荷電粒子ビームを収束せしめるこ
とを特徴とした荷電粒子ビームの偏向方法。 2 無偏向時の電子光学的レンズを形成している電磁界
に、偏向信号により発生せ1.められそして移動方向へ
の前記の電磁界の空間微分により決定される電磁界を重
畳して、電子光学的レンズの偏向位置への移動を行う特
許請求の範囲第1項に記載の荷電粒子ビームの偏向方法
[Claims] 1. A charged particle beam is deflected so as to be incident parallel to the optical central axis of an electro-optical lens that has moved to a deflection position, and the charged particle beam is focused at a focal position of the lens. A method for deflecting a charged particle beam. 2. The electromagnetic field forming the electro-optical lens when not deflected is generated by the deflection signal.1. A charged particle beam according to claim 1, wherein the charged particle beam is moved to a deflection position of an electro-optical lens by superimposing an electromagnetic field determined by the spatial differentiation of said electromagnetic field in the direction of movement. deflection method.
JP4172676A 1976-04-13 1976-04-13 Deflection method of charged particle beam Expired JPS5851384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4172676A JPS5851384B2 (en) 1976-04-13 1976-04-13 Deflection method of charged particle beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4172676A JPS5851384B2 (en) 1976-04-13 1976-04-13 Deflection method of charged particle beam

Publications (2)

Publication Number Publication Date
JPS52124873A JPS52124873A (en) 1977-10-20
JPS5851384B2 true JPS5851384B2 (en) 1983-11-16

Family

ID=12616415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4172676A Expired JPS5851384B2 (en) 1976-04-13 1976-04-13 Deflection method of charged particle beam

Country Status (1)

Country Link
JP (1) JPS5851384B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725700A (en) * 1980-06-10 1982-02-10 Philips Nv Linear accelerator
JPS585955A (en) * 1981-07-03 1983-01-13 Hitachi Ltd Dynamic deflection astigmatism correcting device
JPS585954A (en) * 1981-07-03 1983-01-13 Hitachi Ltd Dynamic focus correcting device
JPS58147948A (en) * 1982-02-26 1983-09-02 Jeol Ltd Electrooptic system for scanning electron microscope or the like
JPS6298544A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Charged particle ray device
CA1334836C (en) * 1987-04-09 1995-03-21 Richard A. Gregory, Jr. Removal of salts from aqueous alkanolamines using an electrodialysis cell with an ion exchange membrane
JP3689512B2 (en) * 1996-12-06 2005-08-31 キヤノン株式会社 Electron beam exposure apparatus and device manufacturing method using the apparatus
GB2613168A (en) * 2021-11-25 2023-05-31 Aquasium Tech Limited Electron beam deflector

Also Published As

Publication number Publication date
JPS52124873A (en) 1977-10-20

Similar Documents

Publication Publication Date Title
US7408172B2 (en) Charged particle beam apparatus and charged particle beam irradiation method
JP6490772B2 (en) Charged particle beam equipment
JP5097512B2 (en) Orbit corrector for charged particle beam and charged particle beam apparatus
US7989776B2 (en) Corrective for eliminating the third-order aperture aberration and the first-order, first-degree axial, chromatic aberration
US20140151552A1 (en) Tilt-imaging scanning electron microscope
JP2004519084A (en) Particle beam system with mirror corrector
US5952667A (en) Variable-axis stigmator lens and charged-particle-beam microlithography apparatus comprising same
JP5156429B2 (en) Electron beam equipment
JP2502425B2 (en) Charged particle beam deflector
US20110291021A1 (en) Reflection Electron Beam Projection Lithography Using an ExB Separator
JPS61101944A (en) Charged particle beam focusing system
JPS5851384B2 (en) Deflection method of charged particle beam
JP4094042B2 (en) Charged particle beam apparatus and charged particle beam irradiation method
TW201939562A (en) Beam irradiation device
US4475044A (en) Apparatus for focus-deflecting a charged particle beam
US4798953A (en) Electronic beam device for projecting an image of an object on a sample
JP2003502802A (en) Electrostatic corrector to remove chromatic aberration of particle lens
US11251013B2 (en) Deflector and charged particle beam system
JP3400285B2 (en) Scanning charged particle beam device
JPS5983336A (en) Device for focusing and deflecting charged particle ray
JP2004517456A (en) Electrostatic straightener
JPS5853466B2 (en) Charged particle beam focusing/deflecting device
JPH0128456B2 (en)
JPS6338827B2 (en)
JPH10302691A (en) Projection lens system