JPS6339664B2 - - Google Patents

Info

Publication number
JPS6339664B2
JPS6339664B2 JP1926484A JP1926484A JPS6339664B2 JP S6339664 B2 JPS6339664 B2 JP S6339664B2 JP 1926484 A JP1926484 A JP 1926484A JP 1926484 A JP1926484 A JP 1926484A JP S6339664 B2 JPS6339664 B2 JP S6339664B2
Authority
JP
Japan
Prior art keywords
masking material
paste
film formation
thin film
masking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1926484A
Other languages
Japanese (ja)
Other versions
JPS60162767A (en
Inventor
Shoji Yokoishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1926484A priority Critical patent/JPS60162767A/en
Publication of JPS60162767A publication Critical patent/JPS60162767A/en
Publication of JPS6339664B2 publication Critical patent/JPS6339664B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は陶磁器、ほうろう、ガラス等の上に、
装飾等のために窒化チタン(TiN)薄膜等を真
空成膜法で形成する際、パターン形成のために用
いるペースト状マスキング材に関する。 〔従来技術〕 陶磁器、ほうろう、ガラス等の新しい装飾法の
一つとして、金色を呈する窒化チタン薄膜を、イ
オンプレーテイング、スパツタリング等の真空成
膜法で形成する方法がある。 この方法は、特開昭57−166390号(特願昭56−
50551号)公報に開示されているように、ガラス
等の被着物体にパターンを形成し、窒化チタン薄
膜を選択的に形成させるものである。この従来方
法においては、パターンは、2〜30重量%のガラ
スフリツトと70〜98重量%の高融点金属酸化物を
有機物(ビヒクル)と混合し、ペースト状とした
ものをマスキング材に用い、このマスキング材を
転写法またはスクリーン印刷法により付着させて
マスキングパターンを形成し、次いで焼成するこ
とにより形成される。その後、マスキング材によ
りマスクされた被着物体に、イオンプレーテイン
グにより窒化チタン薄膜を形成し、マスキング材
と被着物体の物理的性質、例えば転移温度、軟化
温度等の差を利用して、ブラツシング、希薄酸水
溶液への浸漬等により、マスキング材を除去し、
所定のパターンの窒化チタン薄膜を形成する。 しかしながら、上記従来方法では、パターン形
成に、低融点ガラスフリツトの焼付けによる密着
性を利用するため、密着が強くなり過ぎ、窒化チ
タン薄膜形成後のマスキング材の除去が容易でな
く、ブラツシング、希薄酸水溶液への浸漬等が必
要となり、作業性が悪く時間が掛かるという問題
がある。 また、マスキング材の除去のために行うブラツ
シングや希薄酸水溶液への浸漬は、被着物体の面
を荒らさせ、マスキング材除去後に表面に微細な
凹凸が生じる。このため、特に透光性のあるガラ
スを被着物体として用いる場合には、見栄えが悪
くなるという問題がある。 〔発明の目的〕 本発明は、上記従来技術の問題を解決するため
になされたもので、マスキング材の除去が容易
で、かつマスキング材除去後に被着物体の面を荒
らすことのない真空成膜用ペースト状マスキング
材を提供することを目的とする。 〔発明の構成〕 かかる目的は、本発明によれば、重量比で30〜
90%のテルピネオール等の溶剤と、0.5〜10%の
エチルセルローズ等の増粘剤と、0.5〜70%の吸
着成分を含まないセラミツク微粉末とからなる真
空成膜用ペースト状マスキング材によつて達成さ
れる。……第1の発明 また、かかる目的は、本発明によれば、重量比
で30〜90%のテルピネオール等の溶剤と、0.5〜
10%のエチルセルローズ等の増粘剤と、1〜10%
のクマロン−インデン樹脂と、0.5〜70%の吸着
成分を含まないセラミツク微粉末とからなる真空
成膜用ペースト状マスキング材によつて達成され
る。……第2の発明 ここで、第1の発明と第2の発明は、特許法第
38条但書第1号の関係にある。 本発明において、溶剤はマスキング材のペース
ト化を図るために加えられるもので、通常使用さ
れているテルピネオール等を用いることができ
る。この中で、テルピネオール(沸点:170℃)
が蒸発速度の点から最も望ましい。この溶剤は重
量比(以下、%はすべて重量%)で30〜90%加え
る。添加割合を30〜90%としたのは、30%未満で
は粉末化してペースト状とならず、90%を越える
と液状となるからである。 増粘剤はマスキング材の粘度を上げるために加
えられるもので、通常使用されているエチルセル
ローズ、ニトロセルローズ等を用いることができ
る。この中で、エチルセルローズが最も望まし
い。この増粘剤は0.5〜15%加える。添加割合を
0.5〜15%としたのは、0.5%未満では十分な粘度
が得られず、15%を越えると粘くなり過ぎるから
である。 吸着成分を含まないセラミツク微粉末は、耐熱
性の向上および成膜後のマスキング材除去の容易
化のために加えられるもので、本発明の特徴の一
つである。この吸着成分を含まないセラミツク微
粉末としては、酸化アルミニウム、二酸化珪素、
ムライト、珪酸カルシウム等を用いることができ
る。この中で、酸化アルミニウムがより望まし
い。この吸着成分を含まないセラミツク微粉末
は、0.5〜70%加える。添加割合を0.5〜70%とし
たのは、0.5%未満では耐熱性の向上またはマス
キング材除去の容易化が図れず、70%を越えると
溶剤に分散しなくなるからである。 第2の発明においては、上記成分にマスキング
材の接着力を上げるためにクマロン−インデン樹
脂を加える。このクマロン−インデン樹脂は、例
えば数平均分子量650〜750、軟化点100〜120℃の
ものが望ましい。このクマロン−インデン樹脂は
1〜10%加える。添加割合を1〜10%としたの
は、1%未満では接着力が不足し、10%を越える
と溶剤に溶けなくなるからである。 なお、上記成分に酸化アルミニウムの分散を促
進するために、分散剤を加えてもよい。この分散
剤としては、0.01〜1%のトリオレイン等を用い
ることができる。 本発明の真空成膜用ペースト状マスキング材
は、陶磁器、ほうろう、ガラスの他、本発明に使
用している有機物質と相溶性のない有機部材にも
適用することができる。 〔発明の作用効果〕 本発明の真空成膜用ペースト状マスキング材は
以上の如く構成されるため、次のような効果を奏
する。 (イ) 真空成膜用ペースト状マスキング材の成分と
して、酸化アルミニウム等の吸着成分を含まな
いセラミツク微粉末を用い、相対的に有機物質
の量を減らしたことにより、マスキング材の除
去が有機溶剤で拭き取るだけで簡単に行なえ
る。従つて、従来のように、ブラツシング、希
薄酸水溶液への浸漬を行う必要はなく、極めて
容易にマスキング材の除去ができ、作業性が格
段に向上する。 (ロ) 従来の如く、ブラツシングや希薄酸水溶液へ
の浸漬を行う必要が無いため、ブラツシング、
希薄酸水溶液への浸漬により、被着物体の表面
が荒らされて凹凸が生じることがない。従つ
て、被着物体は良好な見栄えを確保できる。こ
の効果は、被着物体がガラスのとき、特に大き
い。 (ハ) 更に、第2の発明においては、被着物体との
密着性を良くするためにクマロン−インデン樹
脂を用いたことにより、転写またはスクリーン
印刷後のマスキング材の密着性を適度に保持す
ることができ、取扱いが極めて容易となる。 〔実施例〕 次に、本発明の実施例を図面を参考にして説明
する。 (第1実施例) 図は本発明の真空成膜用ペースト状マスキング
材を用いてスパツタリングにより被着物体に装飾
を施す工程を示す断面図である。図中、1はガラ
ス板、2は真空成膜用ペースト状マスキング材か
らなるネガマスク、3は窒化チタン薄膜である。 まず、ガラス板1上に、スクリーン印刷により
第1表に示すマスキング材を塗布し、ネガマスク
2を形成した。このとき、印刷したペースト状マ
スキング材を凹凸を無くすために、室温で10分間
水平に放置してレベリング処理を行つた。このレ
ベリング処理により、印刷直後のペースト状マス
キング材の凹凸がなくなり、平滑さが増す。その
後、120℃の乾燥器中で15分間乾燥させ、厚さ5μ
の密着したネガマスクを得た。この状態を図aに
示す。上記印刷処理を第1表に示す各種マスキン
グ材について行い、真空成膜に供した。
[Technical field] The present invention can be applied to ceramics, enamel, glass, etc.
This invention relates to a paste-like masking material used for pattern formation when forming titanium nitride (TiN) thin films etc. for decoration etc. by vacuum film formation. [Prior Art] As a new method for decorating ceramics, enamel, glass, etc., there is a method of forming a gold-colored titanium nitride thin film using a vacuum film-forming method such as ion plating or sputtering. This method is described in Japanese Patent Application Laid-Open No. 166390/1983 (Japanese Patent Application No.
50551), a pattern is formed on an adherend such as glass, and a titanium nitride thin film is selectively formed. In this conventional method, the pattern is created by mixing 2 to 30% by weight of glass frit and 70 to 98% by weight of high melting point metal oxide with an organic substance (vehicle) to form a paste, which is used as a masking material. It is formed by applying a material by a transfer method or screen printing method to form a masking pattern, and then baking it. After that, a titanium nitride thin film is formed on the adherend object masked by the masking material by ion plating, and brushing is performed by utilizing the difference in physical properties between the masking material and the adherend object, such as transition temperature and softening temperature. , remove the masking material by immersion in a dilute acid aqueous solution, etc.
A titanium nitride thin film with a predetermined pattern is formed. However, in the above conventional method, since the adhesion of the low-melting glass frit is used to form the pattern, the adhesion becomes too strong, making it difficult to remove the masking material after forming the titanium nitride thin film, resulting in brushing, dilute acid aqueous solution, etc. There is a problem that workability is poor and time-consuming because immersion in water or the like is required. Furthermore, brushing or dipping in a dilute acid aqueous solution performed to remove the masking material roughens the surface of the adhered object, resulting in fine irregularities on the surface after the masking material is removed. For this reason, there is a problem in that the appearance is poor, especially when transparent glass is used as the adherend. [Object of the Invention] The present invention has been made to solve the problems of the prior art described above, and provides a vacuum film forming method that allows easy removal of the masking material and does not roughen the surface of the adhered object after the masking material is removed. The purpose of the present invention is to provide a paste-like masking material for use. [Structure of the Invention] According to the present invention, this purpose is to achieve a weight ratio of 30 to 30.
By using a paste-like masking material for vacuum film formation consisting of 90% solvent such as terpineol, 0.5-10% thickener such as ethyl cellulose, and 0.5-70% fine ceramic powder that does not contain adsorbed components. achieved. ...First invention In addition, according to the present invention, this object is achieved by using a solvent such as terpineol of 30 to 90% by weight and 0.5 to 90% by weight of a solvent such as terpineol.
Thickener such as 10% ethyl cellulose and 1 to 10%
This is achieved by using a paste-like masking material for vacuum film formation consisting of a coumaron-indene resin and 0.5 to 70% of fine ceramic powder containing no adsorbed components. ...Second invention Here, the first invention and the second invention are defined in the Patent Act.
This is related to Article 38 Proviso No. 1. In the present invention, the solvent is added to make the masking material into a paste, and commonly used terpineol or the like can be used. Among these, terpineol (boiling point: 170℃)
is the most desirable from the viewpoint of evaporation rate. This solvent is added in an amount of 30 to 90% by weight (hereinafter, all percentages are by weight). The reason why the addition ratio is set to 30 to 90% is because if it is less than 30%, it will not become powdered and paste-like, and if it exceeds 90%, it will become liquid. The thickener is added to increase the viscosity of the masking material, and commonly used ethyl cellulose, nitrocellulose, etc. can be used. Among these, ethyl cellulose is the most desirable. Add this thickener by 0.5-15%. Addition rate
The reason why the content is set at 0.5 to 15% is that if it is less than 0.5%, sufficient viscosity cannot be obtained, and if it exceeds 15%, it becomes too viscous. The fine ceramic powder containing no adsorbed components is added to improve heat resistance and to facilitate removal of the masking material after film formation, and is one of the features of the present invention. Ceramic fine powders that do not contain adsorbed components include aluminum oxide, silicon dioxide,
Mullite, calcium silicate, etc. can be used. Among these, aluminum oxide is more desirable. Add 0.5 to 70% of this fine ceramic powder that does not contain adsorbed components. The reason why the addition ratio is set to 0.5 to 70% is that if it is less than 0.5%, it will not be possible to improve the heat resistance or facilitate the removal of the masking material, and if it exceeds 70%, it will not be dispersed in the solvent. In the second invention, coumaron-indene resin is added to the above components in order to increase the adhesive strength of the masking material. This coumaron-indene resin preferably has a number average molecular weight of 650 to 750 and a softening point of 100 to 120°C. This coumaron-indene resin is added at 1-10%. The reason why the addition ratio is 1 to 10% is because if it is less than 1%, the adhesive strength is insufficient, and if it exceeds 10%, it will not dissolve in the solvent. Note that a dispersant may be added to the above components in order to promote dispersion of aluminum oxide. As this dispersant, 0.01 to 1% triolein or the like can be used. The paste-like masking material for vacuum film formation of the present invention can be applied to ceramics, enamel, glass, and other organic materials that are not compatible with the organic substance used in the present invention. [Operations and Effects of the Invention] Since the paste-like masking material for vacuum film formation of the present invention is configured as described above, it exhibits the following effects. (b) By using fine ceramic powder that does not contain adsorbed components such as aluminum oxide as a component of the paste-like masking material for vacuum film formation, and by reducing the amount of organic substances relatively, the masking material can be removed using organic solvents. It can be easily done by simply wiping it off. Therefore, there is no need to perform brushing or immersion in a dilute acid aqueous solution as in the past, and the masking material can be removed extremely easily, greatly improving workability. (b) Since there is no need for brushing or immersion in dilute acid aqueous solution as in the past, brushing,
Immersion in a dilute acid aqueous solution does not cause the surface of the adhered object to become rough and uneven. Therefore, the adhered object can ensure good appearance. This effect is particularly great when the object to be adhered is glass. (c) Furthermore, in the second invention, coumaron-indene resin is used to improve the adhesion to the adhered object, so that the adhesion of the masking material after transfer or screen printing is maintained appropriately. This makes handling extremely easy. [Example] Next, an example of the present invention will be described with reference to the drawings. (First Example) The figure is a sectional view showing a process of decorating an adherend by sputtering using the paste-like masking material for vacuum film formation of the present invention. In the figure, 1 is a glass plate, 2 is a negative mask made of a paste-like masking material for vacuum film formation, and 3 is a titanium nitride thin film. First, a masking material shown in Table 1 was applied onto a glass plate 1 by screen printing to form a negative mask 2. At this time, in order to eliminate unevenness of the printed paste-like masking material, a leveling treatment was performed by leaving it horizontally at room temperature for 10 minutes. This leveling process eliminates the unevenness of the paste masking material immediately after printing and increases its smoothness. Then, dry it in a dryer at 120℃ for 15 minutes to a thickness of 5μ.
A negative mask with close contact was obtained. This state is shown in Figure a. The above printing process was performed on various masking materials shown in Table 1, and the materials were subjected to vacuum film formation.

【表】 このネガマスクを形成したガラス板を真空槽内
に設置し、チタンと窒素の反応性スパツタリング
により、窒化チタン薄膜による金色装飾を施し
た。ガラス板を設置後、真空槽を2×10-5torrに
減圧し、反応ガスである窒素を導入して2×
10-4torrとした。更に、スパツタガスとしてアル
ゴンを導入し、3×10-3torrとした。続いて、高
周波電源より2kwを投入し、30分間反応性スパツ
タリングを行つた。スパツタリング終了時のガラ
スの表面温度は135℃であつた。このときの成膜
状態は、図bに示す如くであり、ネガマスクの上
およびネガマスクが形成されていないガラス板上
に、窒化チタン薄膜が一定厚さに形成されてい
る。 次に、成膜後のガラス表面を、エチルアルコー
ルをしみ込ませたガーゼでふき、マスキング材を
除去した。このときの状態を図cに示す。 上記反応性スパツタリングによる窒化チタン薄
膜の形成を、第1表に示すマスキング材のすべて
について行い、マスキング材除去の容易性および
密着性を調べた。 この結果、第1表のマスキング材はすべて、エ
チルアルコールにより簡単に除去でき、清浄な窒
化チタン薄膜がポジパターンとなつた金色装飾が
得られた。 なお、第1表のNo.1、No.2、No.3は軽く触れる
のみで容易にマスキング材が除去できたのに対
し、No.4とNo.5は上記No.1〜No.3に比べると力を
要した。これにより、酸化アルミニウム微粉がマ
スキング材除去を容易にしているのが判る。 また、No.3とNo.5のマスキング材は、スクリー
ン印刷し、乾燥した後、指先で触れる程度では何
等傷は付かなかつた。このことにより、クマロン
−インデン樹脂により密着性が向上しているのが
確認された。 (第2実施例) 第1実施例と同様に、第1表のマスキング材を
使つて、ガラス板上にネガマスクを形成し、これ
を用いてチタンの反応性イオンプレーテイングを
行い、窒化チタン薄膜からなる金色装飾品を作製
した。 まず、ネガマスクを形成したガラス板を真空槽
内に設置し、1×10-5torrまで真空引きした。次
いで、基板加熱装着により、ガラス板を所定の温
度に加熱した。次に、窒素を導入して2×10-4
窒素雰囲気とし、一定の電力でチタンを蒸発させ
た。このときイオン化電極に正の高電圧をかけア
ーク放電を起こさせると共に、ガラス板の保持具
にバイアスを−50Vかけた。この結果、ガラス板
上に厚さ約0.5μの窒化チタン薄膜が形成された。
このときの蒸着時間は、約8分であつた。 次に、成膜後のガラス表面をエチルアルコール
をしみ込ませたガーゼでふき、マスキング材を除
去した。 上記成膜を第1表に示すマスキング材のすべて
について、ガラス板の加熱温度を125℃、186℃、
255℃、350℃の4段階に分けて行つた。 このときの、マスキング材除去が容易にできる
最高温度と、除去後の窒化チタン薄膜の剥離の有
無を第2表に示す。
[Table] The glass plate on which this negative mask was formed was placed in a vacuum chamber, and gold decoration was applied with a titanium nitride thin film by reactive sputtering of titanium and nitrogen. After installing the glass plate, reduce the pressure in the vacuum chamber to 2×10 -5 torr, introduce nitrogen as a reaction gas, and
10 -4 torr. Furthermore, argon was introduced as a sputter gas to set the pressure to 3×10 −3 torr. Subsequently, 2 kW was applied from a high frequency power source and reactive sputtering was performed for 30 minutes. The surface temperature of the glass at the end of sputtering was 135°C. The film formation state at this time is as shown in FIG. b, in which a titanium nitride thin film is formed to a constant thickness on the negative mask and on the glass plate on which the negative mask is not formed. Next, the glass surface after the film formation was wiped with gauze soaked in ethyl alcohol to remove the masking material. The state at this time is shown in Figure c. Formation of a titanium nitride thin film by the above-described reactive sputtering was performed using all of the masking materials shown in Table 1, and the ease of removing the masking materials and adhesion were examined. As a result, all the masking materials shown in Table 1 could be easily removed with ethyl alcohol, and a golden decoration with a positive pattern of a clean titanium nitride thin film was obtained. Note that the masking material could be easily removed from No. 1, No. 2, and No. 3 in Table 1 by just touching it lightly, whereas No. 4 and No. 5 were the same as No. 1 to No. 3 above. It took more force than the . This shows that the aluminum oxide fine powder facilitates the removal of the masking material. Moreover, the masking materials No. 3 and No. 5 were screen printed and after drying, they did not cause any damage when touched with a fingertip. This confirmed that the coumaron-indene resin had improved adhesion. (Second Example) Similarly to the First Example, a negative mask was formed on a glass plate using the masking materials shown in Table 1, and reactive ion plating of titanium was performed using this to form a titanium nitride thin film. I made a golden ornament consisting of. First, a glass plate on which a negative mask was formed was placed in a vacuum chamber, and the chamber was evacuated to 1×10 −5 torr. Next, the glass plate was heated to a predetermined temperature by substrate heating mounting. Next, nitrogen was introduced to create a 2×10 -4 nitrogen atmosphere, and titanium was evaporated with constant power. At this time, a high positive voltage was applied to the ionization electrode to cause arc discharge, and a bias of -50V was applied to the glass plate holder. As a result, a titanium nitride thin film with a thickness of approximately 0.5 μm was formed on the glass plate.
The deposition time at this time was about 8 minutes. Next, the glass surface after film formation was wiped with gauze soaked in ethyl alcohol to remove the masking material. For all of the masking materials shown in Table 1, the heating temperature of the glass plate was set to 125°C, 186°C,
The test was carried out in four stages: 255°C and 350°C. Table 2 shows the maximum temperature at which the masking material could be easily removed and whether or not the titanium nitride thin film peeled off after removal.

【表】 第2表において、マスク除去が容易な最高温度
とは、被着物体であるガラス板の加熱温度が、第
2表に記載された当該温度までは、イオンプレー
テイング後マスキング材が容易に除去されること
を示している。例えば、第2表において、ペース
トNo.1の場合、被着物体の加熱温度が125℃、186
℃、255℃の場合は、マスキング材が容易に除去
できるが、350℃の場合は、マスキング材除去が
エチルアルコールによるふき取りだけでは除去で
きなくなつたことを意味する。 第2表から明らかなように、本発明の真空成膜
用ペースト状マスキング材は、比較的高温でも使
用可能であり、これは比較例との比較により、酸
化アルミニウム微粉を添加したためと解される。 また、比較例のNo.4とNo.5のペーストは、
TiN薄膜の剥離が見られるが、これはエチルセ
ルローズからの脱ガスの影響と解される。これに
対し、本発明のNo.1〜No.3のペーストは、いずれ
もTiN薄膜の剥離は全く見られない。なお、本
発明の中でも、酸化アルミニウム微粉とクマロン
−インデン樹脂の両方を添加したものが、最も高
温まで使用することができることが判る。
[Table] In Table 2, the maximum temperature at which the mask can be easily removed means that the heating temperature of the glass plate, which is the object to be adhered to, must reach the temperature listed in Table 2 so that the masking material can be easily removed after ion plating. indicates that it will be removed. For example, in Table 2, in the case of paste No. 1, the heating temperature of the adhered object is 125℃, 186℃
When the temperature is 255°C, the masking material can be easily removed, but when the temperature is 350°C, it means that the masking material can no longer be removed simply by wiping with ethyl alcohol. As is clear from Table 2, the paste-like masking material for vacuum film formation of the present invention can be used even at relatively high temperatures, and this is understood to be due to the addition of aluminum oxide fine powder by comparison with the comparative example. . In addition, the pastes of comparative examples No. 4 and No. 5 are as follows:
Peeling of the TiN thin film is observed, but this is understood to be the effect of degassing from ethyl cellulose. On the other hand, in pastes No. 1 to No. 3 of the present invention, no peeling of the TiN thin film was observed at all. Furthermore, among the products of the present invention, it can be seen that the product to which both aluminum oxide fine powder and coumaron-indene resin are added can be used up to the highest temperature.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の真空成膜用ペースト状マスキング
材を用いてスパツタリングにより被着物体に装飾
を施す工程を示す断面図である。 1……ガラス板、2……ネガマスク(マスキン
グ材)、3……窒化チタン薄膜。
The figure is a sectional view showing a process of decorating an adherend by sputtering using the paste-like masking material for vacuum film formation of the present invention. 1...Glass plate, 2...Negative mask (masking material), 3...Titanium nitride thin film.

Claims (1)

【特許請求の範囲】 1 重量比で30〜90%のテルピネオール等の溶剤
と、0.5〜10%のエチルセルローズ等の増粘剤と、
0.5〜70%の吸着成分を含まないセラミツク微粉
末とからなる真空成膜用ペースト状マスキング
材。 2 重量比で30〜90%のテルピネオール等の溶剤
と、0.5〜10%のエチルセルローズ等の増粘剤と、
1〜10%のクマロン−インデン樹脂と、0.5〜70
%の吸着成分を含まないセラミツク微粉末とから
なる真空成膜用ペースト状マスキング材。
[Claims] 1. A solvent such as terpineol in a weight ratio of 30 to 90%, a thickener such as ethyl cellulose in a weight ratio of 0.5 to 10%,
A paste-like masking material for vacuum film formation consisting of fine ceramic powder that does not contain 0.5 to 70% of adsorbed components. 2. A solvent such as terpineol at a weight ratio of 30 to 90%, a thickener such as ethyl cellulose at a weight ratio of 0.5 to 10%,
1-10% coumaron-indene resin and 0.5-70%
Paste-like masking material for vacuum film formation consisting of fine ceramic powder that does not contain % of adsorbed components.
JP1926484A 1984-02-03 1984-02-03 Pasty masking material for film formation in vacuum Granted JPS60162767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1926484A JPS60162767A (en) 1984-02-03 1984-02-03 Pasty masking material for film formation in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1926484A JPS60162767A (en) 1984-02-03 1984-02-03 Pasty masking material for film formation in vacuum

Publications (2)

Publication Number Publication Date
JPS60162767A JPS60162767A (en) 1985-08-24
JPS6339664B2 true JPS6339664B2 (en) 1988-08-05

Family

ID=11994577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1926484A Granted JPS60162767A (en) 1984-02-03 1984-02-03 Pasty masking material for film formation in vacuum

Country Status (1)

Country Link
JP (1) JPS60162767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654300B2 (en) * 1990-05-08 1994-07-20 工業技術院長 Calorimeter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825363B2 (en) * 2001-05-15 2011-11-30 カヤバ工業株式会社 Fluid pressure transmission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654300B2 (en) * 1990-05-08 1994-07-20 工業技術院長 Calorimeter

Also Published As

Publication number Publication date
JPS60162767A (en) 1985-08-24

Similar Documents

Publication Publication Date Title
US4187340A (en) Method of forming patterned transparent electro-conductive film on the substrate of liquid crystal display
US5980347A (en) Process for manufacturing plasma display panel
JPH03247772A (en) Composition for forming platinum thin film
JPH09102273A (en) Manufacture of plasma display panel
US3877962A (en) Substrate coating composition and process
TW363202B (en) Insulator composition and green tape
JPS6339664B2 (en)
US3653946A (en) Method of depositing an adherent gold film on the surfaces of a suitable substrate
US3625733A (en) Substrate coating process
JPS6315344B2 (en)
JPH09129141A (en) Metal oxide thin film forming coating agent
US4382980A (en) Magnesium compositions and process for forming MGO film
US3617341A (en) Method of depositing in situ a ceramic or glass film on the surfaces of a substrate
JPH0995627A (en) Coating agent for forming metallic oxide thin film
JPH0554716A (en) Silver paste for forming conductive thin film
JPS5511208A (en) Production of electrochromic layer
US2152991A (en) Method of coating surfaces with powdered materials
JPS6256492B2 (en)
JPH09137066A (en) Electroconductive composition
KR100495020B1 (en) A transfer film for preparing dielectric substance layer of the plasma display panel
JPS61279665A (en) Partial dry plating method
JP3746420B2 (en) Method for manufacturing plasma display panel
EP0015623B1 (en) Magnesium compositions and process for forming mgo film
JPH07908A (en) Method for removing thin film
JPS6034096B2 (en) Manufacturing method of liquid crystal cell