JPS6256492B2 - - Google Patents

Info

Publication number
JPS6256492B2
JPS6256492B2 JP5708079A JP5708079A JPS6256492B2 JP S6256492 B2 JPS6256492 B2 JP S6256492B2 JP 5708079 A JP5708079 A JP 5708079A JP 5708079 A JP5708079 A JP 5708079A JP S6256492 B2 JPS6256492 B2 JP S6256492B2
Authority
JP
Japan
Prior art keywords
solution
film
substrate
coating
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5708079A
Other languages
Japanese (ja)
Other versions
JPS55149920A (en
Inventor
Minoru Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5708079A priority Critical patent/JPS55149920A/en
Publication of JPS55149920A publication Critical patent/JPS55149920A/en
Publication of JPS6256492B2 publication Critical patent/JPS6256492B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Formation Of Insulating Films (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は光学装置などに用いられる電極基板に
係り、特に特許請求の範囲に記載の溶液を塗布後
加熱して得られる無機化合物薄膜を有する電極基
板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode substrate used in optical devices and the like, and particularly to an electrode substrate having an inorganic compound thin film obtained by applying and then heating the solution described in the claims.

近年、半導体素子の絶縁皮膜、あるいは液晶表
元素子の絶縁膜または配向制御膜に金属酸化物ま
たはそれに類似な膜が使用されているのは周知の
事実である。
It is a well-known fact that in recent years, metal oxides or films similar to them have been used for insulating films of semiconductor devices, or insulating films or alignment control films of liquid crystal display elements.

特に液晶表示素子の場合には、ガラスなどの絶
縁基板上に透明導電体薄膜および有機または無機
化合物膜を順次形成した電極基板の一対で構成さ
れ、前記有機または無機化合物膜が形成された面
をスペーサを介して対向して組み合わせ、その内
部に液晶が封入される。この場合、前記有機また
は無機化合物の液晶にたいする特異配向性を利用
する動的散乱モードタイプやカイラルネマチツ
ク、ネマチツク間の相転移を利用する表示方式が
あり、さらに前記有機または無機化合物膜上を特
定方向にラビングすることにより、前記有機また
は無機化合物と接触する液晶をツイストネマチツ
ク型に配向制御する表示方式などが知られてい
る。
In particular, in the case of a liquid crystal display element, it consists of a pair of electrode substrates in which a transparent conductor thin film and an organic or inorganic compound film are sequentially formed on an insulating substrate such as glass, and the surface on which the organic or inorganic compound film is formed is They are assembled facing each other with a spacer interposed therebetween, and liquid crystal is sealed inside. In this case, there are dynamic scattering mode types that utilize the specific orientation of the organic or inorganic compound with respect to the liquid crystal, chiral nematics, and display systems that utilize the phase transition between nematics. A display method is known in which the orientation of the liquid crystal in contact with the organic or inorganic compound is controlled in a twisted nematic type by rubbing in the direction of the organic or inorganic compound.

前記の目的で形成される有機または無機化合物
膜の一般的要求特性として、形成されるべき膜と
下地絶縁基板および透明導電体薄膜との密着性が
良好なこと、膜自体にピンホールなどの欠陥がな
く強度が十分大きいこと、膜全体に亘り化学組成
的に均一であること、可視光の透過性が良好であ
ること、および形成された基板面に亘つて膜厚が
均一であることなどである。さらに、前記薄膜の
形成方法はできる限り量産的であることが必要で
ある。このような観点からすると、有機化合物膜
は、一般に膜自体に着色があり、可視光の透過性
が低いこと、無機化合物膜に比べて絶縁基板との
密着性が低いこと、および耐熱性が劣ることなど
のため、前記電極形成基板上に形成する膜は無機
化合物膜であることが望ましい。
Generally required characteristics of an organic or inorganic compound film formed for the above purpose are good adhesion between the film to be formed and the underlying insulating substrate and transparent conductor thin film, and defects such as pinholes in the film itself. The film has sufficient strength, has a uniform chemical composition over the entire film, has good visible light transparency, and has a uniform film thickness over the surface of the substrate on which it is formed. be. Furthermore, the method for forming the thin film needs to be as mass-producible as possible. From this perspective, organic compound films are generally colored, have low visible light transmittance, have poor adhesion to insulating substrates, and have poor heat resistance compared to inorganic compound films. For this reason, it is desirable that the film formed on the electrode forming substrate be an inorganic compound film.

目的とする無機化合物膜を前記電極形成基板上
に形成する方法として、(1)気相成長法、(2)蒸着
法、(3)スパツタリング法、または(4)目的とする無
機化合物粉末を適当な溶剤または分散剤に分散せ
しめてスプレー、回転、浸漬、印刷法により塗布
するいわゆる塗布法などが知られている。しか
し、これらの方法には各々次のような欠点を有し
ている。すなわち、気相成長法では例えば塩化ア
ルミニウムを気相中で酸化させ酸化アルミニウム
を形成すること、塩化チタンを気相中で酸化させ
て酸化チタンを形成するなどがあるが、いずれも
被着基板を加熱しておかなければならない。ま
た、被着基板全面に亘り均一な厚さの膜を形成す
るためにはガス流動系にたいして特別な工夫が必
要である。このため、基板の大きさが限定される
こと、また、複雑な形状の基板にたいして均一な
皮膜を形成することが困難となる。また、ガス配
管系、加熱系などを含めると大型にならざるを得
ないし、バツチ処理を必要とするため、量産に不
向きである。蒸着法は抵抗加熱、電子ビーム加熱
で原料を蒸発させ、減圧下で目的とする被膜を基
板に形成する方法であるが、この方法は真空装置
を使用する関係上、大型基板に均一な被膜を形成
することが困難であり、また、装置が高価なため
に製品のコストも高価となる。
The desired inorganic compound film can be formed on the electrode forming substrate by (1) vapor phase growth, (2) vapor deposition, (3) sputtering, or (4) using an appropriate method of forming the desired inorganic compound powder. A so-called coating method is known in which the compound is dispersed in a suitable solvent or dispersant and coated by spraying, spinning, dipping, or printing. However, each of these methods has the following drawbacks. In other words, in the vapor phase growth method, for example, aluminum chloride is oxidized in the vapor phase to form aluminum oxide, and titanium chloride is oxidized in the vapor phase to form titanium oxide, but in both cases, the deposition substrate is It must be heated. Further, in order to form a film with a uniform thickness over the entire surface of the substrate, special measures are required for the gas flow system. Therefore, the size of the substrate is limited, and it is difficult to form a uniform film on a substrate with a complicated shape. Furthermore, it is unsuitable for mass production because it must be large in size if gas piping systems, heating systems, etc. are included, and batch processing is required. Vapor deposition is a method in which raw materials are evaporated using resistance heating or electron beam heating, and the desired film is formed on the substrate under reduced pressure. However, because this method uses a vacuum device, it is difficult to form a uniform film on a large substrate. It is difficult to form, and the equipment is expensive, making the product expensive.

スパツタリングによる皮膜の形成方法に関して
も蒸着法とほぼ同様な欠点を有するが、被着基板
がプラズマ中に曝されるため、先に形成した透明
導電膜等が変質し、抵抗が増加するなどの好まし
くない影響を与える。
The method of forming a film by sputtering has almost the same drawbacks as the vapor deposition method, but since the substrate to be adhered to is exposed to plasma, the previously formed transparent conductive film etc. will change in quality and resistance will increase. No impact.

塗布法は大型基板や複雑な形状の基板にも目的
とする皮膜を形成することもできるが、粒子間の
結合が弱く、また、被着基板との密着性も弱いた
め、布で摩擦する程度で簡単に剥離を生じやすい
欠点がある。これは粉末を分散させた液を塗布液
として用いたためであり、密着性の良い強固な皮
膜を形成するためには、溶質が均一に溶解した溶
液を用いることが不可欠である。
Although the coating method can form the desired film on large substrates or substrates with complex shapes, the bond between particles is weak and the adhesion to the substrate is also weak, so it is difficult to form a film that can be rubbed with a cloth. It has the disadvantage that it easily peels off. This is because a solution containing powder dispersed therein was used as the coating solution, and in order to form a strong film with good adhesion, it is essential to use a solution in which the solute is uniformly dissolved.

塗布法に関する前記の如き欠点を排するため
に、アセチルアセトネートなどのβジケトン金属
錯体を有機溶剤などに溶解した溶液を被着基板に
塗布した後、加熱分解し、目的とする無機化合物
を得る方法がある。この際溶剤としてはβジケト
ンの他にメタノール、エタノール、プロパノール
などの低粘度アルコール類、アセトンなどのケト
ン類、またはエステル類が用いられる。また、溶
液塗布後加熱により錯体を速かに分解し、酸化を
促進するために硝酸イオンの如き酸化性のイオン
または化合物が添加される場合がある。このよう
な溶液を酸化インジウム形導電体薄膜電極を形成
したガラス基板上に塗布した後加熱して得られる
無機化合物膜は膜厚が500Å以下の場合は比較的
強固であるが密着性は十分でない場合が多く、基
板全面に亘る膜厚が不均一である。また、膜厚の
増加とともに密着性もさらに低下する。この原因
として前記溶剤は常温で比較的揮発しやすいこ
と、凝集性のため溶液塗布後溶質が凝集するこ
と、または揺変性が小さいため印刷に適すごとき
高粘度溶液を作成して印刷塗布するも印刷後印刷
物の移動が生ずるためであると考えられる。した
がつて、十分大きい膜厚の場合でも密着性が良
く、しかも基板全面に亘る均一な膜厚の無機化合
物膜を形成するためには常温では比較的揮発しに
くい溶媒であること、溶媒自体が基板との親和性
が良く凝集性でないこと、加熱により比較的低温
度(400℃以下)で揮散しやすいことが必要であ
る。また、塗布法のうちで量産性の高い印刷法を
適用するためには溶液は粘度が十分大でしかも転
移性および揺度性などを有することが不可欠であ
る。また、溶液を高粘度とするための溶媒は溶質
と十分相溶性があり、偏析などが生じないことが
不可欠であることは言をまたない。
In order to eliminate the above-mentioned drawbacks regarding the coating method, a solution in which a β-diketone metal complex such as acetylacetonate is dissolved in an organic solvent is coated on the substrate and then thermally decomposed to obtain the desired inorganic compound. There is a way. In this case, in addition to β-diketone, low-viscosity alcohols such as methanol, ethanol, and propanol, ketones such as acetone, or esters are used as the solvent. Further, oxidizing ions or compounds such as nitrate ions may be added to rapidly decompose the complex by heating after application of the solution and promote oxidation. The inorganic compound film obtained by applying such a solution onto a glass substrate on which an indium oxide conductor thin film electrode is formed and then heating it is relatively strong if the film thickness is 500 Å or less, but the adhesion is not sufficient. In many cases, the film thickness over the entire surface of the substrate is non-uniform. Furthermore, as the film thickness increases, the adhesion further decreases. This may be due to the fact that the above-mentioned solvent is relatively easily volatile at room temperature, that the solute aggregates after application due to its cohesive property, or that it has low thixotropy, so a high viscosity solution suitable for printing is created and applied by printing. This is thought to be due to the movement of the printed matter. Therefore, in order to form an inorganic compound film that has good adhesion even when the film thickness is sufficiently large and has a uniform thickness over the entire surface of the substrate, it is necessary to use a solvent that is relatively difficult to volatilize at room temperature, and that the solvent itself is It must have good affinity with the substrate, be non-agglomerative, and be easily volatilized by heating at relatively low temperatures (below 400°C). In addition, in order to apply the printing method, which has high mass production among coating methods, it is essential that the solution has a sufficiently high viscosity and also has transferability and swingability. Furthermore, it goes without saying that it is essential that the solvent used to make the solution highly viscous has sufficient compatibility with the solute and that segregation does not occur.

本発明は前記の如き要請を満足すべく種々検討
した結果なされたもので、透明導電膜などの電極
を形成した絶縁基板上に無機化合物膜を塗布法に
より形成する方法の中で、塗布液を改良して基板
との密着性が十分大きく、基板全面に亘る膜厚が
均一でしかも強度の大なる無機化合物の皮膜を形
成した電極基板を量産性良く提供するにある。
The present invention was made as a result of various studies to satisfy the above-mentioned requirements, and is a method for forming an inorganic compound film by a coating method on an insulating substrate on which electrodes such as a transparent conductive film are formed. It is an object of the present invention to provide an electrode substrate having an improved inorganic compound coating having sufficiently high adhesion to the substrate, uniform thickness over the entire surface of the substrate, and high strength, with good mass production.

本発明はガラスなどの絶縁基板上に電極を形成
した基板上に無機化合物膜を形成した電極基板に
係り、βジケトンと錯体を形成する元素とβジケ
トン、またはβジケトン錯体を有機または無機溶
剤からなる溶液にポリエチレングリコールまたは
ニトロセルロースを添加してなる溶液を塗布溶液
とすることを特徴とする。塗布法はスプレー法、
回転法、浸漬法、印刷法によるが、塗布法に応じ
て上記ポリエチレングリコールおよびニトロセル
ロースの添加量は加減される。また、この溶液に
は錯体の分解を速やかに進めるため硝酸イオンな
どの酸化性のイオンまたは化合物を添加すること
も可能である。
The present invention relates to an electrode substrate in which an inorganic compound film is formed on an insulating substrate such as glass, and an element that forms a complex with β-diketone, β-diketone, or a β-diketone complex is prepared from an organic or inorganic solvent. The coating solution is obtained by adding polyethylene glycol or nitrocellulose to the solution. Application method is spray method,
The amount of the polyethylene glycol and nitrocellulose added may be adjusted depending on the coating method, such as a rotation method, a dipping method, or a printing method. Further, it is also possible to add oxidizing ions or compounds such as nitrate ions to this solution in order to speed up the decomposition of the complex.

塗布溶液の作成方法は次のようである。第1の
方法はβジケトンと錯体を形成する元素の硝酸塩
などの塩にアセチルアセトンなどのβジケトンを
添加して室温で長時間撹拌しながら溶解する。こ
の際、加熱すると溶解しやすくなる。また、必要
に応じてアルコール類、ケトン類、エステル類な
どを添加する。つぎに、ポリエチレングリコール
またはブチルカルビトールアセテートなどニトロ
セルロースを溶解する溶剤に溶解せしめたニトロ
セルロース溶液を塗布法に応じて適量添加して粘
度調節する。第2の方法はβジケトン錯体をアセ
チルアセトンなどの有機溶剤に溶解した溶液に第
1の方法で述べたポリエチレングリコールまたは
ニトロセルロース溶液を適量添加して塗布液とす
る。この際、硝酸などの酸化性のイオンまたは化
合物を添加するも可能である。また、アルコール
類、ケトン類、エステル類などの有機溶剤を添加
することも可能である。
The method for preparing the coating solution is as follows. In the first method, a β-diketone such as acetylacetone is added to a salt such as a nitrate of an element that forms a complex with a β-diketone, and the mixture is dissolved while stirring for a long time at room temperature. At this time, heating facilitates dissolution. Additionally, alcohols, ketones, esters, etc. are added as necessary. Next, an appropriate amount of a nitrocellulose solution dissolved in a solvent that dissolves nitrocellulose, such as polyethylene glycol or butyl carbitol acetate, is added depending on the coating method to adjust the viscosity. In the second method, an appropriate amount of the polyethylene glycol or nitrocellulose solution described in the first method is added to a solution of the β-diketone complex dissolved in an organic solvent such as acetylacetone to prepare a coating solution. At this time, it is also possible to add oxidizing ions or compounds such as nitric acid. It is also possible to add organic solvents such as alcohols, ketones, and esters.

前記塗布液はβジケトンと錯体を形成する元素
とβジケトンまたはβジケトン錯体の溶液にポリ
エチレングリコールまたはニトロセルロースが含
有されていることが特徴であるが、この溶液を用
いると、ポリエチレングリコールまたはニトロセ
ルロースは錯体を被塗布基板と強固に密着させる
作用をするため、溶液を塗布後加熱して得られる
皮膜の基板との密着性は大となる。また、ポリエ
チレングリコールまたはニトロセルロースは常温
では容易に揮発しないため、塗布作業中に溶質が
部分的に堆積する如き事態は生じないため、得ら
れる膜の膜厚の均一性は良好となる。また、ポリ
エチレングリコールおよびニトロセルロースの添
加量を選ぶことにより、数センチポアズから数十
万センチポアズの粘度を有する溶液とすることが
可能なため印刷法をはじめあらゆる塗布法が適用
できる。さらに、ポリエチレングリコールまたは
ニトロセルロースを含む溶液はこれらを含まない
溶液に比べて揺変性が大きいので、溶液を塗布後
塗布物質の移動がないため皮膜に凹凸が生じにく
い。
The coating liquid is characterized in that polyethylene glycol or nitrocellulose is contained in a solution of an element that forms a complex with β-diketone and β-diketone or a β-diketone complex. Since the complex has the effect of firmly adhering the complex to the substrate to be coated, the adhesion of the film obtained by applying and heating the solution to the substrate is high. Furthermore, since polyethylene glycol or nitrocellulose does not easily volatilize at room temperature, a situation where solutes are partially deposited during the coating operation does not occur, and the resulting film has good uniformity in thickness. Moreover, by selecting the amounts of polyethylene glycol and nitrocellulose added, it is possible to obtain a solution having a viscosity of several centipoises to several hundred thousand centipoises, so that all coating methods including printing methods can be applied. Furthermore, since solutions containing polyethylene glycol or nitrocellulose have greater thixotropy than solutions that do not contain these, there is no movement of the applied substance after the solution is applied, making it difficult for the film to become uneven.

溶液塗布後の加熱はトンネル炉、バツチ炉、ホ
ツトプレート加熱などが採用される。加熱は便宜
的に溶剤揮散過程、錯体および有機物分解過程、
生成物焼成過程に分けられ、それぞれの溶剤およ
び目的とする生成物に応じて選択される。錯体お
よび有機物の分解過程は急速の加熱が有利であ
る。
Tunnel furnaces, batch furnaces, hot plate heating, etc. are used for heating after applying the solution. Heating is convenient for solvent volatilization process, complex and organic matter decomposition process,
The products are divided into calcination processes and are selected depending on the respective solvent and the desired product. Rapid heating is advantageous for the decomposition process of complexes and organic substances.

以下、実施例を用いて本発明を説明する。 The present invention will be explained below using Examples.

実施例 1 硝酸セリウム{Ce(NO33}1モルにアセチル
アセトン5モルを加えたビーカを温度調節装置を
備えたホツトスターラの上で50℃で加熱撹拌す
る。反応の進行に伴い、粘度の高いカツ色の溶液
が形成される。約15時間で反応を中止し、回転粘
度計を用いてロータ回転数と粘度との関係を測定
すると第1図aに示す如き曲線が得られ、回転数
零における粘度の外挿値は約3万1千ポアズとな
る。しかしながら、第1図aから明らかなよう
に、回転数にたいする粘度の変化は小さく揺変性
は非常に小さいことがわかる。つぎに、この溶液
をニトロセルロース〔旭化成(株)製HE−2000〕7
gをブチルカルビトールアセテート100mlの割合
で溶解せしめた溶液に1/5重量添加撹拌し、溶液
とする。この溶液の回転粘度計におけるロータ回
転数と粘度との関係は第1図bの如くなり、回転
数零における粘度の外挿値は約8万センチポアズ
となる。
Example 1 A beaker containing 1 mol of cerium nitrate {Ce(NO 3 ) 3 } and 5 mol of acetylacetone is heated and stirred at 50° C. on a hot stirrer equipped with a temperature control device. As the reaction progresses, a viscous, cutlet-colored solution is formed. When the reaction was stopped after about 15 hours and the relationship between rotor rotational speed and viscosity was measured using a rotational viscometer, a curve as shown in Figure 1a was obtained, and the extrapolated value of viscosity at zero rotational speed was approximately 3. It will be 11,000 poise. However, as is clear from FIG. 1a, the change in viscosity with respect to rotational speed is small and the thixotropy is very small. Next, this solution was added to nitrocellulose [HE-2000 manufactured by Asahi Kasei Corporation] 7
g in 100 ml of butyl carbitol acetate and stirred to form a solution. The relationship between the rotor rotational speed and viscosity of this solution in a rotational viscometer is as shown in FIG. 1b, and the extrapolated value of the viscosity at zero rotational speed is about 80,000 centipoise.

図から明らかなように、ニトロセルロースの添
加は粘度を増大させるばかりではなく、回転数に
たいする粘度が大きく変化し、揺変性も増大して
いることが理解できる。このような性質は印刷塗
布法にとつて不可欠である。
As is clear from the figure, it can be seen that the addition of nitrocellulose not only increases the viscosity, but also causes a large change in the viscosity with respect to the rotational speed and an increase in thixotropy. Such properties are essential for print coating methods.

ついで、オフセツト印刷機を用いて透明導電膜
電極を形成した液晶表示装置用ガラス基板上に前
記第1図に示したaおよびb溶液を印刷する。オ
フセツト印刷機としては手動オフセツト校正機
(KD型、中西鉄工所(株)製)を用いる。
Next, solutions a and b shown in FIG. 1 are printed using an offset printing machine on a glass substrate for a liquid crystal display device on which a transparent conductive film electrode is formed. A manual offset proofing machine (model KD, manufactured by Nakanishi Tekkosho Co., Ltd.) is used as the offset printing machine.

液晶表示装置の上下基板に印刷された印刷層を
80℃で30分間加熱し、ついで250℃で20分間加熱
する。つぎに、あらかじめ500℃に加熱しておい
た炉中で急激に加熱し、30分間保持して焼成す
る。この結果、前記a溶液から得られる膜の膜厚
は約2000ű1500Åと不均一な膜厚分布を示すの
に対して前記b溶液から得られる膜の膜厚は約
800ű100Åとなり、非常に均一な分布を示す。
このように、ニトロセルロースを添加した溶液か
ら得た皮膜の膜厚分布が均一な理由はニトロセル
ロースを添加することにより溶液と基板との粘着
性が増加すること、粘度が大でしかも揺変性が大
のため印刷層が均一となること、およびアセチル
アセトン単独溶液に比べて放置・加熱過程におけ
る塗布層の移動が生じないためと考えられる。
The printed layer printed on the upper and lower substrates of a liquid crystal display device
Heat at 80°C for 30 minutes, then at 250°C for 20 minutes. Next, it is heated rapidly in a furnace preheated to 500°C and held for 30 minutes to bake. As a result, the thickness of the film obtained from solution a is about 2000 Å ± 1500 Å, showing a non-uniform thickness distribution, whereas the thickness of the film obtained from solution b is about 2000 Å ± 1500 Å.
800 ű100 Å, showing a very uniform distribution.
In this way, the reason why the film thickness distribution of the film obtained from the solution containing nitrocellulose is uniform is that the adhesion between the solution and the substrate increases by adding nitrocellulose, and the viscosity is high and the thixotropy is low. This is thought to be because the printing layer becomes uniform due to the large size, and because the coating layer does not move during the standing and heating process compared to acetylacetone alone solution.

つぎに、MIL Standard Cr−6−75Aのゴムラ
ビングテスト(消しゴム:JIS規格S−50)で損
傷および剥離の有無を肉眠観察した結果、前記b
溶液から形成した膜は全く損傷、剥離は認められ
ず、良好な密着性とともに緻密な膜が形成されて
いるのに対して前記a溶液から形成した膜は部分
的に剥離が生ずる。
Next, as a result of the MIL Standard Cr-6-75A rubber rubbing test (eraser: JIS standard S-50), the presence or absence of damage and peeling was visually observed.
The film formed from the solution showed no damage or peeling, and a dense film with good adhesion was formed, whereas the film formed from the solution a showed partial peeling.

つぎに、前記b溶液から形成した膜を有する液
晶表示装置用ガラス基板上下2枚を用いて、上下
ガラス基板の間隙を10μmに保つように液晶封入
口の微小部分を除いてガラスビーズなどのスペー
サを入れたガラスペーストを前記薄膜が形成され
た1方の基板の面に印刷した後、前記薄膜が形成
された面を対向させて組み合わせ荷重を加えてシ
ール焼成を行う。ついで封入口の周囲に薄いCr
−Ni−Av層を蒸着により形成する。これにより
液晶表示装置の外囲器が形成される。ついで減圧
下で液晶を前記外囲気内に封入し、封入口をハン
ダシールする。液晶はネマチツクNn、Npいずれ
のタイプのものでも可能であり、表示方式によつ
て使いわけられるが、シツフ塩基系、ビフエニル
系、アゾキシ系、フエニルシクロヘキサン系、タ
ーフエニル系、エステル系、フエニルシクロヘキ
サンエステル系等いずれの液晶も表示基板に対し
て基板全面に亘つてムラなく垂直配向する。これ
はコノスコープなど適当な観察手段によつて確め
られる。
Next, using two upper and lower glass substrates for a liquid crystal display device having films formed from the solution b, a spacer such as a glass bead is used to remove a small part of the liquid crystal filling opening so as to maintain a gap of 10 μm between the upper and lower glass substrates. After printing the glass paste containing the thin film on the surface of one of the substrates on which the thin film was formed, seal firing is performed by applying a combination load with the surfaces on which the thin film is formed facing each other. Next, apply a thin layer of Cr around the filling opening.
- Forming a Ni-Av layer by vapor deposition. This forms the envelope of the liquid crystal display device. Next, the liquid crystal is sealed in the surrounding air under reduced pressure, and the sealing opening is sealed with solder. The liquid crystal can be of either nematic Nn or Np type, depending on the display method, but Schiff base type, biphenyl type, azoxy type, phenylcyclohexane type, terphenyl type, ester type, phenylcyclohexane type Any type of liquid crystal such as ester type liquid crystal is aligned perpendicularly to the display substrate evenly over the entire surface of the substrate. This is confirmed by suitable observational means such as a conoscope.

実施例 2 アルミニウムアセチルアセトナト{Al
(C5H8O23}1モルをアセチルアセトン5モルに
加熱しながら撹拌溶解する。つぎに61%硝酸1モ
ルを添加して加熱撹拌しながら反応を進める。こ
れにポリエチレングリコール400{和光純薬(株)}
1重量部をエタノール10重量部に溶解した溶液を
添加し、粘度約10センチポアズの溶液とし、これ
を塗布液とする。前記塗布液を酸化スズ系透明導
電体電極が形成されたガラス基板上にスピンナー
により塗布する。スピンナー回転数は3000rpm、
塗布時間20秒である。目視観察では塗布層は基板
全面に亘つて均一であり、長時間大気中に放置し
ても塗布層の収縮、移動はみられない。これはポ
リエチレングリコールが基板と良く親和するた
め、溶液のヌレ性が向上すること、ポリエチレン
グリコール以外の溶媒が揮発してもポリエチレン
グリコールが塗布層中に残り、基板との密着性を
向上させていることおよび溶質の移動を防止して
いるためと考えられる。
Example 2 Aluminum acetylacetonate {Al
1 mol of (C 5 H 8 O 2 ) 3 } is dissolved in 5 mol of acetylacetone with stirring while heating. Next, 1 mole of 61% nitric acid is added and the reaction is allowed to proceed with heating and stirring. Add polyethylene glycol 400 {Wako Pure Chemical Industries, Ltd.}
A solution of 1 part by weight dissolved in 10 parts by weight of ethanol is added to form a solution with a viscosity of about 10 centipoise, and this is used as a coating solution. The coating liquid is applied using a spinner onto a glass substrate on which a tin oxide-based transparent conductor electrode is formed. Spinner rotation speed is 3000rpm,
Application time is 20 seconds. Visual observation shows that the coating layer is uniform over the entire surface of the substrate, and no shrinkage or movement of the coating layer is observed even after being left in the air for a long time. This is because polyethylene glycol has good affinity with the substrate, improving the wettability of the solution, and even when solvents other than polyethylene glycol evaporate, polyethylene glycol remains in the coating layer, improving adhesion to the substrate. This is thought to be because it prevents the movement of solutes.

溶液塗布後70℃で30分間加熱後、引きつづいて
500℃で1時間加熱した。後者の加熱過程で有機
物の分解と金属の酸化、焼成が同時に進行する。
After applying the solution, heat it at 70℃ for 30 minutes, then continue
Heated at 500°C for 1 hour. In the latter heating process, decomposition of organic matter, oxidation and firing of metal proceed simultaneously.

得られた皮膜の膜厚は基板全面に亘り1500ű
150Åと極めて均一性が良く、透明で絶縁性であ
つた。また、膜の表面の電子顕微鏡写真では凹凸
が少なく、明らかなピンホールは認められない。
この基板を液晶表示素子として用いる場合、基板
を清浄にするためのブラシ洗浄などの工程を通す
が、前記の如く形成した膜には剥離や傷つきがみ
られず、密着性、膜強度とも大であり、十分に使
用に耐えるものである。
The thickness of the obtained film was 1500 ű over the entire surface of the substrate.
It had extremely good uniformity of 150 Å, and was transparent and insulating. Further, in an electron micrograph of the surface of the film, there are few irregularities and no obvious pinholes are observed.
When this substrate is used as a liquid crystal display element, it undergoes a process such as brush cleaning to clean the substrate, but the film formed as described above shows no peeling or damage, and has excellent adhesion and film strength. Yes, it is durable enough for use.

前記実施例では印刷法、スピン塗布法について
のみ説明したが、スプレー法、浸漬法などの塗布
法が適用できることは明らかである。また前記実
施例ではアセチルアセトンと錯体をつくる元素を
1成分のみ含む溶液について説明したが、アセチ
ルアセトンばかりでなく、一般のβジケトンであ
れば可能で、また溶液中に含有される錯体は1成
分のみに限定されるものではなく、用途に応じて
2成分、3成分の錯体を含有する溶液から薄膜を
形成できることは言をまたない。
Although only the printing method and the spin coating method were explained in the above embodiments, it is clear that coating methods such as the spray method and the dipping method can be applied. In addition, in the above example, a solution containing only one component of an element that forms a complex with acetylacetone was explained, but it is possible to use not only acetylacetone but also a general β-diketone, and the complex contained in the solution can be made of only one component. Without limitation, it goes without saying that a thin film can be formed from a solution containing a two-component or three-component complex depending on the application.

前記実施例に説明した如く、本発明では印刷法
などの塗布法により基板との密着性がよく、強度
的にすぐれた薄膜をきわめて均一性よくしかも容
易に基板上に形成できるため、従来の気相成長
法、蒸着法、スパツタリング法に比べてきわめて
安価に無機化合物薄膜を形成した基板を提供でき
る。
As explained in the examples above, the present invention allows a thin film with good adhesion to the substrate and excellent strength to be easily formed on the substrate with excellent uniformity using a coating method such as a printing method. A substrate on which an inorganic compound thin film is formed can be provided at a much lower cost than using phase growth, vapor deposition, or sputtering methods.

【図面の簡単な説明】[Brief explanation of the drawing]

図は硝酸セリウムとアセチルアセトンより作成
した溶液の回転粘度計の回転数にたいする粘度の
値を示した図。 a……ニトロセルロースを添加しない溶液の粘
度、b……ニトロセルロースを添加した溶液の粘
度。
The figure shows the viscosity of a solution prepared from cerium nitrate and acetylacetone as a function of the rotational speed of a rotational viscometer. a... Viscosity of a solution without nitrocellulose added, b... Viscosity of a solution with nitrocellulose added.

Claims (1)

【特許請求の範囲】[Claims] 1 一般式R1COCH2COR2またはR1COCH=C
(OH)R2(ただし、一般式中、R1およびR2はア
ルキル基またはアリール基を示す)なるβジケト
ンと錯体を形成する元素の中から選ばれた1つま
たはそれ以上の塩および前記βジケトンを含む有
機または無機溶剤とからなる溶液にポリエチレン
グリコールまたはニトロセルロースまたは前記2
者を添加してなる溶液を塗布後、加熱して得られ
る薄膜を有することを特徴とする電極基板。
1 General formula R 1 COCH 2 COR 2 or R 1 COCH=C
(OH)R 2 (in the general formula, R 1 and R 2 represent an alkyl group or an aryl group) and one or more salts selected from the elements that form a complex with the β-diketone; Add polyethylene glycol or nitrocellulose or the above two to a solution consisting of an organic or inorganic solvent containing β-diketone.
1. An electrode substrate characterized in that it has a thin film obtained by applying a solution containing a compound and then heating the solution.
JP5708079A 1979-05-11 1979-05-11 Electrode substrate Granted JPS55149920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5708079A JPS55149920A (en) 1979-05-11 1979-05-11 Electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5708079A JPS55149920A (en) 1979-05-11 1979-05-11 Electrode substrate

Publications (2)

Publication Number Publication Date
JPS55149920A JPS55149920A (en) 1980-11-21
JPS6256492B2 true JPS6256492B2 (en) 1987-11-26

Family

ID=13045492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5708079A Granted JPS55149920A (en) 1979-05-11 1979-05-11 Electrode substrate

Country Status (1)

Country Link
JP (1) JPS55149920A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2942109A1 (en) * 1979-10-18 1981-04-30 Philips Patentverwaltung Gmbh, 2000 Hamburg METHOD FOR PRODUCING MOLDED BODIES AND LAYERS FROM INORGANIC SUBSTANCES
JP2729373B2 (en) * 1987-01-07 1998-03-18 東京応化工業 株式会社 Coating solution for metal oxide film formation
US4960618A (en) * 1987-01-07 1990-10-02 Tokyo Ohka Kogyo Co., Ltd. Process for formation of metal oxide film
JP2824751B2 (en) * 1995-11-27 1998-11-18 東京応化工業株式会社 Coating solution for metal oxide film formation
US7879395B2 (en) * 2006-10-17 2011-02-01 Qimonda Ag Method of preparing a coating solution and a corresponding use of the coating solution for coating a substrate

Also Published As

Publication number Publication date
JPS55149920A (en) 1980-11-21

Similar Documents

Publication Publication Date Title
JPS5854089B2 (en) Method for forming transparent conductive film
JPS6053858B2 (en) Method for manufacturing electrochromic display device
JPS6326373B2 (en)
US4256377A (en) Process for producing homeotropic orientation layers for liquid crystal devices and the resultant liquid crystal devices
GB1584898A (en) Liquid crystal cells
JPS6256492B2 (en)
JPH06203658A (en) Coating solution for stranparent conductive film formation
JPS5889666A (en) Paste for forming transparent electrically conductive film and preparation thereof
JPS60137818A (en) Composition for forming transparent electrically conductive film
US4353943A (en) Aligning liquid crystal layers
JPH0586605B2 (en)
JPS6027130B2 (en) Method for manufacturing solution for creating transparent conductive film
JP3352772B2 (en) Transparent conductive film and method of manufacturing the same
JP3373898B2 (en) Transparent conductive film and method of manufacturing the same
JPH0530001B2 (en)
JPS62297470A (en) Paste for forming metal oxide thin film
JPS59198606A (en) Composition for forming transparent conductive film
JPS6048742B2 (en) Liquid crystal cell substrate and its manufacturing method
JPS6253811B2 (en)
JPH05306144A (en) Tungsten oxide coating film, its production and electroceramic element using same
JPS61113772A (en) Composite for forming transparent conductive film
JPS6034096B2 (en) Manufacturing method of liquid crystal cell
JPS6142951B2 (en)
JPS6333124B2 (en)
JPS5854090B2 (en) Method for forming transparent conductive film