JPS6338531A - Method for controlling induction heating of weld zone of seam welded steel pipe - Google Patents

Method for controlling induction heating of weld zone of seam welded steel pipe

Info

Publication number
JPS6338531A
JPS6338531A JP18406486A JP18406486A JPS6338531A JP S6338531 A JPS6338531 A JP S6338531A JP 18406486 A JP18406486 A JP 18406486A JP 18406486 A JP18406486 A JP 18406486A JP S6338531 A JPS6338531 A JP S6338531A
Authority
JP
Japan
Prior art keywords
temperature
induction heating
steel pipe
heating coil
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18406486A
Other languages
Japanese (ja)
Other versions
JPH0742515B2 (en
Inventor
Yoichi Naganuma
永沼 洋一
Hideaki Arita
秀昶 有田
Masaki Motomura
元村 雅記
Tadashi Tsunoda
角田 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18406486A priority Critical patent/JPH0742515B2/en
Publication of JPS6338531A publication Critical patent/JPS6338531A/en
Publication of JPH0742515B2 publication Critical patent/JPH0742515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To control heating with high accuracy by predetermining an equation to calculate the temp. at an arbitrary point of a region to be heated, repeating the calculation of the estimated temp. until the estimated temp. of the part to be heated obtd. after the calculation attains a target temp. CONSTITUTION:The physical property value corresponding to the initial temp. of the part to be heated is set to a calculator 4 from a setter 1. The temporally set current value of impressed current is selected by a setter 3 and is inputted to a setter 2. The coefft. corresponding to the temporally set current value is set for the calculator 4. The calculator 4 calculates the estimated temp. of the inside surface and outside surface of a steel pipe P. The calculation is repeated at every specified time. The estimated temp. of the inside surface obtd. after the calculation is outputted to a comparator 6 and the estimated temp. of the outside surface is outputted to a comparator 8. The comparators 6, 8 output the deviation between the estimated and the target temp. to a deviation controller 9. The controller 9 inputs the temporally set current value of the setter 3 as the initial set current value to a current controller 10 if the deviation is in a specified range. The controller corrects the set current value and the estimated temp. is again calculated by the calculator if the deviation is larger than the specified range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電縫銅管の溶接部を熱処理するための誘導加熱
の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of controlling induction heating for heat treating a welded portion of an electric resistance welded copper pipe.

(従来の技術) 電縫鋼管の製造工程において、溶接部の残留応力を除去
し、溶接部の組織を母材なみに改善して溶接部の品質を
向上させるために、溶接部を局部的に加熱して焼鈍ある
いは規準することが行われている。
(Conventional technology) In the manufacturing process of ERW steel pipes, welding is performed locally in order to remove residual stress in the weld, improve the structure of the weld to match that of the base metal, and improve the quality of the weld. Annealing or standardization is performed by heating.

この電縫鋼管溶接部の加熱方式としては誘導加熱方式が
一般に用いられておシ、たとえば特公昭60−3268
7号公報、特公昭61−3851号公報、特開昭60−
116725号公報にあるように、複数個の誘導加熱コ
イルを鋼管の進行方向に間隔をおいて設置して溶接部を
局部的かつ連続的に加熱している。
The induction heating method is generally used as a heating method for the welded portion of the ERW steel pipe.
Publication No. 7, Japanese Patent Publication No. 1983-3851, Japanese Patent Application Publication No. 1983-
As disclosed in Japanese Patent No. 116725, a plurality of induction heating coils are installed at intervals in the direction of movement of the steel pipe to locally and continuously heat the welded portion.

この場合誘導加熱コイルと被加熱鋼管の位置関係から、
被加熱鋼管の外部上面が最も加熱されやすく、従って昇
温速度が大きく、これに対して内面の温度は主に上部外
面からの熱伝達に依存するため昇温速度は小さい゛。
In this case, due to the positional relationship between the induction heating coil and the heated steel pipe,
The outer upper surface of the steel pipe to be heated is most easily heated, and therefore the rate of temperature increase is high, whereas the temperature of the inner surface mainly depends on heat transfer from the upper outer surface, so the rate of temperature increase is small.

また誘導加熱コイルは間隔をおいて設置されているので
、被加熱鋼管のある点についての外面と内面の時間的温
度推移は第3図に示すようになる。図において横軸は時
刻(経過時間)。
Further, since the induction heating coils are installed at intervals, the temperature change over time on the outer surface and inner surface of the heated steel pipe at a certain point is as shown in FIG. In the figure, the horizontal axis is time (elapsed time).

縦軸は温度であシ、Pは鋼管、Hl、・・・、Hnは誘
導加熱コイルであシ、曲線(イ)は外面温度、曲線(ロ
)は内面温度の推移を示す。
The vertical axis is the temperature, P is the steel pipe, Hl, .

ところで周知のように、鋼の材質は熱処理時の温度の影
響を大きく受け、たとえば鋼管の溶接部の焼鈍において
は、溶接部の温度を変態点温度の約750℃以上に均一
に加熱する必要があ#)%また加熱温度が1000℃を
超えると鋼の結晶状態が粗大化して材質が劣化する。
By the way, as is well known, the quality of steel material is greatly affected by the temperature during heat treatment. For example, when annealing a welded part of a steel pipe, it is necessary to uniformly heat the welded part to a temperature above the transformation point of approximately 750°C. A#)% If the heating temperature exceeds 1000°C, the crystalline state of the steel will become coarse and the material quality will deteriorate.

そこで、誘導加熱方式による鋼管溶接部の加熱温度を定
められた温度範囲に制御するための方法が従来から提案
されておシ、前述の特公昭60−32687号公報に記
載の温度制御方法はその1例である。この方法は、加熱
開始前に、鋼管厚さ方向の温度が目標値に維持できる誘
導加熱コイルへの印加電圧を算出する演算式を用いて誘
導加熱コイルの初期設定を行い、加熱開始後は誘導加熱
コイルの出側で検出した鋼管温度にもとづき、上流側の
誘導加熱コイルのフィードバック制御および下流側の誘
導加熱コイルのフィードフォワード制御を行う”方法で
ある。
Therefore, methods have been proposed for controlling the heating temperature of steel pipe welds within a predetermined temperature range by induction heating, and the temperature control method described in the above-mentioned Japanese Patent Publication No. 60-32687 is one such method. This is one example. In this method, before starting heating, the induction heating coil is initially set using a calculation formula that calculates the voltage applied to the induction heating coil that can maintain the temperature in the thickness direction of the steel pipe at the target value. This method performs feedback control of the upstream induction heating coil and feedforward control of the downstream induction heating coil based on the steel pipe temperature detected at the exit side of the heating coil.

(発明が解決しようとする問題点) 上記方法も含め従来の方法は、加熱開始前の誘導加熱コ
イルの初期設定のための制御モデルは比較的簡単なもの
を用い、かつ鋼管の厚さや移送速度、誘導加熱コイルと
のギャップ、最終目標温度等の条件が同じものに対して
はモデル式の係数などを変えることなく用い、また加熱
開始後の実測温度にもとづく修正制御も誘導加熱コイル
への印加電圧を修正するだけでモデル式の係数などを修
正することはないので、最終目標温度に対する制御精度
が低く、さらに鋼管内面の温度も含めた加熱制御という
点では初期設定、修正設定ともに精度的にみて不充分で
あった。
(Problems to be Solved by the Invention) Conventional methods, including the above method, use a relatively simple control model for the initial setting of the induction heating coil before heating starts, and the thickness of the steel pipe and the transfer speed If the conditions such as the gap with the induction heating coil and the final target temperature are the same, the coefficients of the model equation can be used without changing, and the correction control based on the actual temperature after heating starts can also be applied to the induction heating coil. Since only the voltage is corrected and the coefficients of the model equation are not corrected, the control accuracy for the final target temperature is low, and the accuracy of both the initial setting and the corrected setting is low in terms of heating control that includes the temperature inside the steel pipe. It looked inadequate.

(問題点を解決するための手段) 本発明は上記に鑑み、電縫銅管溶接部の誘導加熱にあた
シ、所定の被加熱領域の全域にわたって目標温度範囲内
に加熱する高精度の加熱制御方法を提供することを目的
とする。
(Means for Solving the Problems) In view of the above, the present invention provides high-precision heating for induction heating of welded parts of ERW copper pipes, which heats the entire predetermined region to be heated within a target temperature range. The purpose is to provide a control method.

このための本発明方法は、電縫鋼管の溶接部を誘導加熱
コイルにより加熱するにあたり、被加熱鋼管の物性値1
寸法、誘導加熱条件および誘導加熱コイル入側の被加熱
鋼管の温度の各位を用いて誘導加熱コイル出側の被加熱
領域の任意の点の温度を算出する式を予め定めておき、
加熱に先立って誘導加熱コイルへの設定電流値を仮設定
して前記温度算出式により誘導加熱コイル出側における
鋼管被加熱部の管外面および内面の推定温度を算出し、
該算出した推定温度と目標温度との偏差が一定範囲内な
らば前記仮設定電流値を誘導加熱コイルの初期電流値と
して設定し、前記温度偏差が一定範囲を超えるときは前
記仮設定電流値を修正して推定温度の算出と目標温度と
の偏差の算出を該温度偏差が一定範囲内になるまで繰返
してこのときの修正設定電流値を誘導加熱コイルの初期
電流値として設定すること、およびこれに加えて加熱開
始後の誘導加熱=イル出側における鋼管被加熱部の管外
面温度の実測値にもとづいて前記温度算出式のなかの係
数を学習的に修正することを特徴とする電縫鋼管溶接部
の誘導加熱制御方法である。
For this purpose, the method of the present invention heats the welded portion of the ERW steel pipe using an induction heating coil, and the physical property value of the steel pipe to be heated is 1.
A formula for calculating the temperature at any point in the heated region on the exit side of the induction heating coil is determined in advance using the dimensions, induction heating conditions, and temperature of the heated steel pipe on the input side of the induction heating coil,
Prior to heating, temporarily set the set current value to the induction heating coil, calculate the estimated temperature of the pipe outer surface and inner surface of the heated part of the steel pipe on the exit side of the induction heating coil using the temperature calculation formula,
If the deviation between the calculated estimated temperature and the target temperature is within a certain range, the temporary setting current value is set as the initial current value of the induction heating coil, and when the temperature deviation exceeds the certain range, the temporary setting current value is set. Calculating the corrected estimated temperature and calculating the deviation from the target temperature are repeated until the temperature deviation falls within a certain range, and the corrected setting current value at this time is set as the initial current value of the induction heating coil, and this In addition to this, the coefficients in the temperature calculation formula are learningly modified based on the actual measured value of the pipe outer surface temperature of the heated portion of the steel pipe at the induction heating = il exit side after the start of heating. This is a method for controlling induction heating of a welded part.

(作用) まず本発明における制御モデル式について説明する。(effect) First, the control model equation in the present invention will be explained.

前述した第3図のように鋼管に対して誘導加熱コイルを
配置し九ときの鋼管被加熱部の管厚さ方向位置yの誘導
電流値工(ロ)は近似的に次式%式%(1) で表わすことができることを本発明者等は実験により確
認し友。・(1)式中の工。は管厚さ方向位置y−oす
なわち管外表面の誘導電流値であシ、この表面誘導電流
値I0は、誘導加熱コイルの設定電流値をI とし九と
き、近似的に次式で表わ畠 すことができる。
As shown in Fig. 3, when an induction heating coil is placed on a steel pipe, the induced current value (b) at the position y in the thickness direction of the heated part of the steel pipe is approximately expressed by the following formula (%) ( 1) The present inventors confirmed through experiments that it can be expressed as:・(1) The engineering in the formula. is the induced current value at the position y-o in the tube thickness direction, that is, on the outer surface of the tube, and this surface induced current value I0 is approximately expressed by the following equation when the set current value of the induction heating coil is I. You can grow it.

■。厘I、・K1・K2・K3・fi ・・・(2)こ
こでμは鋼の比透磁率、σは鋼の電導率であシ、K1は
設定電流値工、によって定まる係数(後述)、K2は誘
導加熱コイルの形状、印加電流が磁界に変換される効率
および誘導加熱コイルと鋼管とのギャップ等により定ま
る係数、K。
■.厘I,・K1・K2・K3・fi...(2) Here, μ is the relative magnetic permeability of steel, σ is the electrical conductivity of steel, and K1 is the set current value. Coefficient determined by (described later) , K2 is a coefficient determined by the shape of the induction heating coil, the efficiency with which the applied current is converted into a magnetic field, the gap between the induction heating coil and the steel pipe, etc.

は鋼管の厚さ、外径、誘導加熱コイルの励磁周波数によ
って定まる係数である。ま九(1)式中の指数δは、に
4′f:鋼管の厚さ、外径、誘導加熱コイルの励磁周波
数によって定まる係数とするとき、近似的に次式 %式%(3) さらに鋼管被加熱部の管厚さ方向位置yにおける管周方
向位置Xの誘導電流値工  は、近(XI7) 似的に次式 %式%(4) で表わすことができることを本発明者等は実験により確
認した。ここでに5は鋼管の外径によって定まる係数で
ある。
is a coefficient determined by the thickness of the steel pipe, the outer diameter, and the excitation frequency of the induction heating coil. When the index δ in formula (1) is 4′f: a coefficient determined by the thickness of the steel pipe, the outer diameter, and the excitation frequency of the induction heating coil, it can be approximated by the following formula % formula % (3) The inventors have found that the induced current value at the position y in the tube circumferential direction of the heated part of the steel pipe at the position y in the tube circumferential direction can be approximately expressed by the following equation (XI7). Confirmed by experiment. Here, 5 is a coefficient determined by the outer diameter of the steel pipe.

前記(1) 、 (2) 、 (3) 、 (4)式か
ら求まる鋼管被加熱領域の各点(X、7)における誘導
電流値” (:c、y)と鋼の電導率σから各点(x+
y)における発熱量Q  が次式により求まる。
The induced current value at each point (X, 7) in the heated region of the steel pipe determined from the above equations (1), (2), (3), and (4) (:c, y) and the electrical conductivity σ of the steel Point (x+
The calorific value Q at y) is determined by the following equation.

(x、y) Q(x、ア) −”(x、y)/σ    ・・・(5
)これから任意の点(x、y)の任意の時刻(1)から
Δを時間(たとえば0.1秒)後の温度Tx、y、t+
Δ、は、鋼の熱伝導率をλ、比熱f:C1比重をρとす
るとき、周知の2次元伝熱方程式 %式%(6) を差分近似した次式により求めることができる。
(x, y) Q(x, a) −”(x, y)/σ ...(5
) Temperature Tx, y, t+ at any point (x, y) after Δ time (for example, 0.1 seconds) from any time (1)
Δ can be determined by the following equation, which is a differential approximation of the well-known two-dimensional heat transfer equation % formula (6), where λ is the thermal conductivity of steel and ρ is the specific heat f:C1 specific gravity.

Cx、ア、t ここでXおよびyは、被加熱部の管周方向および管厚さ
方向の位置を示し、(7)式で用いる際のXおよびyの
値は、差分計算領域2各々ΔXおよびΔyの微小な一定
間隔で格子状に区切りた接点の管周方向および管厚さ方
向の座標位置を示す値(1,2,3,・・・m、および
1,2,3.・”、n)である。
Cx, a, t Here, X and y indicate the position of the heated part in the pipe circumferential direction and the pipe thickness direction, and the values of X and y when used in equation (7) are ΔX Values (1, 2, 3, . . . m, and 1, 2, 3, . . . ” , n).

この(7)式は計算速度の高速化をはかる九めに、つぎ
のよりな近似を行って簡略化し比ものである。すなわち
鋼の比重ρは本発明の適用温度範囲では註度による変化
は大きくないので一定とし、また管周方向の必要計算領
域は溶接部中心から10m程度と狭いので、厳密には円
弧状にすべきところを矩形状とし友。なお(7)式中、
発熱量Qx、yjは、誘導加熱中は前記(5)式から求
め、誘導加熱コイルの配置されていない区間内では発熱
がないのでQXs)’st−0とする。
Equation (7) is simplified by making the following approximation in order to speed up the calculation. In other words, the specific gravity ρ of the steel does not change much due to the temperature range in which the present invention is applied, so it is kept constant, and the required calculation area in the circumferential direction of the pipe is narrow, about 10 m from the center of the weld, so strictly speaking it should be in the shape of an arc. A friend with a rectangular shape where it should be. Note that in formula (7),
The amount of heat generation Qx, yj is determined from the above equation (5) during induction heating, and is set as QXs)'st-0 since no heat is generated in the section where no induction heating coil is arranged.

本発明では、このようにして定めた制御モデル式を用い
て誘導加熱中の溶接部の所定領域の温度挙動を模擬し、
該領域の温度が目標範囲内となるような誘導加熱コイル
の設定電流値を算出して初期設定を行い、さらに実測温
度に応じて前記モデル式の係数の修正を行うようにした
ものである。
In the present invention, the control model equation determined in this way is used to simulate the temperature behavior of a predetermined region of the welded part during induction heating,
Initial settings are made by calculating the set current value of the induction heating coil such that the temperature of the region falls within the target range, and the coefficients of the model equation are corrected according to the actually measured temperature.

(実施例) 以下実施例にもとづきさらに詳細に説明する。(Example) A more detailed explanation will be given below based on examples.

第1図は本発明の実施例における制御系の装置構成を示
す図である。
FIG. 1 is a diagram showing the device configuration of a control system in an embodiment of the present invention.

図において1は鋼の物性値μ、σ、λ、C。In the figure, 1 indicates the physical properties μ, σ, λ, and C of the steel.

ρおよび係数に2. K3. K4. K5t−設定す
る設定器、2は係数に、を設定する設定器、3は誘導加
熱コイルHへの印加電流を設定する設定器、4は(1)
式〜(7)式により鋼管Pの被加熱領域の温度を推定す
る演算器、5は鋼管Pの内面目標温度を設定する設定器
、6は鋼管内面目標温度と推定温度を比較してその偏差
を出力する比較器、7は鋼管Pの外面目標温度を設定す
る設定器、8は鋼管外面目標温度と推定温度を比較して
その偏差を出力する比較器、9は偏差器6,8の出力に
応じてスイッチSを閉にするか、又は開にして設定器3
の設定電流値を修正する信号を出力する偏差制御器、1
0は電流制御器、11は温度計りで測定した鋼管外面の
実測温度と鋼管外面推定温度を比較してその偏差を設定
器2に出力する比較器である。
2 for ρ and the coefficient. K3. K4. K5t - Setter to set, 2 is coefficient, setter to set, 3 is setter to set the applied current to induction heating coil H, 4 is (1)
A calculator that estimates the temperature of the heated region of the steel pipe P using equations to (7), a setting device 5 that sets the target inner surface temperature of the steel pipe P, and a device 6 that compares the target inner surface temperature of the steel pipe with the estimated temperature and its deviation. 7 is a setting device that sets the target outer surface temperature of the steel pipe P. 8 is a comparator that compares the target outer surface temperature of the steel pipe with the estimated temperature and outputs the deviation. 9 is the output of the deviation devices 6 and 8. Close or open switch S depending on the setting device 3.
a deviation controller that outputs a signal for correcting the set current value of
0 is a current controller, and 11 is a comparator that compares the actual temperature of the outer surface of the steel pipe measured with a thermometer and the estimated temperature of the outer surface of the steel pipe and outputs the deviation to the setting device 2.

上記制御系において、まず鋼管Pの被加熱部(溶接部)
の初期温度に対応する物性値μ、σ。
In the above control system, first, the heated part (welded part) of the steel pipe P
Physical property values μ, σ corresponding to the initial temperature.

λIC1ρおよび係数に、 K、jK4.に、を設定器
1から演算器4に対して設定する。ここで前記初期温度
は、誘導加熱コイルHの入側における鋼管溶接部の実績
温度の平均値を用いる。係数に2は誘導加熱コイルHの
形状、効率および鋼管とのギャップにより定まシ、係数
に、およびに4は鋼管Pの厚さ、外径、誘導加熱コイル
の励磁周波数によって定まり、K、は鋼管Pの外径によ
りて定まる。一方設定器3で誘導加熱コイルHへの印加
電流の仮設定電流値を、たとえば鋼管Pの厚さ区分に応
じて予めテーブルとして記憶させであるなかから選択し
て設定器2に入力しくこのときスイッチSは開状態にな
っている)、設定器2は仮設定1流値に対応した係数に
、を演算器4に対して設定する。
λIC1ρ and coefficients K, jK4. is set from the setter 1 to the calculator 4. Here, as the initial temperature, the average value of the actual temperatures of the steel pipe welded portion on the inlet side of the induction heating coil H is used. The coefficient 2 is determined by the shape, efficiency, and gap between the induction heating coil H and the steel pipe, and the coefficient 4 is determined by the thickness, outer diameter, and excitation frequency of the induction heating coil P, and K is It is determined by the outer diameter of the steel pipe P. On the other hand, at this time, the setting device 3 selects a provisional current value for the applied current to the induction heating coil H from a table stored in advance according to the thickness classification of the steel pipe P and inputs it into the setting device 2. (the switch S is in an open state), the setter 2 sets a coefficient corresponding to the tentatively set first flow value to the arithmetic unit 4.

演算器4は(1)式〜(7)式を用いて、鋼管Pの長さ
方向のある仮想点が誘導加熱コイルによる加熱領域に到
達した時からΔを時間経過後の鋼管内面と外面の推定温
度を算出する。そしてこのΔを時間後の推定温度に対応
した物性値μ、σ、λ。
Using equations (1) to (7), the computing unit 4 calculates Δ from the time when a certain virtual point in the length direction of the steel pipe P reaches the heating area by the induction heating coil. Calculate the estimated temperature. Then, the physical property values μ, σ, and λ corresponding to the estimated temperature after a time of this Δ.

Cを用いて再び(1)式〜(7)式によりさらにΔを時
間経過後の鋼管内面と外面の推定温度を算出する。
Using C, the estimated temperatures of the inner and outer surfaces of the steel pipe after Δ has elapsed are calculated again using equations (1) to (7).

この演算をΔを時間毎に繰返し、誘導加熱コイルHの鋼
管長さ方向の長さt−Lとし、鋼管の速度をVとし、演
算繰返し回数をNとするとき。
When this calculation is repeated every time Δ, the length of the induction heating coil H in the longitudinal direction of the steel pipe is t-L, the speed of the steel pipe is V, and the number of repetitions of the calculation is N.

t!−で求めたtの値がt≧N×Δtとなり友ときの前
記算出温度が誘導加熱コイルH出側の鋼管内面あるいは
外面の推定温度である。
T! - The value of t determined by t becomes t≧N×Δt, and the calculated temperature is the estimated temperature of the inner or outer surface of the steel pipe on the exit side of the induction heating coil H.

演算器4はこのようにして算出し九鋼管Pの内面推定温
度を比較器6へ出力し、ま几外面推定温度を比較器8へ
出力する。
The calculator 4 calculates in this way and outputs the estimated inner surface temperature of the steel pipe P to the comparator 6, and outputs the estimated outer surface temperature of the steel pipe P to the comparator 8.

比較器6,8はこの推定温度と目標温度との偏差を偏差
制御器9に出力する。
The comparators 6 and 8 output the deviation between this estimated temperature and the target temperature to the deviation controller 9.

偏差制御器9は、比較器8の出力が零または負でかつ比
較器6の出力が予め定めた一定範囲内ならばスイッチ8
’lff開から閉にして設定器3の仮設定電流値を初期
設定電流値として電流制御器10に入力する。
The deviation controller 9 switches the switch 8 if the output of the comparator 8 is zero or negative and the output of the comparator 6 is within a predetermined range.
'lff is changed from open to closed, and the temporary setting current value of the setting device 3 is inputted to the current controller 10 as the initial setting current value.

比較器6の出力が正すなわち内面推定温度が内面目標温
度よシ大のときは、設定器3の仮設定電流値から予め定
めた値を減じて修正設定電流値とし、あるいは比較器8
の出力が予め定めた一定範囲よυ大(または小)のとき
は、設定器3の仮設定ta値から予め定め九一定値を減
じ(または増加し)で修正設定電流値とし、この修正設
定電流値に応じた係数に、t−用いて演算器4により再
び誘導加熱コイル出側の鋼管内面と外面の推定温度を算
出する。
When the output of the comparator 6 is positive, that is, the estimated internal temperature is higher than the target internal temperature, a predetermined value is subtracted from the temporary setting current value of the setting device 3 to obtain a corrected setting current value, or the comparator 8
When the output of υ is larger (or smaller) than a predetermined range, subtract (or increase) a predetermined 9 constant value from the temporary setting ta value of the setting device 3 to obtain the corrected setting current value, and make this correction. The estimated temperature of the inner and outer surfaces of the steel pipe on the exit side of the induction heating coil is again calculated by the calculator 4 using t- as a coefficient corresponding to the set current value.

このような誘導加熱コイル出側の推定温度の算出と目標
温度との比較を両者の温度偏差が一定範囲内になるまで
繰返した後、スイッチs6閉にして設定器3の修正設定
電流値を初期設定電流値として電流制御器10に入力す
る。
After repeating the calculation of the estimated temperature on the output side of the induction heating coil and the comparison with the target temperature until the temperature deviation between the two falls within a certain range, switch s6 is closed to initialize the corrected setting current value of the setting device 3. The current value is input to the current controller 10 as a set current value.

このようにして誘導加熱コイルHに対する初期電流値が
設定され、鋼管Pの加熱が開始される。鋼管Pの加熱中
は、温度計りにより誘導加熱コイルH出側の鋼管外面の
温度を測定し、この実測温度と前記外面推定温度を比較
器11で比較してその温度偏差を設定器2に出力する。
In this way, the initial current value for the induction heating coil H is set, and heating of the steel pipe P is started. While the steel pipe P is being heated, the temperature of the outer surface of the steel pipe on the outlet side of the induction heating coil H is measured using a thermometer, the measured temperature and the estimated outer surface temperature are compared by a comparator 11, and the temperature deviation is output to the setting device 2. do.

設定器2はこの温度偏差の正負および大きさに応じて、
設定電流値に対応する係数に、 t−学習的に修正し、
次回に加熱される鋼管に対してはこの修正した係数に、
を用いて推定温度の計算を行う・ 以上は1個の誘導加熱コイルで加熱する場合又は複数個
の誘導加熱コイルで加熱するときの第1段の誘導加熱コ
イルに対する制御方法である。
The setting device 2 adjusts the temperature according to the sign and magnitude of this temperature deviation.
Modify the coefficient corresponding to the set current value using t-learning,
For the steel pipe to be heated next time, this modified coefficient is
The estimated temperature is calculated using the following. The above is a control method for the first-stage induction heating coil when heating is performed with one induction heating coil or when heating is performed with a plurality of induction heating coils.

つぎに複数個の誘導加熱コイルで加熱するときの2段目
以降の誘導加熱コイルに対する制御方法を第2図に示す
実施例により説明する。
Next, a method of controlling the second and subsequent stages of induction heating coils when heating is performed using a plurality of induction heating coils will be described with reference to the embodiment shown in FIG.

第2図において12は、鋼管Pが前段の誘導加熱コイル
を出てから次段の誘導加熱コイルに到達するまでの間の
温度変化を演算して次段の誘導加熱コイル入側における
鋼管の温度を算出する演算器である。この演算は、前述
の(7)式を用い、同式中のTx、ア1.に前段の誘導
加熱コイル制御系の演算器4の最終出力(スイッチ8を
閉にしたときの鋼管Pの内外画の推定温度)を代入し、
同式中のQ工、ア、tto(零)としてΔを時間毎に温
度を計算し、鋼管Pが前段の誘導加熱コイル出側から次
段の誘導加熱コイル入側までに要する移動時間経過後の
鋼管Pの内外面推定温度を算出し1次段の制御系の演算
器4に初期温度として入力する。
In Fig. 2, 12 calculates the temperature change from when the steel pipe P exits the previous induction heating coil until it reaches the next induction heating coil, and calculates the temperature of the steel pipe at the entrance side of the next induction heating coil. This is a calculation unit that calculates . This calculation uses the above-mentioned equation (7), where Tx, a1. Substitute the final output of the calculator 4 of the induction heating coil control system in the previous stage (the estimated temperature of the inside and outside of the steel pipe P when the switch 8 is closed) into
Calculate the temperature for each time with Δ as Q, A, and tto (zero) in the same equation, and after the travel time required for the steel pipe P from the exit side of the induction heating coil in the previous stage to the entrance side of the induction heating coil in the next stage has elapsed. The estimated temperature of the inner and outer surfaces of the steel pipe P is calculated and input as the initial temperature to the arithmetic unit 4 of the primary stage control system.

第2段以降の制御系における演算で、第1段の制御系に
おける演算と異なるもう1つの点は。
Another point that differs from the calculations in the first stage control system in the calculations in the second and subsequent stage control systems is as follows.

前段の鋼管外面実測温度にもとづく前段制御系の係数に
、のフィードバック的な修正と同時に後段の制御系の係
数に、もツイード7オワード的に修正し、第2段以降に
おいては今回加熱の鋼管PK対して修正したに、t−用
いて推定温度の算出を行うことである。上記2点のほか
は、各段の制御系の演算や設定の方法は同じである。
At the same time, the coefficients of the first-stage control system based on the actual measured temperature on the outside surface of the first-stage steel pipe were corrected in a feedback manner, and the coefficients of the second-stage control system were also corrected in a Tweed 7-Oward manner. The correction for this is to calculate the estimated temperature using t-. Other than the above two points, the calculation and setting methods for the control system at each stage are the same.

かくして各段における誘導加熱コイルへの印加電流値が
最適に設定され、誘導加熱コイル出側の鋼管の温度は、
被加熱領域の全域にわたって目標範囲に制御される。
In this way, the current value applied to the induction heating coil at each stage is set optimally, and the temperature of the steel pipe on the exit side of the induction heating coil is
The entire area to be heated is controlled within the target range.

(発明の効果) 以上述べたように本発明方法は、電縫鋼管溶接部の誘導
加熱にあたシ、加熱開始前の誘導加熱=イルの初期電流
値を設定するための制御モデルとして被加熱領域の任意
の点の温度を算出する式を予め定めておき、この温度算
出式を用いて算出した被加熱部の管外面および管内面の
推定温度が目標温度に対して一定範囲になるまで前記推
定温度の計算を繰返して初期電流値を決定するようにし
たので、初期電流値を最適に設定することができる。さ
らに加熱中の実測温度にもとづいて前記温度算出式のな
かの係数を修正するようにしたので1次回加熱材に対す
る初期電流値および下流側の誘導加熱コイルに対する初
期電流値をよシ最適に設定することができる。というす
ぐれた効果がある。
(Effects of the Invention) As described above, the method of the present invention is used as a control model for induction heating of a welded portion of ERW steel pipes, and for setting the initial current value of the induction heating = coil before the start of heating. A formula for calculating the temperature at an arbitrary point in the region is determined in advance, and the temperature calculation is continued until the estimated temperature of the outside and inside of the tube of the heated section calculated using this temperature calculation formula falls within a certain range with respect to the target temperature. Since the initial current value is determined by repeating the calculation of the estimated temperature, the initial current value can be optimally set. Furthermore, since the coefficients in the temperature calculation formula are modified based on the actual temperature measured during heating, the initial current value for the primary heating material and the initial current value for the downstream induction heating coil can be set more optimally. be able to. It has an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における制御系の装置構成を示
す図、第2図は多段に配置した誘導加熱コイルに対して
本発明を適用した実施例における制御系の装置構成を示
す図、第3図は加熱中における鋼管の外面と内面の時間
的温度推移を示す図である。 1.2,3,5,7・・・設定器、 4.12・・・演算器、 6,8.11・・・比較器、
9・・・偏差制御器、   10・・・電流制御器、S
・・・スイッチ、   P・・・鋼管、■・・・誘導加
熱コイル、D・・・′&震度計1図 第2図
FIG. 1 is a diagram showing the device configuration of a control system in an embodiment of the present invention, and FIG. 2 is a diagram showing the device configuration of a control system in an embodiment in which the present invention is applied to induction heating coils arranged in multiple stages. FIG. 3 is a diagram showing temporal temperature changes on the outer and inner surfaces of the steel pipe during heating. 1.2, 3, 5, 7... Setting device, 4.12... Arithmetic unit, 6, 8.11... Comparator,
9... Deviation controller, 10... Current controller, S
...Switch, P...Steel pipe, ■...Induction heating coil, D...'& seismic intensity meter Figure 1, Figure 2

Claims (1)

【特許請求の範囲】 1 電縫鋼管の溶接部を誘導加熱コイルにより加熱する
にあたり、被加熱鋼管の物性値、寸法、誘導加熱条件お
よび誘導加熱コイル入側の被加熱鋼管の温度の各値を用
いて誘導加熱コイル出側の被加熱領域の任意の点の温度
を算出する式を予め定めておき、加熱に先立って誘導加
熱コイルへの設定電流値を仮設定して前記温度算出式に
より誘導加熱コイル出側における鋼管被加熱部の管外面
および内面の推定温度を算出し、該算出した推定温度と
目標温度との偏差が一定範囲内ならば前記仮設定電流値
を誘導加熱コイルの初期電流値として設定し、前記温度
偏差が一定範囲を超えるときは前記仮設定電流値を修正
して推定温度の算出と目標温度との偏差の算出を該温度
偏差が一定範囲内になるまで繰返してこのときの修正設
定電流値を誘導加熱コイルの初期電流値として設定する
ことを特徴とする電縫鋼管溶接部の誘導加熱制御方法。 2 電縫鋼管の溶接部を誘導加熱コイルにより加熱する
にあたり、被加熱鋼管の物性値、寸法、誘導加熱条件お
よび誘導加熱コイル入側の被加熱鋼管の温度の各値を用
いて誘導加熱コイル出側の被加熱領域の任意の点の温度
を算出する式を予め定めておき、加熱に先立って誘導加
熱コイルへの設定電流値を仮設定して前記温度算出式に
より誘導加熱コイル出側における鋼管被加熱部の管外面
および内面の推定温度を算出し、該算出した推定温度と
目標温度との偏差が一定範囲内ならば前記仮設定電流値
を誘導加熱コイルの初期電流値として設定し、前記温度
偏差が一定範囲を超えるときは前記仮設定電流値を修正
して推定温度の算出と目標温度との偏差の算出を該温度
偏差が一定範囲内になるまで繰返してこのときの修正設
定電流値を誘導加熱コイルの初期電流値として設定し、
加熱開始後の誘導加熱コイル出側における鋼管被加熱部
の管外面温度の実測値にもとづいて前記温度算出式のな
かの係数を学習的に修正することを特徴とする電縫鋼管
溶接部の誘導加熱制御方法。
[Scope of Claims] 1. When heating the welded portion of an ERW steel pipe using an induction heating coil, each value of the physical property values, dimensions, induction heating conditions, and temperature of the steel pipe to be heated on the inlet side of the induction heating coil is determined. A formula for calculating the temperature at an arbitrary point in the heated area on the exit side of the induction heating coil is determined in advance, and prior to heating, a set current value to the induction heating coil is temporarily set, and the induction temperature is calculated using the temperature calculation formula. The estimated temperatures of the outer and inner surfaces of the heated section of the steel pipe on the exit side of the heating coil are calculated, and if the deviation between the calculated estimated temperature and the target temperature is within a certain range, the provisional current value is set as the initial current of the induction heating coil. When the temperature deviation exceeds a certain range, the temporary setting current value is corrected and the calculation of the estimated temperature and the deviation from the target temperature are repeated until the temperature deviation falls within the certain range. 1. A method for controlling induction heating of a welded part of an ERW steel pipe, the method comprising: setting a corrected current value at the time as an initial current value of an induction heating coil. 2. When heating the welded part of an ERW steel pipe with an induction heating coil, the physical properties of the steel pipe to be heated, dimensions, induction heating conditions, and temperature values of the steel pipe to be heated on the input side of the induction heating coil are used to determine the output of the induction heating coil. A formula for calculating the temperature at an arbitrary point in the heated area on the side is determined in advance, and a set current value for the induction heating coil is temporarily set prior to heating, and the steel pipe at the exit side of the induction heating coil is Calculate the estimated temperature of the tube outer surface and inner surface of the heated part, and if the deviation between the calculated estimated temperature and the target temperature is within a certain range, set the provisional current value as the initial current value of the induction heating coil, and When the temperature deviation exceeds a certain range, the provisional setting current value is corrected, and the calculation of the estimated temperature and the deviation from the target temperature are repeated until the temperature deviation falls within the certain range, and the corrected setting current value at this time is calculated. Set as the initial current value of the induction heating coil,
Guidance of an ERW steel pipe welded part, characterized in that the coefficients in the temperature calculation formula are learnedly modified based on the measured value of the pipe outer surface temperature of the heated part of the steel pipe on the exit side of the induction heating coil after heating has started. Heating control method.
JP18406486A 1986-08-05 1986-08-05 Induction heating control method for ERW pipe welds Expired - Lifetime JPH0742515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18406486A JPH0742515B2 (en) 1986-08-05 1986-08-05 Induction heating control method for ERW pipe welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18406486A JPH0742515B2 (en) 1986-08-05 1986-08-05 Induction heating control method for ERW pipe welds

Publications (2)

Publication Number Publication Date
JPS6338531A true JPS6338531A (en) 1988-02-19
JPH0742515B2 JPH0742515B2 (en) 1995-05-10

Family

ID=16146742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18406486A Expired - Lifetime JPH0742515B2 (en) 1986-08-05 1986-08-05 Induction heating control method for ERW pipe welds

Country Status (1)

Country Link
JP (1) JPH0742515B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085142A1 (en) * 2002-04-08 2003-10-16 Jfe Steel Corporation Heat treating device, heat treating method, recording medium recording heat treating program and steel product
JP2005344192A (en) * 2004-06-07 2005-12-15 Denki Kogyo Co Ltd Method for adjusting condition of heat treatment
JP2006002191A (en) * 2004-06-16 2006-01-05 Denki Kogyo Co Ltd Method for controlling heat treatment condition
JP2007046108A (en) * 2005-08-10 2007-02-22 Toshiba Corp Method and apparatus for controlling temperature of outer surface at high-frequency induction heating time
JP2008155340A (en) * 2006-12-26 2008-07-10 Matsuura Machinery Corp Method of calculating temperature distribution of ball screw in operation, and method of correcting displacement, based on the method
JP2008168354A (en) * 2006-12-14 2008-07-24 Univ Of Fukui Temperature distribution calculating method in operating ball screw and displacement correction method based on the method
JP2009173985A (en) * 2008-01-23 2009-08-06 Jfe Steel Corp Heat-treatment method of electric resistance welded steel pipe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085142A1 (en) * 2002-04-08 2003-10-16 Jfe Steel Corporation Heat treating device, heat treating method, recording medium recording heat treating program and steel product
US6891139B2 (en) 2002-04-08 2005-05-10 Jfe Steel Corporation Heat treatment apparatus, heat treatment method, medium on which heat treatment program is recorded, and steel product
JP2005344192A (en) * 2004-06-07 2005-12-15 Denki Kogyo Co Ltd Method for adjusting condition of heat treatment
JP2006002191A (en) * 2004-06-16 2006-01-05 Denki Kogyo Co Ltd Method for controlling heat treatment condition
JP2007046108A (en) * 2005-08-10 2007-02-22 Toshiba Corp Method and apparatus for controlling temperature of outer surface at high-frequency induction heating time
JP2008168354A (en) * 2006-12-14 2008-07-24 Univ Of Fukui Temperature distribution calculating method in operating ball screw and displacement correction method based on the method
JP2008155340A (en) * 2006-12-26 2008-07-10 Matsuura Machinery Corp Method of calculating temperature distribution of ball screw in operation, and method of correcting displacement, based on the method
JP2009173985A (en) * 2008-01-23 2009-08-06 Jfe Steel Corp Heat-treatment method of electric resistance welded steel pipe

Also Published As

Publication number Publication date
JPH0742515B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
JP6146553B1 (en) Steel plate temperature control device and temperature control method
JPS6338531A (en) Method for controlling induction heating of weld zone of seam welded steel pipe
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
JP2004058128A (en) Method and device for controlling rolling temperature of steel pipe
JP6784182B2 (en) Steel plate temperature control method and steel sheet temperature control device
JP4965031B2 (en) Temperature control method in high frequency heating
CN115522040B (en) Automatic control method for temperature of cold-rolling continuous annealing furnace
RU2068006C1 (en) Method to control metal heating in flame heating furnace
CN115130348B (en) Calculation method for maximum heating rate of 9% Cr heat-strengthening steel thick-wall pipeline after local post-welding heat treatment through medium-frequency induction heating
JPH09216011A (en) Method for controlling cooling of hot rolled steel sheet
CN214333354U (en) Box-type electric furnace for workpiece processing
JPS6228002A (en) Method and apparatus for heating web in rolling of wide flange beam
CN116219154A (en) Strip steel continuous annealing plate temperature control method and device
JPH0754055A (en) Method for controlling temperature of steel strip in continuous annealing furnace
KR960006030B1 (en) Temperature fixing method of heating furnace atmosphere
JP2592553B2 (en) Heat control method for metal materials
SU567762A1 (en) Method of automatic control of heating of tubular blanks
JPH02238288A (en) Heating method for refractory material through induction heating
JPS5625933A (en) Temperature controlling method for steel billet in heating furnace
CN115130348A (en) Method for calculating maximum temperature rise rate of after-local welding heat treatment of medium-frequency induction heating of 9% Cr hot-strength steel thick-wall pipeline
JP2005120409A (en) Method for manufacturing high-strength steel plate superior in uniformity of material in longitudinal direction of steel sheet
JPH07109790B2 (en) Induction heating device
SU764898A1 (en) Method of automatic measuring and control of electric heating
JPH03193826A (en) Method for controlling strip temperature in continuous annealing furnace
CN118048514A (en) Strip steel heating control method