JPS62273720A - Charged particle beam lithography equipment - Google Patents

Charged particle beam lithography equipment

Info

Publication number
JPS62273720A
JPS62273720A JP11607286A JP11607286A JPS62273720A JP S62273720 A JPS62273720 A JP S62273720A JP 11607286 A JP11607286 A JP 11607286A JP 11607286 A JP11607286 A JP 11607286A JP S62273720 A JPS62273720 A JP S62273720A
Authority
JP
Japan
Prior art keywords
voltage
electrodes
deflector
deflecting
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11607286A
Other languages
Japanese (ja)
Inventor
Yoji Ogawa
洋司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11607286A priority Critical patent/JPS62273720A/en
Publication of JPS62273720A publication Critical patent/JPS62273720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a charged particle beam lithography equipment which can form an accurate pattern even with a large deflecting unit by superposing a voltage for an astigmatism correction of the beam on the electrodes of a multipolar deflector in addition to a voltage for generating a deflecting electric field, and varying a voltage value upon deflecting to scan the beam to easily correct the astigmatism of the beam occurring by the scanning by deflecting. CONSTITUTION:A scanning deflector 24 has octode deflector having 8 rodlike electrodes 24a-24h disposed at an equal on the same circumference, and a predetermined deflecting voltage from a deflecting voltage generator 25 is applied to the electrodes. Symmetrical astigmatism correction voltages Va, Va,-Va,-Va are applied twice from an astigmatism voltage generator 26 on deflecting voltages Vx,-V1, Vy,-Vy to be applied to the electrodes 24a, 24e opposed to a direction (x) and the electrodes 24c, 25g opposed in a direction (y). When such a voltage is applied to the electrodes 24a-24h of the deflector 24, the deflector 24 generates a deflecting electric field designated by lines 27 of electric force and an astigmatism correction electric field designated by lines 28 of electric force. Accordingly, the voltage Va is suitably set to simultaneously perform both the scanning deflection and the astigmatism correction.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の目的〕 (産業上の利用分野) 本発眠は、荷電ビーム描画装置に係り、特に走査用偏向
器の改良をはかった荷電ビーム描画装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a charged beam lithography system, and particularly to a charged beam lithography device with an improved scanning deflector. It relates to a drawing device.

(従来の技術) 近年、超LSI等の微細で且つ高密度のパターンを形成
する装置としては電子ビーム描画装置が用いられている
。電子ビーム描画装置の内で、特に可変寸法ビーム方式
のものは、高精度で且つ高スループツトの描画が可能で
ある。このため、光で転写することが不可能な0.5〔
μm〕以下の設計ルールの超LSIパターンを、ウェハ
上に直接描画する装置として適している。
(Prior Art) In recent years, electron beam lithography devices have been used as devices for forming fine and high-density patterns for VLSIs and the like. Among electron beam lithography apparatuses, those using a variable beam beam type are particularly capable of performing lithography with high precision and high throughput. For this reason, it is impossible to transfer with light.
It is suitable as an apparatus for directly drawing a VLSI pattern with a design rule of [μm] or less on a wafer.

第4図にこの種の従来装置の電子光学系の一例を示す。FIG. 4 shows an example of an electron optical system of this type of conventional device.

図中31は電子銃、35は成形アパーチャを有する第1
の成形アパーチャマスク、33゜34はマスク35を照
明するためのコンデンサレンズ、38は第2の成形アパ
ーチャマスク、37はマスク2のアパーチャ像をマスク
38の上iこ投影し合成されたアパーチャ像を作るため
の投影レンズ、36はマスク35のアパーチャ像とマス
ク38のアパーチャとの重なりを変化して合成されたア
パーチャ像の寸法を可変するための寸法可変用偏向器、
39は縮小レンズ、4nは縮小された合成アパーチャ像
を試料面42上に投影するための対物レンズ、4nは試
料面42上のビーム位置を位置決めするための走査偏向
器、43は非点補正コイルである。ところでこのような
装置において、偏向器として偏向歪が小さく、X、Y方
向の偏向中心が一致していて、描画精度の向上をはかり
得るという利点をもつ多重極偏向器が高精度描画を目的
とする描画装置に用いられる。
In the figure, 31 is an electron gun, and 35 is a first electron gun having a shaped aperture.
A shaped aperture mask 33, 34 a condenser lens for illuminating the mask 35, 38 a second shaped aperture mask, 37 projects the aperture image of the mask 2 onto the mask 38, and produces a synthesized aperture image. 36 is a dimension-variable deflector for varying the dimensions of the synthesized aperture image by varying the overlap between the aperture image of the mask 35 and the aperture of the mask 38;
39 is a reduction lens, 4n is an objective lens for projecting the reduced synthetic aperture image onto the sample surface 42, 4n is a scanning deflector for positioning the beam position on the sample surface 42, and 43 is an astigmatism correction coil. It is. By the way, in such a device, a multipole deflector is used as a deflector for the purpose of high-precision drawing, which has the advantage of having small deflection distortion, the deflection centers in the X and Y directions being aligned, and being able to improve drawing accuracy. Used in drawing devices.

しかし多重極偏向器を用いた場合でも、電子ビームの偏
向走査によって発生する非点収差のため、走査領域全域
において一様で充分な分解能が得られない事がある。特
に高スループツトで描画するため偏向領域を拡大した時
、上記の偏向走査に伴う非点収差は無視できない量とな
る。
However, even when a multipole deflector is used, uniform and sufficient resolution may not be obtained over the entire scanning region due to astigmatism caused by deflection scanning of the electron beam. In particular, when the deflection area is expanded for high throughput writing, the astigmatism associated with the deflection scanning described above becomes a non-negligible amount.

従来非点補正は第4図中に示したように、非点補正コイ
ル43の励磁を変化させて行ってきたが、コイルの励磁
に伴うヒステリシスのため上記のような偏向走査に伴う
非点を高速に補正する事は困難であった。
Conventionally, astigmatism correction has been carried out by changing the excitation of the astigmatism correction coil 43, as shown in FIG. It was difficult to make corrections at high speed.

(発明が解決しようとする問題点) 本発明は上記事情を考慮してなされたもので、その目的
とするところは、偏向走査によって起る電子ビームの非
点収差を容易にかつ高速し補正することができ、大偏向
する装置においても高精細なパターンを形成することが
可能な荷電ビーム描画装置を提供することにある。
(Problems to be Solved by the Invention) The present invention has been made in consideration of the above circumstances, and its purpose is to easily and quickly correct the astigmatism of an electron beam caused by deflection scanning. It is an object of the present invention to provide a charged beam drawing device that can form a high-definition pattern even in a device that uses large deflections.

〔発明の構成〕[Structure of the invention]

c問題点を解決するための手段) 本発明の骨子は、多重極偏向器の各電極に偏向電界を発
生するための電圧に加えて、荷電ビームの非点補正を行
うための電圧を重畳し、かつ荷電ビームの偏向走査に伴
って、その電圧の値を変化させることにある。
(c) Means for Solving Problems) The gist of the present invention is to superimpose a voltage for astigmatism correction of a charged beam in addition to a voltage for generating a deflection electric field in each electrode of a multipole deflector. , and to change the value of the voltage as the charged beam is deflected and scanned.

即ち本発明は、荷電ビーム放射源から放射された荷電ビ
ームを試料上に集束し、走査偏向器によって試料上を走
査することによって核試料上に所望のパターンを描画す
る荷電ビーム描画装置において、前記走査偏向器を4n
(nは正の整数)個の偏向用電極から構成して偏向電圧
を印加すると共に、前記4n個の各電極に2回対称ある
いは4回対称の非点補正電圧を重畳し、かつ前記ビーム
の走査偏向に伴って重畳する電圧の値を変化させたもの
である。
That is, the present invention provides a charged beam drawing apparatus that draws a desired pattern on a nuclear sample by focusing a charged beam emitted from a charged beam radiation source onto the sample and scanning the sample with a scanning deflector. 4n scanning deflector
(n is a positive integer) deflection electrodes are used to apply a deflection voltage, and a 2-fold or 4-fold symmetric astigmatism correction voltage is superimposed on each of the 4n electrodes, and the beam is The value of the superimposed voltage is changed in accordance with the scanning deflection.

(作用) 本発明によれば、多重極偏向器において荷電ビームの非
点補正を行うので、非点補正コイル等の非点補正用の手
段を別に設けることなく試料上における荷電ビームの分
解能を向上できる。さらに、走査偏向に伴って重畳する
非点補正電圧を変化させることにより、偏向時の分解能
の向上をはかることができる。また、ヒステリシスの心
配のない静電偏向器を用いているので高速な動作が可能
であり、高速、大偏向かつ高精細な描画を行い得る。
(Function) According to the present invention, since the multipole deflector performs astigmatism correction of the charged beam, the resolution of the charged beam on the sample is improved without providing a separate means for astigmatism correction such as an astigmatism correction coil. can. Furthermore, by changing the astigmatism correction voltage superimposed with scanning deflection, it is possible to improve the resolution during deflection. Furthermore, since it uses an electrostatic deflector that is free from hysteresis, high-speed operation is possible, and high-speed, large-deflection, and high-definition drawing can be performed.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係る電子ビーム描画装置を
示す概略構成図である。図中11は電子銃であり、この
電子銃11から放射された電子ビームは、各種レンズ1
2〜16を介して試料部17に照射される。ここで12
.13はコンデンサレンズ、14は投影レンズ、15は
縮小レンズ、16は対物レンズである。コンデンサレン
ズ13と投影レンズ14の間には第1の成形アパーチャ
マスク21が配置され、投影レンズ14と縮小レンズ1
5の間には第2のアパーチャマスク22が配置されてい
る。また第1のアパーチャマスク21と投影レンズ14
との間には、マスク21゜22の各アパーチャの重なり
を変化してアパーチャ像の寸法を可変するための寸法可
変用偏向器23が配置されている。
FIG. 1 is a schematic configuration diagram showing an electron beam lithography apparatus according to an embodiment of the present invention. In the figure, numeral 11 is an electron gun, and the electron beam emitted from this electron gun 11 is transmitted through various lenses.
The sample portion 17 is irradiated via the beams 2 to 16. here 12
.. 13 is a condenser lens, 14 is a projection lens, 15 is a reduction lens, and 16 is an objective lens. A first shaped aperture mask 21 is arranged between the condenser lens 13 and the projection lens 14, and the projection lens 14 and the reduction lens 1
A second aperture mask 22 is arranged between the two apertures 5 and 5. Also, the first aperture mask 21 and the projection lens 14
A dimension variable deflector 23 is arranged between the masks 21 and 22 to vary the dimensions of the aperture image by changing the overlapping of the apertures of the masks 21 and 22.

対物レンズ16の内部には、ビームを試料面17上で走
査するための走査用偏向器24が配置されている。ここ
で走査用偏向器24は第2図に示すように8個の棒状電
極24a〜24hを同一円周上に等間隔に配置して構成
した81極偏向器からなり、各電極24n〜24hには
同図中に示す如く偏向電圧発生器25から所定の偏向電
圧が印加されている。即ち、対向する電極間では逆極性
の電圧が印加され、X方向に対向した電極24a、24
eにはX方向偏向電圧■8.Vxが、X方向に対向した
電極24c、24gにはy方向偏向’111 圧vy 
r Vy カ、中fiJ1(7)ti24 b 、 2
4d。
A scanning deflector 24 for scanning the beam on the sample surface 17 is arranged inside the objective lens 16 . Here, the scanning deflector 24 consists of an 81-pole deflector configured by arranging eight rod-shaped electrodes 24a to 24h at equal intervals on the same circumference as shown in FIG. As shown in the figure, a predetermined deflection voltage is applied from a deflection voltage generator 25. That is, a voltage of opposite polarity is applied between the opposing electrodes, and the electrodes 24a, 24 facing each other in the X direction
e is the X-direction deflection voltage ■8. Vx is deflected in the y direction at the electrodes 24c and 24g facing in the x direction.
r Vy Ka, middle fiJ1(7)ti24 b, 2
4d.

24f、24hには隣接する電極の中間電圧がそれぞれ
印加されている。
An intermediate voltage between adjacent electrodes is applied to 24f and 24h, respectively.

X方向に対向した電極24a、24eおよびX方向に対
向した電極24C,24gには前記の偏向電圧■8.−
人、 v、 、−v、に重畳して、2回対称の非点補正
電圧v、 、 va、−va、 −vaがそれぞれ非点
電圧発生器26から印加されている。
The aforementioned deflection voltage (8) is applied to the electrodes 24a and 24e facing each other in the X direction and the electrodes 24C and 24g facing each other in the X direction. −
Two-fold symmetrical astigmatism correction voltages v, , va, -va, -va are applied from an astigmatism voltage generator 26 superimposed on people, v, , -v, respectively.

上記のような電圧を8重量偏向器24の各電極248〜
24hに印加することにより、偏向器24の内部には第
2図中に電気力線27で示した偏向電界と共に、同図中
の電気力線28で示した非点補正電界を発生する。従っ
て非点補正電圧■8の値を適切にすることにより、走査
偏向と非点補正を同時に行うことができる。走査偏向に
伴って発生する非点収差は走査偏向方向及び走査偏向量
に依存するので、補正電圧■8の値はX方向偏向電圧&
およびX方向偏向電圧への値に従って変化させる必要が
ある。第3図の曲線29は代表的なX方向偏向型圧入と
補正電圧入の関係を、曲線30はy方向偏向電圧外と補
正電圧V8の関係を示す。
Apply the voltage as described above to each electrode 248 of the 8 weight deflector 24.
24h, a deflection electric field shown by the lines of electric force 27 in FIG. 2 and an astigmatism correction electric field shown by the lines of electric force 28 in FIG. 2 are generated inside the deflector 24. Therefore, by setting the value of the astigmatism correction voltage (8) appropriately, scanning deflection and astigmatism correction can be performed simultaneously. Astigmatism that occurs with scanning deflection depends on the scanning deflection direction and scanning deflection amount, so the value of correction voltage
and must be changed according to the value to the X-direction deflection voltage. The curve 29 in FIG. 3 shows the relationship between a typical X-direction deflection type press-fit and the correction voltage input, and the curve 30 shows the relationship between the y-direction deflection voltage outside and the correction voltage V8.

上述のように本実施例では、非点補正を8重量偏向器で
行うため、従来例で問題となったヒステリシスの影響が
ないので、走査偏向に伴う非点収差を高速に補正できる
As described above, in this embodiment, astigmatism correction is performed using the 8-weight deflector, so there is no effect of hysteresis, which was a problem in the conventional example, so that astigmatism caused by scanning deflection can be corrected at high speed.

前述では偏向器1こ8重量偏向器を用いた場合について
説明したが、4電極あるいは16重衡量と4n(nは正
の整数)重量偏向器一般に本発明は適用できる。また前
記説明では電子ビーム描画装置に本発明を適用した場合
について述べたが、イオンビーム描画装置などの荷電ビ
ーム描画装置に本発明を適用できる。
Although the case where one deflector and eight weight deflectors are used has been described above, the present invention is generally applicable to weight deflectors with 4 electrodes or 16 weight deflectors and 4n (n is a positive integer) weight deflectors. Further, in the above description, a case has been described in which the present invention is applied to an electron beam lithography apparatus, but the present invention can also be applied to a charged beam lithography apparatus such as an ion beam lithography apparatus.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明による荷電ビーム描画装置は走
査偏向−こ伴う非点収差を高速に補正でき、高速、高精
度の荷電ビーム描画装置を実現できる。
As described above, the charged beam lithography apparatus according to the present invention can quickly correct the astigmatism associated with scanning deflection, and can realize a high-speed, high-precision charged beam lithography apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明の一実施例に係る電子ビーム描画装置を
示す概略構成図、第2図は第1図の装置に用いた8重量
偏向器の電圧配分を示す図、第3図は第2図の8重量偏
向器に印加される偏向電圧と非点補正電圧の関係の代表
的な例を示す図、第4図は従来の電子ビーム描画装置を
示す概略構成図である。 ] 1.31・・・電子銃、12〜16,33,34゜
37.39.4n・・・レンズ、24.4n・・・走査
偏向器、24 a〜24h・・・走査偏向器(8重量偏
向器)電極。 代理人 弁理士 則 近 唐 佑 同    竹 花 喜久男 第  1 図
FIG. 1 is a schematic configuration diagram showing an electron beam lithography apparatus according to an embodiment of the invention, FIG. 2 is a diagram showing voltage distribution of eight weight deflectors used in the apparatus of FIG. 1, and FIG. FIG. 2 is a diagram showing a typical example of the relationship between the deflection voltage applied to the 8-weight deflector and the astigmatism correction voltage, and FIG. 4 is a schematic configuration diagram showing a conventional electron beam lithography apparatus. ] 1.31... Electron gun, 12-16, 33, 34° 37.39.4n... Lens, 24.4n... Scanning deflector, 24 a-24h... Scanning deflector (8 weight deflector) electrode. Agent Patent Attorney Nori Chika Yudo Takehana Kikuo Figure 1

Claims (1)

【特許請求の範囲】[Claims] 荷電ビーム放射源から放射された荷電ビームを試料上に
集束する対物レンズと、上記ビームを試料上で走査する
同心円上に等間隔に配置された4n個(nは正の整数)
の電極からなる走査偏向器を備えた荷電ビーム描画装置
において、前記4n個の走査偏向電極に偏向電圧と印加
すると共に、前記4n個の各電極に2回対称あるいは4
回対称の非点補正電圧を重畳し、かつ前記ビームの走査
偏向に伴って重畳する補正電圧の値を変化させることを
特徴とする荷電ビーム描画装置。
An objective lens that focuses the charged beam emitted from the charged beam radiation source onto the sample, and 4n objective lenses (n is a positive integer) arranged at equal intervals on concentric circles that scan the beam on the sample.
In a charged beam lithography apparatus equipped with a scanning deflector consisting of electrodes, a deflection voltage is applied to the 4n scanning deflection electrodes, and each of the 4n electrodes is
A charged beam lithography apparatus characterized in that a rotationally symmetrical astigmatism correction voltage is superimposed, and the value of the superimposed correction voltage is changed in accordance with the scanning deflection of the beam.
JP11607286A 1986-05-22 1986-05-22 Charged particle beam lithography equipment Pending JPS62273720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11607286A JPS62273720A (en) 1986-05-22 1986-05-22 Charged particle beam lithography equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11607286A JPS62273720A (en) 1986-05-22 1986-05-22 Charged particle beam lithography equipment

Publications (1)

Publication Number Publication Date
JPS62273720A true JPS62273720A (en) 1987-11-27

Family

ID=14678016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11607286A Pending JPS62273720A (en) 1986-05-22 1986-05-22 Charged particle beam lithography equipment

Country Status (1)

Country Link
JP (1) JPS62273720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258347A (en) * 1988-04-07 1989-10-16 Jeol Ltd Focusing charged particle beam device
JP2014194982A (en) * 2013-03-28 2014-10-09 Jeol Ltd Charged particle beam deflection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258347A (en) * 1988-04-07 1989-10-16 Jeol Ltd Focusing charged particle beam device
JP2014194982A (en) * 2013-03-28 2014-10-09 Jeol Ltd Charged particle beam deflection apparatus

Similar Documents

Publication Publication Date Title
TW559883B (en) Charged particle beam exposure apparatus, device manufacturing method, and charged particle beam applied apparatus
US4213053A (en) Electron beam system with character projection capability
US6337485B1 (en) Electron beam exposure apparatus and its control method
JPH1064812A (en) Electronic beam exposure method and device manufacturing method using it
JPH09245708A (en) Electron beam exposure device and exposure method thereof
JP3647136B2 (en) Electron beam exposure system
JP2013219085A (en) Lithography device, lithography method, and manufacturing method of article
KR20010007211A (en) Apparatus and method for image-forming charged particle beams and charged particle beam exposure apparatus
JP4207232B2 (en) Charged beam exposure system
JPS61101944A (en) Charged particle beam focusing system
JPH0613280A (en) Particle, especially ion optical describing apparatus
US6661015B2 (en) Pattern lock system
US7005659B2 (en) Charged particle beam exposure apparatus, charged particle beam exposure method, and device manufacturing method using the same apparatus
JP3455006B2 (en) Charged particle beam equipment
TW201939562A (en) Beam irradiation device
GB1598219A (en) Electron beam system
JPS62273720A (en) Charged particle beam lithography equipment
JP3647143B2 (en) Electron beam exposure apparatus and exposure method therefor
JPS5983336A (en) Device for focusing and deflecting charged particle ray
JP2001118765A (en) Charge particle beam exposure device, method for adjusting charged particle beam exposure device and manufacturing method of semiconductor device
JPH0414490B2 (en)
JP3728315B2 (en) Electron beam exposure apparatus, electron beam exposure method, and device manufacturing method
KR102535162B1 (en) Methods of inspecting samples with multiple beams of charged particles
JPH10308341A (en) Exposing method and aligner by means of electron beam
JPH10308340A (en) Electron beam exposing method and device